1
|
Gensch L, Jantke K, Rasche L, Schneider UA. Pesticide risk assessment in European agriculture: Distribution patterns, ban-substitution effects and regulatory implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123836. [PMID: 38522603 DOI: 10.1016/j.envpol.2024.123836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
This study estimates the risks of agricultural pesticides on non-target organisms and the environment by combining detailed pesticide application data for 2015 with the Danish risk indicator Pesticide Load. We quantify and map the pesticide load of 59 pesticides on 28 crops and pastures in the EU. Furthermore, we investigate how recent bans on 14 pesticides in the EU could reduce pesticide use and load. Key findings show that the highest pesticide loads per hectare occur in Cyprus and the Netherlands due to high application rates and a high proportion of vegetable production. Chlorpyrifos caused the highest pesticide load per hectare on more than half of the assessed crops before its ban. The ban of 14 pesticides between 2018 and 2023 potentially reduced pesticide loads by 94%, but unobserved substitution effects could offset pesticide load reductions. Although bans on active substances are justified to control certain endpoint risks, our results highlight the potential weaknesses of bans that merely shift risks. These findings contribute to the ongoing scientific and societal discourse on efficiently mitigating pesticides' impacts on non-target organisms and the environment. However, to improve the evaluation of pesticide use, it is vital to enhance the reporting on detailed pesticide use for individual crop-pesticide combinations.
Collapse
Affiliation(s)
- Luisa Gensch
- Max Planck Institute for Meteorology, Hamburg, Germany; International Max Planck Research School on Earth System Modelling, Hamburg, Germany; Research Unit Sustainability and Climate Risks, University of Hamburg, Germany; Center for Earth System Research and Sustainability (CEN), University of Hamburg, Germany.
| | - Kerstin Jantke
- Center for Earth System Research and Sustainability (CEN), University of Hamburg, Germany
| | - Livia Rasche
- Research Unit Sustainability and Climate Risks, University of Hamburg, Germany; Center for Earth System Research and Sustainability (CEN), University of Hamburg, Germany; Land Use Economics, University of Hohenheim, Stuttgart, Germany
| | - Uwe A Schneider
- Research Unit Sustainability and Climate Risks, University of Hamburg, Germany; Center for Earth System Research and Sustainability (CEN), University of Hamburg, Germany
| |
Collapse
|
2
|
Li S, Sun J, Gao Y, Zou A, Cheng J. Enhanced fungicidal efficacy and improved interfacial properties with the co-delivery of prothioconazole and tebuconazole using polylactic acid microspheres. PEST MANAGEMENT SCIENCE 2024; 80:1831-1838. [PMID: 38031966 DOI: 10.1002/ps.7913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Prothioconazole (PTC) is one of the leading fungicide products worldwide. However, excessive use of PTC facilitates the development of resistance. Pesticide compounding technology plays an important role in reducing pesticide resistance. Microspherization technology for the construction of pesticide dual-loaded systems has recently provided a new direction for researching novel and efficient pesticide formulations. In this study, prothioconazole-tebuconazole@polylactic acid microspheres (PTC-TBA@PLA MS) were constructed by combining these two technologies. RESULTS The final PTC-TBA@PLA MS were selected by an orthogonal method, which were uniformly spherical with smooth surface. The resultant drug loading (DL) and average particle size of PTC-TBA@PLA MS were 31.34% and 22.3 μm, respectively. A PTC-TBA@PLA MS suspending agent (SC) with a high suspension rate of 94.3% was prepared according to the suspension rate, dumping ability and stability. Compared with a commercial SC, the PTC-TBA@PLA MS SC had a larger cumulative release and better interfacial properties. Biological experiments showed that PTC-TBA@PLA MS SC had an obviously improved bactericidal effect than the commercial SC. CONCLUSION The constructed PTC-TBA@PLA MS system detailed here is expected to reduce the risk of resistance and the frequency of pesticide use while enhancing fungal control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shujing Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jing Sun
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yue Gao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Aihua Zou
- Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Bugingo C, Brelsford M, Burrows M. Fungicide Sensitivity of Fusarium oxysporum f. sp. lentis and Fusarium acuminatum Affecting Lentil in the Northern Great Plains. PLANT DISEASE 2024; 108:286-290. [PMID: 37606958 DOI: 10.1094/pdis-07-23-1440-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Fusarium oxysporum f. sp. lentis and F. acuminatum cause wilting and root rot in pulse crops including lentil. Fungicide seed treatments are widely used, but information about Fusarium spp. sensitivity in lentils is limited. Here, 30 F. oxysporum f. sp. lentis and 30 F. acuminatum isolates from Montana, southern Canada, North Dakota, and Washington were identified, tested for pathogenicity, and assayed for in vitro sensitivity to pyraclostrobin, prothioconazole, ipconazole, and thiophanate-methyl. F. oxysporum f. sp. lentis and F. acuminatum differed in their sensitivity to all fungicides. No resistant isolates were identified, but F. oxysporum f. sp. lentis had lower EC50 values in pyraclostrobin (averaging 0.47 μg a.i./ml) than F. acuminatum (averaging 0.89 μg a.i./ml) for mycelia assays. Both species had lower EC50 values in prothioconazole, averaging EC50 0.23 in F. oxysporum f. sp. lentis and 0.53 μg a.i./ml in F. acuminatum. F. oxysporum f. sp. lentis isolates had the lowest EC50 values on ipconazole compared to F. acuminatum (0.78 and 1.49 μg a.i./ml). The pathogens were least sensitive to thiophanate-methyl (1.74 μg a.i./ml for F. oxysporum f. sp. lentis and 1.91 μg a.i./ml for F. acuminatum). Overall sensitivity to the fungicides was higher in F. oxysporum f. sp. lentis than F. acuminatum. This study provides reference EC50 values while pointing to the possibility of differential fungicide efficacies on Fusarium spp. This will be helpful to monitor shifts in sensitivity of Fusarium spp. and devise robust root rot/wilt management approaches.
Collapse
Affiliation(s)
| | - Monica Brelsford
- Plant Science and Plant Pathology Department, Montana State University, Bozeman, MT 59717
| | - Mary Burrows
- College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
4
|
Su X, Yan S, Zhao W, Liu H, Jiang Q, Wei Y, Guo H, Yin M, Shen J, Cheng H. Self-assembled thiophanate-methyl/star polycation complex prevents plant cell-wall penetration and fungal carbon utilization during cotton infection by Verticillium dahliae. Int J Biol Macromol 2023; 239:124354. [PMID: 37028625 DOI: 10.1016/j.ijbiomac.2023.124354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
No effective fungicides are available for the management of Verticillium dahliae, which causes vascular wilt disease. In this study, a star polycation (SPc)-based nanodelivery system was used for the first time to develop a thiophanate-methyl (TM) nanoagent for the management of V. dahliae. SPc spontaneously assembled with TM through hydrogen bonding and Van der Waals forces to decrease the particle size of TM from 834 to 86 nm. Compared to TM alone, the SPc-loaded TM further reduced the colony diameter of V. dahliae to 1.12 and 0.64 cm, and the spore number to 1.13 × 108 and 0.72 × 108 cfu/mL at the concentrations of 3.77 and 4.71 mg/L, respectively. The TM nanoagents disturbed the expression of various crucial genes in V. dahliae, and contributed to preventing plant cell-wall degradation and carbon utilization by V. dahliae, which mainly impaired the infective interaction between pathogens and plants. TM nanoagents remarkably decreased the plant disease index and the fungal biomass in the root compared to TM alone, and its control efficacy was the best (61.20 %) among the various formulations tested in the field. Furthermore, SPc showed negligible acute toxicity toward cotton seeds. To the best of our knowledge, this study is the first to design a self-assembled nanofungicide that efficiently inhibits V. dahliae growth and protects cotton from the destructive Verticillium wilt.
Collapse
Affiliation(s)
- Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, PR China
| | - Shuo Yan
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, PR China.
| | - Weisong Zhao
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Baoding 071000, PR China
| | - Haiyang Liu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, PR China
| | - Qinhong Jiang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, PR China
| | - Ying Wei
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, PR China
| | - Huiming Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, PR China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, PR China.
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, PR China.
