1
|
Wang B, Meng T, Xiao B, Yu T, Yue T, Jin Y, Ma P. Fighting wheat powdery mildew: from genes to fields. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:196. [PMID: 37606731 DOI: 10.1007/s00122-023-04445-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
KEY MESSAGE Host resistance conferred by Pm genes provides an effective strategy to control powdery mildew. The study of Pm genes helps modern breeding develop toward more intelligent and customized. Powdery mildew of wheat is one of the most destructive diseases seriously threatening the crop yield and quality worldwide. The genetic research on powdery mildew (Pm) resistance has entered a new era. Many Pm genes from wheat and its wild and domesticated relatives have been mined and cloned. Meanwhile, modern breeding strategies based on high-throughput sequencing and genome editing are emerging and developing toward more intelligent and customized. This review highlights mining and cloning of Pm genes, molecular mechanism studies on the resistance and avirulence genes, and prospects for genomic-assisted breeding for powdery mildew resistance in wheat.
Collapse
Affiliation(s)
- Bo Wang
- Yantai Key Laboratory of Characteristic Agricultural Biological Resource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ting Meng
- Yantai Key Laboratory of Characteristic Agricultural Biological Resource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Bei Xiao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Tianying Yu
- Yantai Key Laboratory of Characteristic Agricultural Biological Resource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Tingyan Yue
- Yantai Key Laboratory of Characteristic Agricultural Biological Resource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Biological Resource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Biological Resource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China.
| |
Collapse
|
2
|
Han G, Cao L, Yan H, Gu T, Shi Z, Li X, Li L, An D. Development and Identification of a Wheat-Rye Breeding Line for Harmonious Improvement Between Powdery Mildew Resistance and High Yield Potential. PLANT DISEASE 2023; 107:2453-2459. [PMID: 36724028 DOI: 10.1094/pdis-12-22-2817-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a devastating disease that seriously threatens wheat yield and quality. To control this disease, host resistance is the preferred measure. However, wheat breeding is a complex process with elusive exchange and recombination of the traits from their parents. Increased resistance often leads to a decline in other key traits, such as yield and quality. Developing breakthrough germplasms with harmonious powdery mildew resistance and other key breeding traits is attractive in wheat breeding. In this study, we developed an ideal wheat breeding line AL46 that pyramided its hexaploid triticale parent-derived desirable yield traits and its wheat parent-derived powdery mildew resistance gene Pm2. Sequential genomic in situ hybridization (GISH), multicolor GISH, multicolor fluorescence in situ hybridization, and molecular marker analyses revealed that AL46 was a wheat-rye T1RS·1BL translocation line. Genetic analysis combined with function marker detection and sequence alignment were used to confirm that AL46 carried the Pm2 gene. Then, we evaluated the powdery mildew resistance and comprehensive traits of AL46, and just as we designed, AL46 showed harmonious powdery mildew resistance with some key breeding traits. This study not only developed an ideal wheat germplasm resource but also provided a successful example for pyramiding breeding, which could be a promising direction for wheat improvement in the future.
Collapse
Affiliation(s)
- Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Lijun Cao
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanwen Yan
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiantian Gu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhipeng Shi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuquan Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lihui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Wu J, Jia H, Qiao L, Fu B, Brown-Guedira G, Nagarajan R, Yan L. Genetic basis of resistance against powdery mildew in the wheat cultivar "Tabasco". MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:56. [PMID: 37424796 PMCID: PMC10326205 DOI: 10.1007/s11032-023-01402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023]
Abstract
European winter wheat cultivar "Tabasco" was reported to have resistance to powdery mildew disease caused by Blumeria graminis f. sp. tritici (Bgt) in China. In previous studies, Tabasco was reported to have the resistance gene designated as Pm48 on the short arm of chromosome 5D when a mapping population was phenotyped with pathogen isolate Bgt19 collected in China and was genotyped with simple sequence repeat (SSR) markers. In this study, single-nucleotide polymorphism (SNP) chips were used to rapidly determine the resistance gene by mapping a new F2 population that was developed from Tabasco and a susceptible cultivar "Ningmaizi119" and inoculated with pathogen isolate NCF-D-1-1 that was collected in the USA. The segregation of resistance in the population was found to link with Pm2 which was identified in Tabasco. Therefore, it was concluded that the previously reported Pm48 on chromosome arm 5DS in Tabasco should be the Pm2 gene on the same chromosome. The Pm2 was also found in European cultivars "Mattis" and "Claire" but not in any of the accessions from diploid wheat Aegilops tauschii or modern cultivars such as "Gallagher," "Smith's Gold," and "OK Corral" being used in the Great Plains in the USA. A KASP marker was developed to track the resistance allele Pm2 in wheat breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01402-3.
