1
|
Lagzian A, Ghorbani A, Tabein S, Riseh RS. Genetic variations and gene expression profiles of Rice Black-streaked dwarf virus (RBSDV) in different host plants and insect vectors: insights from RNA-Seq analysis. BMC Genomics 2024; 25:736. [PMID: 39080552 PMCID: PMC11289972 DOI: 10.1186/s12864-024-10649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Rice black-streaked dwarf virus (RBSDV) is an etiological agent of a destructive disease infecting some economically important crops from the Gramineae family in Asia. While RBSDV causes high yield losses, genetic characteristics of replicative viral populations have not been investigated within different host plants and insect vectors. Herein, eleven publicly available RNA-Seq datasets from Chinese RBSDV-infected rice, maize, and viruliferous planthopper (Laodelphax striatellus) were obtained from the NCBI database. The patterns of SNP and RNA expression profiles of expected RBSDV populations were analyzed by CLC Workbench 20 and Geneious Prime software. These analyses discovered 2,646 mutations with codon changes in RBSDV whole transcriptome and forty-seven co-mutated hotspots with high variant frequency within the crucial regions of S5-1, S5-2, S6, S7-1, S7-2, S9, and S10 open reading frames (ORFs) which are responsible for some virulence and host range functions. Moreover, three joint mutations are located on the three-dimensional protein of P9-1. The infected RBSDV-susceptible rice cultivar KTWYJ3 and indigenous planthopper datasets showed more co-mutated hotspot numbers than others. Our analyses showed the expression patterns of viral genomic fragments varied depending on the host type. Unlike planthopper, S5-1, S2, S6, and S9-1 ORFs, respectively had the greatest read numbers in host plants; and S5-2, S9-2, and S7-2 were expressed in the lowest level. These findings underscore virus/host complexes are effective in the genetic variations and gene expression profiles of plant viruses. Our analysis revealed no evidence of recombination events. Interestingly, the negative selection was observed at 12 RBSDV ORFs, except for position 1015 in the P1 protein, where a positive selection was detected. The research highlights the potential of SRA datasets for analysis of the virus cycle and enhances our understanding of RBSDV's genetic diversity and host specificity.
Collapse
Affiliation(s)
- Arezoo Lagzian
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran.
| | - Saeid Tabein
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
2
|
Tan X, Wang G, Cao C, Yang Z, Zhang H, Li Y, Wei Z, Chen J, Sun Z. Two different viral proteins suppress NUCLEAR FACTOR-YC-mediated antiviral immunity during infection in rice. PLANT PHYSIOLOGY 2024; 195:850-864. [PMID: 38330080 DOI: 10.1093/plphys/kiae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 02/10/2024]
Abstract
Plant viruses have multiple strategies to counter and evade the host's antiviral immune response. However, limited research has been conducted on the antiviral defense mechanisms commonly targeted by distinct types of plant viruses. In this study, we discovered that NUCLEAR FACTOR-YC (NF-YC) and NUCLEAR FACTOR-YA (NF-YA), 2 essential components of the NF-Y complex, were commonly targeted by viral proteins encoded by 2 different rice (Oryza sativa L.) viruses, rice stripe virus (RSV, Tenuivirus) and southern rice black streaked dwarf virus (SRBSDV, Fijivirus). In vitro and in vivo experiments showed that OsNF-YCs associate with OsNF-YAs and inhibit their transcriptional activation activity, resulting in the suppression of OsNF-YA-mediated plant susceptibility to rice viruses. Different viral proteins RSV P2 and SRBSDV SP8 directly disrupted the association of OsNF-YCs with OsNF-YAs, thereby suppressing the antiviral defense mediated by OsNF-YCs. These findings suggest an approach for conferring broad-spectrum disease resistance in rice and reveal a common mechanism employed by viral proteins to evade the host's antiviral defense by hindering the antiviral capabilities of OsNF-YCs.