| |
Collapse
|
5
|
Wei J, Guo X, Jiang J, Qian L, Xu J, Che Z, Huang X, Liu S. Resistance risk assessment of Fusarium pseudograminearum from wheat to prothioconazole. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105346. [PMID: 36963928 DOI: 10.1016/j.pestbp.2023.105346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Fusarium crown rot (FCR), primarily caused by Fusarium pseudograminearum, poses significant threats to cereal crops worldwide. Prothioconazole is a demethylation inhibitor (DMI) fungicide used to control FCR. However, the risk of resistance in F. pseudograminearum to prothioconazole has not yet been evaluated. In this study, the sensitivity of a total of 255 F. pseudograminearum strains obtained from Henan Province, China to prothioconazole were determined by the mycelial growth inhibition. The results showed that the effective concentration to 50% growth inhibition (EC50) of these strains ranged from 0.4228 μg/mL to 2.5284 μg/mL, with a mean EC50 value of 1.0692 ± 0.4527 μg/mL (mean ± SD). Thirty prothioconazole-resistant mutants were obtained out of six selected sensitive parental strains by means of fungicide taming. The resistant mutants exhibited defects in vegetative growth, conidia production, and pathogenicity on wheat seedlings compared to their parental strains. Under ion, cell wall, and temperature stress conditions but not osmotic stress, all the mutants exhibited decreased growth rates compared with their parental strains, which was consistent with the control treatment. Cross-resistance test showed that there was a cross-resistance relationship between prothioconazole and four DMI fungicides, including prochloraz, metconazole, tebuconazole and hexaconazole, but no cross-resistance was observed between prothioconazole and carbendazim, phenamacril, fludioxonil, or azoxystrobin. Although no site mutation occurred on Cyp51a and Cyp51b genes, the constitutive expression level of the Cyp51a gene was significantly increased in all mutants. After being treated with prothioconazole, the Cyp51a and Cyp51b genes were significantly increased in both the resistant mutants and their parents. These results suggested that the resistance to prothioconazole of the mutants may be attributed to the changes of the relative expression level of Cyp51a and Cyp51b genes. Taken together, these results could provide a theoretical basis for the scientific use of prothioconazole in the field and fungicide resistance management strategies.
Collapse
Affiliation(s)
- Jiangqiao Wei
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Xuhao Guo
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Jia Jiang
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Le Qian
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Jianqiang Xu
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhiping Che
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiaobo Huang
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Shengming Liu
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
6
|
Zeng R, Zou X, Huang C, Si H, Song J, Zhang J, Luo H, Wang Z, Wang P, Fan G, Rao X, Liao S, Chen S. Novel Design of Citral-Thiourea Derivatives for Enhancing Antifungal Potential against Colletotrichum gloeosporioides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3173-3183. [PMID: 36760014 DOI: 10.1021/acs.jafc.2c07851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although much progress has been made in developing botanical fungicides to combat fungal diseases in crops, there remains a great need to improve the efficiency and long-term safety of these fungicides. This study proposes a novel strategy for designing citral-thiourea derivatives that feature such desirable properties. The motivation of the work herein was to enhance the antifungal activity of citral against C. gloeosprioides by exploiting the synergistic effect that arises from combining citral and thiourea compounds, thereby producing citral-thiourea derivatives that exhibit good long-term safety. The results revealed that the generated compounds e1, e3, e6, e18, and g showed remarkable antifungal activities against C. gloeosprioides, with corresponding EC50 values reaching 0.16, 1.66, 1.37, 4.76, and 4.60 mg/L, respectively, showing that the compounds significantly outperformed both the positive control kresoxim-methyl and the commercially available fungicide carbendazim. Furthermore, compound g showed stronger protective efficacy against C. gloeosprioides than carbendazim on mango fruit at 25 mg/L. Investigating the preliminary structure-activity relationship (SAR) of the compounds also revealed that the citral-thiourea derivatives exhibited higher antifungal activities against C. gloeosprioides compared to citral and thiourea compounds. This reinforcement of antifungal activity observed in the derivatives was found to be attributable to the two characteristics of low molecular size and the presence of a fluorine atom in the meta-position of the benzene ring. Beyond this, it was determined from QSAR that two molecular descriptors (the Kier-Hall index (order 3) and Tot dipole of the molecules) were negatively related to the antifungal activity of the citral-thiourea derivatives, while one other (the maximum resonance energy of a C-H bond) was positively related to their antifungal activity. More importantly, the citral-thiourea derivatives with high antifungal activities (i.e., compounds e1, e3, e6, e14, e15, e18, and g) exhibited negligible cytotoxicity to LO2 and HEK293T cell lines. The antifungal mechanism of the generated citral-thiourea derivatives was investigated by scanning electron microscopy (SEM) and relative conductivity. The derivatives were found to affect mycelial morphology and increase fungal cell membrane permeability, thereby resulting in the destruction of fungal cell membranes. These promising results provide novel insights into the study and potential application value of citral-thiourea derivatives as high-efficiency antifungal agents against C. gloeosprioides.