Collapse
Affiliation(s)
- Jizhong Wu
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078 USA
| | - Haiyan Jia
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078 USA
- The Applied Plant Genomics Laboratory, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Linyi Qiao
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078 USA
- College of Agronomy, Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Shanxi Agricultural University, Taiyuan, 030031 Shanxi China
| | - Bisheng Fu
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
| | - Gina Brown-Guedira
- USDA-ARS Plant Science Research, Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695 USA
| | - Ragupathi Nagarajan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078 USA
| | - Liuling Yan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078 USA
| |
Collapse
|
4
|
Gao H, Xu X, Ai P, Luo F, Guo P, Ma P. Identification of the Powdery Mildew Resistance in Chinese Wheat Cultivar Heng 4568 and its Evaluation in Marker-Assisted Selection. Front Genet 2022; 13:819844. [PMID: 35265104 PMCID: PMC8900063 DOI: 10.3389/fgene.2022.819844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/17/2022] [Indexed: 01/03/2023] Open
Abstract
Powdery mildew induced by Blumeria graminis f. sp. Tritici (Bgt) has a devastating impact on global wheat yield and quality. Host resistance is the most effective and economical means to control this disease. In this study, Heng 4568, an elite wheat cultivar, shows high resistance to 12 Bgt isolates from different regions in China at the seedling stage. Genetic analysis demonstrates that the powdery mildew resistance in Heng 4568 is conferred by a single dominant locus, temporarily designated PmH4568. Furthermore, PmH4568 is mapped to the reported Pm2 interval on chromosome 5DS with five Pm2 linked markers and flanked by the markers Bwm20 and Bwm21 with a genetic distance of 0.3 and 0.6 cM, respectively. To further investigate the relationship between PmH4568 and Pm2, the diagnostic marker Pm2b-map-3 of Pm2 is used to genotype the F2:3 population derived from the cross Heng 4568 × Daimai 2173. Notably, there is no recombination found, indicating that PmH4568 is also probably a Pm2 allele. In addition, five closely linked markers as well as one diagnostic marker are successfully developed and tested in 16 wheat cultivars from different agro-ecological areas in China, which have potential applications in molecular breeding by marker-assisted selection.
Collapse
Affiliation(s)
- Huiming Gao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xiaozhe Xu
- College of Life Sciences, Yantai University, Yantai, China
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Pengfei Ai
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Fuyi Luo
- Dezhou Agricultural Technology Extension and Seed Industry Center, Dezhou, China
| | - Peng Guo
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Pengtao Ma
- College of Life Sciences, Yantai University, Yantai, China
- *Correspondence: Pengtao Ma,
| |
Collapse
|
5
|
Yu Z, Xiao L, Su F, Liu W, Luo F, Han R, Mu Y, Zhang W, Wu L, Liang X, Sun N, Li L, Ma P. Mining of Wheat Pm2 Alleles for Goal-Oriented Marker-Assisted Breeding. FRONTIERS IN PLANT SCIENCE 2022; 13:912589. [PMID: 35646019 PMCID: PMC9133932 DOI: 10.3389/fpls.2022.912589] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/26/2022] [Indexed: 05/07/2023]
Abstract
Powdery mildew of wheat, caused by Blumeria graminis f. sp. tritici (Bgt), is a devastating disease that seriously reduces yield and quality worldwide. Utilization of plant resistance genes is an attractive and effective strategy for controlling this disease. Among the reported powdery mildew (Pm) resistance genes, Pm2 exhibits a diverse resistance spectrum among its multiple alleles. It has been widely used in China for resistance breeding for powdery mildew. To mine more Pm2 alleles and clarify their distribution, we screened 33 wheat cultivars/breeding lines carrying Pm2 alleles from 641 wheat genotypes using diagnostic and Pm2-linked markers. To further investigate the relationships within the Pm2 alleles, we compared their resistance spectra, polymorphism of marker alleles and gene sequences, and found that they have identical marker alleles and gene sequences but diverse resistance spectra. In addition, the diagnostic kompetitive allele-specific PCR (KASP) marker, YTU-KASP-Pm2, was developed and was shown to detect all the Pm2 alleles in the different genetic backgrounds. These findings provide valuable information for the distribution and rational use of Pm2 alleles, push forward their marker-assisted breeding (MAS), and hence improve the control of wheat powdery mildew.