Collapse
Affiliation(s)
- Xiaoxiang Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Guoda Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Chen Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zihang Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
3
|
Sun SR, Chen JS, He EQ, Huang MT, Fu HY, Lu JJ, Gao SJ. Genetic Variability and Molecular Evolution of Maize Yellow Mosaic Virus Populations from Different Geographic Origins. PLANT DISEASE 2021; 105:896-903. [PMID: 33044140 DOI: 10.1094/pdis-05-20-1013-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Maize yellow mosaic virus (MaYMV) hosted in various gramineous plants was assigned to the genus Polerovirus (family Luteoviridae) in 2018. However, little is known about its genetic diversity and population structure. In this study, 509 sugarcane leaf samples with mosaic symptoms were collected in 2017 to 2019 from eight sugarcane-growing provinces in China. Reverse-transcription PCR results revealed that four positive-sense RNA viruses were found to infect sugarcane, and the incidence of MaYMV among samples from Fujian, Sichuan, and Guangxi Provinces was 52.1, 9.8, and 2.5%, respectively. Based on 82 partial MaYMV sequences and 46 whole-genome sequences from different host plants, phylogenetic analysis revealed that MaYMV populations are very closely associated with their source geographical regions (China, Africa, and South America). Pairwise identity analysis showed significant variability in genome sequences among MaYMV isolates with genomic nucleotide identities of 91.1 to 99.9%. In addition to codon mutations, insertions or deletions also contributed to genetic variability in individual coding regions, especially in the readthrough protein (P3-P5 fusion protein). Low gene flow and significant genetic differentiation of MaYMV were observed among the three geographical populations, suggesting that environmental adaptation is an important evolutionary force that shapes the genetic structure of MaYMV. Genes in the MaYMV genome were subject to strong negative or purification selection during evolution, except for the movement protein (MP), which was under positive selection pressure. This finding suggests that the MP may play an important role in MaYMV evolution. Taken together, our findings provide basic information for the development of an integrated disease management strategy against MaYMV.
Collapse
Affiliation(s)
- Sheng-Ren Sun
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jian-Sheng Chen
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Er-Qi He
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Guizhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Xingyi 562400, Guizhou, China
| | - Mei-Ting Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hua-Ying Fu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jia-Ju Lu
- Guizhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Xingyi 562400, Guizhou, China
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
4
|
Liu Q, Lan G, Zhu Y, Chen K, Shen C, Zhao X, Zhang F, Xu J, Li Z. Genome-Wide Association Study on Resistance to Rice Black-Streaked Dwarf Disease Caused by Rice black-streaked dwarf virus. PLANT DISEASE 2021; 105:607-615. [PMID: 32830595 DOI: 10.1094/pdis-10-19-2263-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rice black-streaked dwarf disease caused by Rice black-streaked dwarf virus (RBSDV) is one of the most destructive viral diseases of rice. Thus, it is imperative that resistant rice germplasms are screened for novel RBSDV-resistant genes. RBSDV resistance of a diverse global collection comprising 1,953 rice accessions was evaluated under natural conditions across 3 years. The average disease incidences of the Xian/indica (XI) subgroup were significantly lower than those of the Geng/japonica (GJ) subgroup. Interestingly, most XI-1A accessions in the Xian subgroup were significantly more susceptible than XI-1B accessions, even though XI-1A and XI-1B have a close phylogenetic relationship. Four Xian accessions stably and highly resistant to RBSDV were consistently identified in 2 years. Ten genomic regions (GRs) with 147 single nucleotide polymorphisms associated with RBSDV resistance were detected by a single-locus genome-wide association study (GWAS), of which five were repeatedly identified in a multilocus GWAS. Two previously reported GRs, grRBSDV-6.1 and grRBSDV-6.3, which were repeatedly detected as stably and highly associated with RBSDV resistance, contained 17 and seven genes, respectively, with significant differences of resistance among haplotypes. Haplotype analyses of the candidate genes LOC_Os06g03150 in grRBSDV-6.1 and LOC_Os06g31190 in grRBSDV-6.3 suggested that the former gene is mainly associated with the differentiation of resistance within the Xian subgroup and the latter gene mainly explains the difference in the resistance between Xian and Geng. Another three novel resistance GRs (grRBSDV-1.1, grRBSDV-7.1, and grRBSDV-9.1) were identified. Our findings may enhance the application of disease-resistant rice germplasms for breeding RBSDV-resistant varieties.