Collapse
Affiliation(s)
- Rong Zeng
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Xiuxiu Zou
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Cong Huang
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Hongyan Si
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Jie Song
- Department of Natural Sciences, University of Michigan-Flint, 303E Kearsley, Flint, Michigan 48502, United States
| | - Ji Zhang
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Hai Luo
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Zongde Wang
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Peng Wang
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Guorong Fan
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Xiaoping Rao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Shengliang Liao
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| | - Shangxing Chen
- College of Forestry, Jiangxi Agricultural University; East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Camphor Engineering Research Center of National Forestry and Grassland Administration/Jiangxi Province, Nanchang 330045, People's Republic of China
| |
Collapse
|
7
|
Micronutrients Affect Expression of Induced Resistance Genes in Hydroponically Grown Watermelon against Fusarium oxysporum f. sp. niveum and Meloidogyne incognita. Pathogens 2022; 11:pathogens11101136. [PMID: 36297194 PMCID: PMC9608861 DOI: 10.3390/pathogens11101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022] Open
Abstract
The soil-borne pathogens, particularly Fusarium oxysporum f. sp. niveum (FON) and southern root-knot nematode (RKN, Meloidogyne incognita) are the major threats to watermelon production in the southeastern United States. The role of soil micronutrients on induced resistance (IR) to plant diseases is well-documented in soil-based media. However, soil-based media do not allow us to determine the contribution of individual micronutrients in the induction of IR. In this manuscript, we utilized hydroponics-medium to assess the effect of controlled application of micronutrients, including iron (Fe), manganese (Mn), and zinc (Zn) on the expression of important IR genes (PR1, PR5, and NPR1 from salicylic acid (SA) pathway, and VSP, PDF, and LOX genes from jasmonic acid (JA) pathway) in watermelon seedlings upon inoculation with either FON or RKN or both. A subset of micronutrient-treated plants was inoculated (on the eighth day of micronutrient application) with FON and RKN (single or mixed inoculation). The expression of the IR genes in treated and control samples was evaluated using qRT-PCR. Although, significant phenotypic differences were not observed with respect to the severity of wilt symptoms or RKN galling with any of the micronutrient treatments within the 30-day experimental period, differences in the induction of IR genes were considerably noticeable. However, the level of gene expression varied with sampling period, type and concentration of micronutrients applied, and pathogen inoculation. In the absence of pathogens, micronutrient applications on the seventh day, in general, downregulated the expression of the majority of the IR genes. However, pathogen inoculation preferentially either up- or down-regulated the expression levels of the IR genes at three days post-inoculation depending on the type and concentration of micronutrients. The results demonstrated here indicate that micronutrients in watermelon may potentially make watermelon plants susceptible to infection by FON and RKN. However, upon infection the IR genes are significantly up-regulated that they may potentially aid the prevention of further infection via SA- and JA-pathways. This is the first demonstration of the impact of micronutrients affecting IR in watermelon against FON and RKN infection.
Collapse
|
8
|
Tarafder M, Datta B. Deciphering β-tubulin gene of carbendazim resistant Fusarium solani isolate and its comparison with other Fusarium species. Curr Genet 2022; 68:429-447. [PMID: 35419713 DOI: 10.1007/s00294-022-01238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
Abstract
Exploration of molecular structure of β-tubulin is key to understand mechanism of action of carbendazim since its activity depends on strong binding to β-tubulin. Resistance against the fungicide is often associated with mutation in β-tubulin gene. A full-length (1619 bp) β-tubulin gene has been cloned and sequenced from a carbendazim resistant and a sensitive isolates of F. solani isolated from agricultural fields of Murshidabad (24.23 °N, 88.25 °E), West Bengal, India. Phylogenetic position of the isolates was confirmed using internal transcribed spacer and β-tubulin gene sequences. In the β-tubulin based phylogenetic tree, Fusarium species with available data were clustered in nine species complexes and members of both F. solani species complex and F. fujikuroi species complex were distributed into three clades each. The β-tubulin gene of F. solani was found to be shortest due to least number of non-coding sequences indicating its primitiveness among the Fusarium species. The coding region (G + C 58.54%) was organized into five exons. The protein has 446 amino acid, 49.834 KD molecular weight and 4.64 isoelectric point. Amino acid sequence of the resistant and the sensitive isolates were identical, suggesting that the mechanism of carbendazim resistance in the F. solani isolate was not due to point mutation in β-tubulin gene. The secondary and tertiary structure of β-tubulin were similar in all the species except F. oxysporum f.sp. cubense. The identification of binding sites for GDP, carbendazim and α-tubulin would resolve how carbendazim prevents tubulin polymerization. All the data are useful to design tubulin-targeted fungicide with better performance.