Collapse
Affiliation(s)
- Ziyang Yu
- College of Life Sciences, Yantai University, Yantai, China
| | - Luning Xiao
- College of Life Sciences, Yantai University, Yantai, China
| | - Fuyu Su
- College of Life Sciences, Yantai University, Yantai, China
| | - Wei Liu
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Fuyi Luo
- Dezhou Agricultural Technology Extension and Seed Industry Center, Dezhou, China
| | - Ran Han
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yanjun Mu
- College of Life Sciences, Yantai University, Yantai, China
| | - Wenjing Zhang
- College of Life Sciences, Yantai University, Yantai, China
| | - Liru Wu
- College of Life Sciences, Yantai University, Yantai, China
| | - Xiao Liang
- College of Life Sciences, Yantai University, Yantai, China
| | - Nina Sun
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
- Nina Sun,
| | - Linzhi Li
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
- Linzhi Li,
| | - Pengtao Ma
- College of Life Sciences, Yantai University, Yantai, China
- *Correspondence: Pengtao Ma,
| |
Collapse
|
6
|
Jia M, Xu H, Liu C, Mao R, Li H, Liu J, Du W, Wang W, Zhang X, Han R, Wang X, Wu L, Liang X, Song J, He H, Ma P. Characterization of the Powdery Mildew Resistance Gene in the Elite Wheat Cultivar Jimai 23 and Its Application in Marker-Assisted Selection. Front Genet 2020; 11:241. [PMID: 32300355 PMCID: PMC7142250 DOI: 10.3389/fgene.2020.00241] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/28/2020] [Indexed: 01/17/2023] Open
Abstract
Powdery mildew infection of wheat (Triticum aestivum L.), caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive disease that threatens yield and quality worldwide. The most effective and preferred means for the control of the disease is to identify broad-spectrum resistance genes for breeding, especially the genes derived from elite cultivars that exhibit desirable agronomic traits. Jimai 23 is a Chinese wheat cultivar with superior agronomic performance, high-quality characteristics, and effective resistance to powdery mildew at all growth stages. Genetic analysis indicated that powdery mildew resistance in Jimai 23 was mediated by a single dominant gene, tentatively designated PmJM23. Using bulked segregant RNA-Seq (BSR-Seq), a series of markers was developed and used to map PmJM23. PmJM23 was then located at the Pm2 locus on the short arm of chromosome 5D (5DS). Resistance spectrum analysis demonstrated that PmJM23 provided a broad resistance spectrum different from that of the documented Pm2 alleles, indicating that PmJM23 is most likely a new allele of Pm2. In view of these combined agronomic, quality, and resistance findings, PmJM23 is expected to be a valuable resistance gene in wheat breeding. To efficiently use PmJM23 in breeding, the closely linked markers of PmJM23 were evaluated and confirmed to be applicable for marker-assisted selection (MAS). Using these markers, a series of resistant breeding lines with high resistance and desirable agronomic performance was selected from the crosses involving PmJM23, resulting in improved powdery mildew resistance of these lines.