Collapse
Affiliation(s)
- Qing Liu
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guofang Lan
- Key Laboratory of Plant Functional Genomics of Ministry of Education/College of Bioscience and Biotechnology, Yangzhou University, 225009 Yangzhou, China
- Changshu Institute of Agricultural Science, Changshu 215500, China
| | - Yajun Zhu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Kai Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Congcong Shen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiuqin Zhao
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fan Zhang
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianlong Xu
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhikang Li
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
5
|
Wu N, Zhang L, Ren Y, Wang X. Rice black-streaked dwarf virus: From multiparty interactions among plant-virus-vector to intermittent epidemics. MOLECULAR PLANT PATHOLOGY 2020; 21:1007-1019. [PMID: 32510844 PMCID: PMC7368121 DOI: 10.1111/mpp.12946] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 05/18/2023]
Abstract
UNLABELLED Rice black-streaked dwarf virus (RBSDV) (species Rice black-streaked dwarf virus, genus Fijivirus, family Reoviridae) is the causal agent of rice black-streaked dwarf and maize rough dwarf diseases, which occur in intermittent epidemics in East Asian countries and are responsible for considerable yield losses. Intermittency of epidemics make accurate forecasting and designing of effective management strategies difficult. However, recent insights into host-virus-vector insect interactions are now informing forecasting and disease control measures. Resistance genes are also being identified and mapped. SYMPTOMATOLOGY AND HOST RANGE RBSDV induces extreme stunting, darkened, and stiff leaves of crops and weeds only in the family Poaceae, including Oryza sativa, Zea mays, and Triticum aestivum. Infected plants produce totally or partially deformed panicles and remain alive through harvest. GENOME AND GENE FUNCTION The nonenveloped virus particles comprise a double-layered capsid, 50-nm core with genomic double-stranded RNA (dsRNA), and six proteins. The genome of RBSDV contains 10 segments of dsRNA, named S1 to S10 in decreasing order of molecular weight. Segments 1, 2, 3, 4, 6, 8, and 10 encode the RNA-dependent RNA polymerase (RdRp), the major core structural protein, a protein with guanylyltransferase activity, an outer-shell B-spike protein, viral RNA-silencing suppressor, the major capsid protein, and the outer capsid protein, respectively. Each of the segments 5, 7, and 9 encodes two proteins: P5-1, a component of viroplasms; P5-2 of unknown function; nonstructural protein P7-1, involved in forming the structural matrix of tubular structures in infected tissues; P7-2 of unknown function; P9-1, the main component of viroplasms in infected cells and involved in viral replication; and P9-2 of unknown function. TRANSMISSION AND EPIDEMIOLOGY RBSDV is transmitted by Laodelphax striatellus in a persistent propagative manner. The vector insect is the only means of virus spread in nature, so its migration and transmission efficiency are obligatory for disease epidemics to develop. Susceptible varieties are widely planted, but efficient transmission by vectors is the primary reason for the epidemics. Cultivation system, pesticide overuse, and climatic conditions also contribute to epidemics by affecting the development of the vector insects and their population dynamics. DISEASE MANAGEMENT In the absence of resistant varieties, integrated disease management aims at disrupting the cycle of virus transmission by the insect vector. Inheritance studies have indicated that resistance is mostly governed by quantitative trait loci or multiple genes. Genetic engineering through RNA-interference and gene-editing strategies are potential approaches for disease control.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Lu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Yingdang Ren
- Institute of Plant ProtectionHenan Academy of Agricultural SciencesZhengzhouChina
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
6
|
Alonso P, Gladieux P, Moubset O, Shih PJ, Mournet P, Frouin J, Blondin L, Ferdinand R, Fernandez E, Julian C, Filloux D, Adreit H, Fournier E, Ducasse A, Grosbois V, Morel JB, Huang H, Jin B, He X, Martin DP, Vernière C, Roumagnac P. Emergence of Southern Rice Black-Streaked Dwarf Virus in the Centuries-Old Chinese Yuanyang Agrosystem of Rice Landraces. Viruses 2019; 11:v11110985. [PMID: 31731529 PMCID: PMC6893465 DOI: 10.3390/v11110985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 01/17/2023] Open
Abstract
Southern rice black-streaked dwarf virus (SRBSDV), which causes severe disease symptoms in rice (Oriza sativa L.) has been emerging in the last decade throughout northern Vietnam, southern Japan and southern, central and eastern China. Here we attempt to quantify the prevalence of SRBSDV in the Honghe Hani rice terraces system (HHRTS)-a Chinese 1300-year-old traditional rice production system. We first confirm that genetically diverse rice varieties are still being cultivated in the HHRTS and categorize these varieties into three main genetic clusters, including the modern hybrid varieties group (MH), the Hongyang improved modern variety group (HY) and the traditional indica landraces group (TIL). We also show over a 2-year period that SRBSDV remains prevalent in the HHRTS (20.1% prevalence) and that both the TIL (17.9% prevalence) and the MH varieties (5.1% prevalence) were less affected by SRBSDV than were the HY varieties (30.2% prevalence). Collectively we suggest that SRBSDV isolates are freely moving within the HHRTS and that TIL, HY and MH rice genetic clusters are not being preferentially infected by particular SRBSDV lineages. Given that SRBSDV can cause 30-50% rice yield losses, our study emphasizes both the need to better monitor the disease in the HHRTS, and the need to start considering ways to reduce its burden on rice production.