Collapse
Affiliation(s)
- Mrinmay Tarafder
- Mycology and Plant Pathology Research Laboratory, Department of Botany, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Bejoysekhar Datta
- Mycology and Plant Pathology Research Laboratory, Department of Botany, University of Kalyani, Kalyani, West Bengal, 741235, India.
| |
Collapse
|
9
|
Jiang A, Zou C, Xu X, Ke Z, Hou J, Jiang G, Fan C, Gong J, Wei J. Complete genome sequence of biocontrol strain Paenibacillus peoriae HJ-2 and further analysis of its biocontrol mechanism. BMC Genomics 2022; 23:161. [PMID: 35209846 PMCID: PMC8876185 DOI: 10.1186/s12864-022-08330-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/19/2022] [Indexed: 01/25/2023] Open
Abstract
Background Paris polyphylla is a herb widely used in traditional Chinese medicine to treat various diseases. Stem rot diseases seriously affected the yield of P. polyphylla in subtropical areas of China. Therefore, cost-effective, chemical-free, eco-friendly strategies to control stem rot on P. polyphylla are valuable and urgently needed. Results In this paper, we reported the biocontrol efficiency of Paenibacillus peoriae HJ-2 and its complete genome sequence. Strain HJ-2 could serve as a potential biocontrol agent against stem rot on P. polyphylla in the greenhouse and field. The genome of HJ-2 consists of a single 6,001,192 bp chromosome with an average GC content of 45% and 5,237 predicted protein coding genes, 39 rRNAs and 108 tRNAs. The phylogenetic tree indicated that HJ-2 is most closely related to P. peoriae IBSD35. Functional analysis of genome revealed numerous genes/gene clusters involved in plant colonization, biofilm formation, plant growth promotion, antibiotic and resistance inducers synthesis. Moreover, metabolic pathways that potentially contribute to biocontrol mechanisms were identified. Conclusions This study revealed that P. peoriae HJ-2 could serve as a potential BCA against stem rot on P. polyphylla. Based on genome analysis, the genome of HJ-2 contains more than 70 genes and 12 putative gene clusters related to secondary metabolites, which have previously been described as being involved in chemotaxis motility, biofilm formation, growth promotion, antifungal activity and resistance inducers biosynthesis. Compared with other strains, variation in the genes/gene clusters may lead to different antimicrobial spectra and biocontrol efficacies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08330-0.
Collapse
Affiliation(s)
- Aiming Jiang
- College of Agriculture, Guangxi University, Nanning, 530004, China.,College of Chemistry and Environmental Engineering, Hanjiang Normal University, Shiyan, 442000, China
| | - Chengwu Zou
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Xiang Xu
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Zunwei Ke
- College of Chemistry and Environmental Engineering, Hanjiang Normal University, Shiyan, 442000, China
| | - Jiangan Hou
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Guihe Jiang
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Chunli Fan
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jianhua Gong
- College of Chemistry and Environmental Engineering, Hanjiang Normal University, Shiyan, 442000, China
| | - Jiguang Wei
- College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
10
|
Li FJ, Komura R, Nakashima C, Shimizu M, Kageyama K, Suga H. Molecular Diagnosis of Thiophanate-Methyl-Resistant Strains of Fusarium fujikuroi in Japan. PLANT DISEASE 2022; 106:634-640. [PMID: 34494869 DOI: 10.1094/pdis-07-21-1501-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fusarium fujikuroi is the pathogen of rice bakanae disease and is subclassified into gibberellin and fumonisin groups (G and F groups). Thiophanate-methyl (TM), a benzimidazole fungicide, has been used extensively to control F. fujikuroi. Previous investigation showed that F-group strains are TM sensitive (TMS), whereas most G-group strains are TM resistant (TMR) in Japan. The minimum inhibitory concentration in TMS strains was 1 to 10 μg ml-1, whereas that in TMR strains was >100 μg ml-1. E198K and F200Y mutations in β2-tubulin were detected in TMR strains. A loop-mediated isothermal amplification-fluorescent loop primer method was developed for diagnosis of these mutations and applied to 37 TMR strains and 56 TMS strains. The results indicated that 100% of TMR strains were identified as having either the E198K mutation (41%) or the F200Y mutation (59%), whereas none of the TMS strains tested showed either mutation. We found one remarkable TMR strain in the F group that had an F200Y mutation. These results suggest that E198K and F200Y mutations in β2-tubulin contribute to TM resistance in F. fujikuroi.