Collapse
Affiliation(s)
- Mengshu Jia
- School of Life Sciences, Yantai University, Yantai, China
| | - Hongxing Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ruixi Mao
- Shandong Seed Administration Station, Jinan, China
| | - Haosheng Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianjun Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wenxiao Du
- School of Life Sciences, Yantai University, Yantai, China
| | - Wenrui Wang
- School of Life Sciences, Yantai University, Yantai, China
| | - Xu Zhang
- School of Life Sciences, Yantai University, Yantai, China
| | - Ran Han
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaolu Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Liru Wu
- School of Life Sciences, Yantai University, Yantai, China
| | - Xiao Liang
- School of Life Sciences, Yantai University, Yantai, China
| | - Jiancheng Song
- School of Life Sciences, Yantai University, Yantai, China
| | - Huagang He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Pengtao Ma
- School of Life Sciences, Yantai University, Yantai, China
| |
Collapse
|
7
|
Positional cloning of PmCH1357 reveals the origin and allelic variation of the Pm2 gene for powdery mildew resistance in wheat. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2019.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Ma P, Xu H, Xu Y, Song L, Liang S, Sheng Y, Han G, Zhang X, An D. Characterization of a Powdery Mildew Resistance Gene in Wheat Breeding Line 10V-2 and Its Application in Marker-Assisted Selection. PLANT DISEASE 2018; 102:925-931. [PMID: 30673391 DOI: 10.1094/pdis-02-17-0199-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a serious disease of wheat (Triticum aestivum L.) throughout the world. Host resistance is the most effective and preferred means for managing this disease. Line 10V-2, a wheat breeding line with superior agronomic performance, shows broad-spectrum seedling resistance to powdery mildew. Genetic analysis demonstrated that its resistance was controlled by a single dominant gene, tentatively designated Pm10V-2. This gene was localized near the documented Pm2 locus on chromosome 5DS using the simple sequence repeat (SSR) marker Cfd81. To saturate the marker map of Pm10V-2, more markers were developed using bulked segregant RNA-Seq. Two single-nucleotide polymorphism (SNP) markers (Swgi047 and Swgi064), three expressed sequence tag markers (Swgi007, Swgi029, and Swgi038), and one SSR marker (Swgi066) were polymorphic between the resistant and susceptible bulks and showed tightly linked to the Pm10V-2 gene. Pm10V-2 was flanked by the new developed markers Swgi064 and Swgi066 at genetic distances of 0.4 and 1.2 centimorgans (cM), respectively, and cosegregated with Swgi007 and Swgi038. The homologous sequence of Pm2a was cloned from 10V-2 based on a recent study. Although the sequence cloned from 10V-2 was completely identical to that of the reported Pm2a-related gene, they did not cosegregate but were separated at a genetic distance of 1.6 cM, indicating that Pm10V-2 was different from the reported of Pm2a-related gene. When inoculated with multiple B. graminis f. sp. tritici isolates, Pm10V-2 had a significantly different resistance spectrum from Pm2a and other powdery mildew (Pm) resistance genes at or near the Pm2 locus. Therefore, Pm10V-2 may be a new Pm2 allele or Pm2-linked gene. To use Pm10V-2 in marker-assisted selection (MAS) breeding, seven markers applicable for MAS were confirmed, including three newly developed markers (Swgi029, Swgi038, and Swgi064) in the present work. Using these markers, a great number of resistant lines with desirable agronomic performance were selected from crosses involving 10V-2, including the breeding line KM5016, which has been entered in the Regional trials in Hebei Province, China.