Collapse
Affiliation(s)
- Pascal Alonso
- CIRAD, BGPI, 34398 Montpellier, France; (P.A.); (O.M.); (P.-J.S.); (L.B.); (R.F.); (E.F.); (C.J.); (D.F.); (H.A.); (C.V.)
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
| | - Pierre Gladieux
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
- INRA, BGPI, 34398 Montpellier, France
| | - Oumaima Moubset
- CIRAD, BGPI, 34398 Montpellier, France; (P.A.); (O.M.); (P.-J.S.); (L.B.); (R.F.); (E.F.); (C.J.); (D.F.); (H.A.); (C.V.)
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
| | - Pei-Jung Shih
- CIRAD, BGPI, 34398 Montpellier, France; (P.A.); (O.M.); (P.-J.S.); (L.B.); (R.F.); (E.F.); (C.J.); (D.F.); (H.A.); (C.V.)
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
- Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan
| | - Pierre Mournet
- CIRAD, UMR AGAP, 34398 Montpellier, France; (P.M.); (J.F.)
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 34398 Montpellier, France
| | - Julien Frouin
- CIRAD, UMR AGAP, 34398 Montpellier, France; (P.M.); (J.F.)
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, 34398 Montpellier, France
| | - Laurence Blondin
- CIRAD, BGPI, 34398 Montpellier, France; (P.A.); (O.M.); (P.-J.S.); (L.B.); (R.F.); (E.F.); (C.J.); (D.F.); (H.A.); (C.V.)
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
| | - Romain Ferdinand
- CIRAD, BGPI, 34398 Montpellier, France; (P.A.); (O.M.); (P.-J.S.); (L.B.); (R.F.); (E.F.); (C.J.); (D.F.); (H.A.); (C.V.)
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
| | - Emmanuel Fernandez
- CIRAD, BGPI, 34398 Montpellier, France; (P.A.); (O.M.); (P.-J.S.); (L.B.); (R.F.); (E.F.); (C.J.); (D.F.); (H.A.); (C.V.)
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
| | - Charlotte Julian
- CIRAD, BGPI, 34398 Montpellier, France; (P.A.); (O.M.); (P.-J.S.); (L.B.); (R.F.); (E.F.); (C.J.); (D.F.); (H.A.); (C.V.)
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
| | - Denis Filloux
- CIRAD, BGPI, 34398 Montpellier, France; (P.A.); (O.M.); (P.-J.S.); (L.B.); (R.F.); (E.F.); (C.J.); (D.F.); (H.A.); (C.V.)
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
| | - Henry Adreit
- CIRAD, BGPI, 34398 Montpellier, France; (P.A.); (O.M.); (P.-J.S.); (L.B.); (R.F.); (E.F.); (C.J.); (D.F.); (H.A.); (C.V.)
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
| | - Elisabeth Fournier
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
- INRA, BGPI, 34398 Montpellier, France
| | - Aurélie Ducasse
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
- INRA, BGPI, 34398 Montpellier, France
| | | | - Jean-Benoit Morel
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
- INRA, BGPI, 34398 Montpellier, France
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (H.H.); (X.H.)
| | - Baihui Jin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (H.H.); (X.H.)
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (H.H.); (X.H.)
- Southwest Forestry University, Kunming 650224, China
| | - Darren P. Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 4579, South Africa;
| | - Christian Vernière
- CIRAD, BGPI, 34398 Montpellier, France; (P.A.); (O.M.); (P.-J.S.); (L.B.); (R.F.); (E.F.); (C.J.); (D.F.); (H.A.); (C.V.)
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
| | - Philippe Roumagnac
- CIRAD, BGPI, 34398 Montpellier, France; (P.A.); (O.M.); (P.-J.S.); (L.B.); (R.F.); (E.F.); (C.J.); (D.F.); (H.A.); (C.V.)
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France; (P.G.); (E.F.); (A.D.); (J.-B.M.)
- Correspondence: ; Tel.: +33(0)-4-99-62-48-53; Fax: +33(0)-4-99-62-48-48
| |
Collapse
|