Collapse
Affiliation(s)
- Fang Jing Li
- United Graduate School of Agricultural Science, Gifu University, Gifu 501-1193, Japan
| | - Ryoji Komura
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Chiharu Nakashima
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Masafumi Shimizu
- Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Koji Kageyama
- River Basin Research Center, Gifu University, Gifu 501-1193, Japan
| | - Haruhisa Suga
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan
| |
Collapse
|
11
|
Hudson O, Waliullah S, Ji P, Ali ME. Molecular Characterization of Laboratory Mutants of Fusarium oxysporum f. sp. niveum Resistant to Prothioconazole, a Demethylation Inhibitor (DMI) Fungicide. J Fungi (Basel) 2021; 7:jof7090704. [PMID: 34575742 PMCID: PMC8466437 DOI: 10.3390/jof7090704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/26/2022] Open
Abstract
Fusarium oxysporum f. sp. niveum (FON) is the causal agent of Fusarium wilt in watermelon, an international growth-limiting pathogen of watermelon cultivation. A single demethylation inhibitor (DMI) fungicide, prothioconazole, is registered to control this pathogen, so the risk of resistance arising in the field is high. To determine and predict the mechanism by which FON could develop resistance to prothioconazole, FON isolates were mutagenized using UV irradiation and subsequent fungicide exposure to create artificially resistant mutants. Isolates were then put into three groups based on the EC50 values: sensitive, intermediately resistant, and highly resistant. The mean EC50 values were 4.98 µg/mL for the sensitive, 31.77 µg/mL for the intermediately resistant, and 108.33 µg/mL for the highly resistant isolates. Isolates were then sequenced and analyzed for differences in both the coding and promoter regions. Two mutations were found that conferred amino acid changes in the target gene, CYP51A, in both intermediately and highly resistant mutants. An expression analysis for the gene CYP51A also showed a significant increase in the expression of the highly resistant mutants compared to the sensitive controls. In this study, we were able to identify two potential mechanisms of resistance to the DMI fungicide prothioconazole in FON isolates: gene overexpression and multiple point mutations. This research should expedite growers’ and researchers’ ability to detect and manage fungicide-resistant phytopathogens.
Collapse
|
12
|
Zhu Q, Tang MJ, Yang Y, Sun K, Tian LS, Lu F, Hao AY, Dai CC. Endophytic fungus Phomopsis liquidambaris B3 induces rice resistance to RSRD caused by Fusarium proliferatum and promotes plant growth. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4059-4075. [PMID: 33349945 DOI: 10.1002/jsfa.11042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/20/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Rice spikelet rot disease (RSRD) is an emerging disease that significantly reduces rice yield and quality. In this study, we evaluated the potential use of the broad-spectrum endophytic fungus Phomopsis liquidambaris B3 as a biocontrol agent against RSRD. We also compared the control effects of different treatments, including chemical fungicides and treatment with multiple strains and single strains in combination or individually, against RSRD. The objective of this study was to find an effective and environmentally friendly control strategy to reduce the occurrence of RSRD and improve the rice yield. RESULTS In pot experiments, the effect of B3 alone was better than that of fungicide or combined measures. The results showed that root colonization by B3 significantly reduced the incidence and disease index of RSRD by 41.0% and 53.8%, respectively. This was related to enhanced superoxide dismutase (SOD), peroxidase (POD), and polyphenol oxidase (PPO) activity, and to significantly upregulated expression levels of OsAOX, OsLOX, OsPAL, and OsPR10 in rice. Moreover, B3 improved the diversity of the bacterial community rather than the fungal community in the rice rhizosphere. It also led to a decrease in Fusarium proliferatum colonization and fumonisin content in the grain. Finally, root development was markedly promoted after B3 inoculation, and the yield improved by 48.60%. The result of field experiments showed that the incidence of RSRD and the fumonisin content were observably reduced in rice receiving B3, by 24.41% and 37.87%, respectively. CONCLUSION The endophytic fungus Phomopsis liquidambaris B3 may become an effective tool to relieve rice spikelet rot disease. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiang Zhu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Meng-Jun Tang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yang Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lin-Shuang Tian
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Fan Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ai-Yue Hao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
13
|
Taylor A, Armitage AD, Handy C, Jackson AC, Hulin MT, Harrison RJ, Clarkson JP. Basal Rot of Narcissus: Understanding Pathogenicity in Fusarium oxysporum f. sp. narcissi. Front Microbiol 2019; 10:2905. [PMID: 31921077 PMCID: PMC6930931 DOI: 10.3389/fmicb.2019.02905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022] Open
Abstract
Fusarium oxysporum is a globally distributed soilborne fungal pathogen causing root rots, bulb rots, crown rots and vascular wilts on a range of horticultural plants. Pathogenic F. oxysporum isolates are highly host specific and are classified as formae speciales. Narcissus is an important ornamental crop and both the quality and yield of flowers and bulbs can be severely affected by a basal rot caused by F. oxysporum f. sp. narcissi (FON); 154 Fusarium isolates were obtained from different locations and Narcissus cultivars in the United Kingdom, representing a valuable resource. A subset of 30 F. oxysporum isolates were all found to be pathogenic and were therefore identified as FON. Molecular characterisation of isolates through sequencing of three housekeeping genes, suggested a monophyletic origin with little divergence. PCR detection of 14 Secreted in Xylem (SIX) genes, previously shown to be associated with pathogenicity in other F. oxysporum f. spp., revealed different complements of SIX7, SIX9, SIX10, SIX12 and SIX13 within FON isolates which may suggest a race structure. SIX gene sequences were unique to FON and SIX10 was present in all isolates, allowing for molecular identification of FON for the first time. The genome of a highly pathogenic isolate was sequenced and lineage specific (LS) regions identified which harboured putative effectors including the SIX genes. Real-time RT-PCR, showed that SIX genes and selected putative effectors were expressed in planta with many significantly upregulated during infection. This is the first study to characterise molecular variation in FON and provide an analysis of the FON genome. Identification of expressed genes potentially associated with virulence provides the basis for future functional studies and new targets for molecular diagnostics.