Collapse
Affiliation(s)
- Pengtao Ma
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Hongxing Xu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Yunfeng Xu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Liping Song
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Shuoshuo Liang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Yuan Sheng
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Xiaotian Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| |
Collapse
|
9
|
Lu Y, Yao M, Zhang J, Song L, Liu W, Yang X, Li X, Li L. Genetic analysis of a novel broad-spectrum powdery mildew resistance gene from the wheat-Agropyron cristatum introgression line Pubing 74. PLANTA 2016; 244:713-23. [PMID: 27125388 DOI: 10.1007/s00425-016-2538-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/20/2016] [Indexed: 05/24/2023]
Abstract
A novel broad-spectrum powdery mildew resistance gene PmPB74 was identified in wheat- Agropyron cristatum introgression line Pubing 74. Development of wheat cultivars with broad-spectrum, durable resistance to powdery mildew has been restricted by lack of superior genetic resources. In this study, a wheat-A. cristatum introgression line Pubing 74, originally selected from a wide cross between the common wheat cultivar Fukuhokomugi (Fukuho) and Agropyron cristatum (L.) Gaertn (2n = 4x = 28; genome PPPP), displayed resistance to powdery mildew at both the seedling and adult stages. The putative alien chromosomal fragment in Pubing 74 was below the detection limit of genomic in situ hybridization (GISH), but evidence for other non-GISH-detectable introgressions was provided by the presence of three STS markers specific to A. cristatum. Genetic analysis indicated that Pubing 74 carried a single dominant gene for powdery mildew resistance, temporarily designated PmPB74. Molecular mapping showed that PmPB74 was located on wheat chromosome arm 5DS, and flanked by markers Xcfd81 and HRM02 at genetic distances of 2.5 and 1.7 cM, respectively. Compared with other lines with powdery mildew resistance gene(s) on wheat chromosome arm 5DS, Pubing 74 was resistant to all 28 Blumeria graminis f. sp tritici (Bgt) isolates from different wheat-producing regions of northern China. Allelism tests indicated that PmPB74 was not allelic to PmPB3558 or Pm2. Our work showed that PmPB74 is a novel gene with broad resistance to powdery mildew, and hence will be helpful in broadening the genetic basis of powdery mildew resistance in wheat.
Collapse
Affiliation(s)
- Yuqing Lu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Miaomiao Yao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinpeng Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liqiang Song
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weihua Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinming Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuquan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lihui Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
10
|
Ma P, Xu H, Li L, Zhang H, Han G, Xu Y, Fu X, Zhang X, An D. Characterization of a New Pm2 Allele Conferring Powdery Mildew Resistance in the Wheat Germplasm Line FG-1. FRONTIERS IN PLANT SCIENCE 2016; 7:546. [PMID: 27200022 PMCID: PMC4844600 DOI: 10.3389/fpls.2016.00546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/08/2016] [Indexed: 05/04/2023]
Abstract
Powdery mildew has a negative impact on wheat production. Novel host resistance increases the diversity of resistance genes and helps to control the disease. In this study, wheat line FG-1 imported from France showed a high level of powdery mildew resistance at both the seedling and adult stages. An F2 population and F2:3 families from the cross FG-1 × Mingxian 169 both fit Mendelian ratios for a single dominant resistance gene when tested against multiple avirulent Blumeria tritici f. sp. tritici (Bgt) races. This gene was temporarily designated PmFG. PmFG was mapped on the multi-allelic Pm2 locus of chromosome 5DS using seven SSR, 10 single nucleotide polymorphism (SNP)-derived and two SCAR markers with the flanking markers Xbwm21/Xcfd81/Xscar112 (distal) and Xbwm25 (proximal) at 0.3 and 0.5 cM being the closest. Marker SCAR203 co-segregated with PmFG. Allelism tests between PmFG and documented Pm2 alleles confirmed that PmFG was allelic with Pm2. Line FG-1 produced a significantly different reaction pattern compared to other lines with genes at or near Pm2 when tested against 49 Bgt isolates. The PmFG-linked marker alleles detected by the SNP-derived markers revealed significant variation between FG-1 and other lines with genes at or near Pm2. It was concluded that PmFG is a new allele at the Pm2 locus. Data from seven closely linked markers tested on 31 wheat cultivars indicated opportunities for marker-assisted pyramiding of this gene with other genes for powdery mildew resistance and additional traits.
Collapse
Affiliation(s)
- Pengtao Ma
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology - Chinese Academy of Sciences Shijiazhuang, China
| | - Hongxng Xu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology - Chinese Academy of Sciences Shijiazhuang, China
| | - Lihui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science - Chinese Academy of Agricultural Sciences Beijing, China
| | - Hongxia Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology - Chinese Academy of Sciences Shijiazhuang, China
| | - Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology - Chinese Academy of Sciences Shijiazhuang, China
| | - Yunfeng Xu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology - Chinese Academy of Sciences Shijiazhuang, China
| | - Xiaoyi Fu
- Shijiazhuang Academy of Agricultural and Forestry Sciences Shijiazhuang, China
| | - Xiaotian Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology - Chinese Academy of Sciences Shijiazhuang, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology - Chinese Academy of Sciences Shijiazhuang, China
| |
Collapse
|