Collapse
Affiliation(s)
- Andrew Taylor
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Warwick, United Kingdom
| | | | - Claire Handy
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Warwick, United Kingdom
| | - Alison C Jackson
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Warwick, United Kingdom
| | | | | | - John P Clarkson
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Warwick, United Kingdom
| |
Collapse
|
14
|
Tarazona A, Mateo EM, Gómez JV, Romera D, Mateo F. Potential use of machine learning methods in assessment of Fusarium culmorum and Fusariumproliferatum growth and mycotoxin production in treatments with antifungal agents. Fungal Biol 2019; 125:123-133. [PMID: 33518202 DOI: 10.1016/j.funbio.2019.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 01/11/2023]
Abstract
Fusarium-controlling fungicides are necessary to limit crop loss. Little is known about the effect of antifungal formulations at sub-lethal doses, and their interaction with abiotic factors, on Fusarium culmorum and F. proliferatum development and on zearalenone and fumonisin biosynthesis, respectively. In the present study different treatments based on sulfur, trifloxystrobin and demethylation inhibitor fungicides (cyproconazole, tebuconazole and prothioconazole) under different environmental conditions, in Maize Extract Medium, are assayed in vitro. Several machine learning methods (neural networks, random forest and extreme gradient boosted trees) have been applied for the first time for modeling growth of F. culmorum and F. proliferatum and zearalenone and fumonisin production, respectively. The most effective treatment was prothioconazole, 250 g/L + tebuconazole, 150 g/L. Effective doses of this formulation for reduction or total growth inhibition ranged as follows ED50 0.49-1.70, ED90 2.57-6.02 and ED100 4.0-8.0 µg/mL, depending on the species, water activity and temperature. Overall, the growth rate and mycotoxin levels in cultures decreased when doses increased. Some treatments in combination with certain aw and temperature values significantly induced toxin production. The extreme gradient boosted tree was the model able to predict growth rate and mycotoxin production with minimum error and maximum R2 value.
Collapse
Affiliation(s)
- Andrea Tarazona
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Eva M Mateo
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - José V Gómez
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - David Romera
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Fernando Mateo
- Department of Electronic Engineering, ETSE, University of Valencia, Valencia, Spain.
| |
Collapse
|
15
|
Petkar A, Harris-Shultz K, Wang H, Brewer MT, Sumabat L, Ji P. Genetic and phenotypic diversity of Fusarium oxysporum f. sp. niveum populations from watermelon in the southeastern United States. PLoS One 2019; 14:e0219821. [PMID: 31318912 PMCID: PMC6638948 DOI: 10.1371/journal.pone.0219821] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 07/03/2019] [Indexed: 12/03/2022] Open
Abstract
Fusarium wilt of watermelon, caused by Fusarium oxysporum f. sp. niveum (FON), occurs worldwide and is responsible for substantial yield losses in watermelon-producing areas of the southeastern United States. Management of this disease largely relies on the use of integrated pest management (i.e., fungicides, resistant cultivars, crop rotation, etc.). Knowledge about race structure and genetic diversity of FON in the southeastern US is limited. To determine genetic diversity of the pathogen, FON isolates were collected from symptomatic watermelon plants in commercial fields in Georgia and Florida, USA, and identified based on morphological characteristics and PCR analysis using FON-specific primers. Discriminant analysis of principal components (DAPC) of 99 isolates genotyped with 15 simple sequence repeat (SSR) markers grouped the isolates in eight distinct clusters with two prominent clusters (clusters 1 and 8). Cluster 1 consisted of a total of 14 isolates, out of which 85.7% of the isolates were collected in Florida. However, most of the isolates (92.4%) in cluster 8 were collected in Georgia. Both DAPC and pairwise population differentiation analysis (ФPT) revealed that the genetic groups were closely associated with geographical locations of pathogen collection. Three races of FON (races 0, 2 and 3) were identified in the phenotypic analysis; with race 3 identified for the first time in Georgia. Overall, 5.1%, 38.9% and 55.9% of the isolates were identified as race 0, race 2 and race 3, respectively. The majority of the isolates in cluster 1 and cluster 8 belonged to either race 2 (35.6%) or race 3 (45.8%). Additionally, no relationship between genetic cluster assignment and races of the isolates was observed. The information obtained on genotypic and phenotypic diversity of FON in the southeastern US will help in development of effective disease management programs to combat Fusarium wilt.
Collapse
Affiliation(s)
- Aparna Petkar
- Department of Plant Pathology, Coastal Plain Experiment Station, University of Georgia, Tifton, Georgia, United States of America
| | - Karen Harris-Shultz
- United States Department of Agriculture-Agriculture Research Service (USDA-ARS), Crop Genetics and Breeding Research Unit, Tifton, Georgia, United States of America
| | - Hongliang Wang
- United States Department of Agriculture-Agriculture Research Service (USDA-ARS), Crop Genetics and Breeding Research Unit, Tifton, Georgia, United States of America
| | - Marin Talbot Brewer
- Department of Plant Pathology, University of Georgia, Athens, Georgia, United States of America
| | - Leilani Sumabat
- Department of Plant Pathology, University of Georgia, Athens, Georgia, United States of America
| | - Pingsheng Ji
- Department of Plant Pathology, Coastal Plain Experiment Station, University of Georgia, Tifton, Georgia, United States of America
- * E-mail:
| |
Collapse
|
16
|
Petkar A, Ji P. Infection Courts in Watermelon Plants Leading to Seed Infestation by Fusarium oxysporum f. sp. niveum. PHYTOPATHOLOGY 2017; 107:828-833. [PMID: 28414630 DOI: 10.1094/phyto-12-16-0429-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fusarium wilt incited by Fusarium oxysporum f. sp. niveum is a seed-transmitted disease that causes significant yield loss in watermelon production. The pathogen may infect watermelon seeds latently, which can be an important inoculum source and contribute to severe disease outbreak. However, information regarding infection courts of F. oxysporum f. sp. niveum leading to infestation of watermelon seeds is limited. To determine how seeds in watermelon fruit can be infested by F. oxysporum f. sp. niveum during the watermelon growing season, greenhouse and field experiments were conducted in 2014 and 2015 where watermelon flowers and immature fruit were inoculated with F. oxysporum f. sp. niveum. Seeds were extracted from mature watermelon fruit, and infestation of watermelon seeds was determined by isolation of F. oxysporum f. sp. niveum and further confirmed by real-time polymerase chain reaction (PCR) analysis. Inoculation of the pericarp of immature fruit resulted in 17.8 to 54.4% of infested seeds under field conditions and 0.6 to 12.8% of infested seeds under greenhouse conditions when seeds were not surface disinfested prior to isolation. Seed infestation was also detected in 0 to 4.5% of the seeds when seeds were surface disinfested prior to isolation. Inoculation of pistil resulted in 0 to 7.2% and 0 to 18.3% of infested seeds under greenhouse and field conditions when seeds were surface disinfested or not disinfested before isolation, respectively. Inoculation of peduncle resulted in 0.6 to 6.1% and 0 to 10.0% of infested seeds in the greenhouse and field experiments when seeds were surface disinfested or not disinfested before isolation, respectively. Seed infestation was also detected in all the experiments using real-time PCR assay when pericarp or pistil was inoculated, and in three of four experiments when peduncle was inoculated, regardless of whether seeds were surface disinfested or not disinfested. Pericarp and peduncle of immature watermelon fruit and pistil of watermelon flowers could be potential infection courts for F. oxysporum f. sp. niveum leading to infestation of seeds in asymptomatic watermelon fruit.
Collapse
Affiliation(s)
- Aparna Petkar
- Department of Plant Pathology, Coastal Plain Experiment Station, University of Georgia, Tifton 31794
| | - Pingsheng Ji
- Department of Plant Pathology, Coastal Plain Experiment Station, University of Georgia, Tifton 31794
| |
Collapse
|