1
|
Klosterman SJ, Clark KJ, Anchieta AG, Kandel SL, Mou B, McGrath MT, Correll JC, Shishkoff N. Transmission of Spinach Downy Mildew via Seed and Infested Leaf Debris. PLANT DISEASE 2024; 108:951-959. [PMID: 37840290 DOI: 10.1094/pdis-06-23-1225-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Spinach downy mildew, caused by the obligate oomycete pathogen Peronospora effusa, is a worldwide constraint on spinach production. The role of airborne sporangia in the disease cycle of P. effusa is well established, but the role of the sexual oospores in the epidemiology of P. effusa is less clear and has been a major challenge to examine experimentally. To evaluate seed transmission of spinach downy mildew via oospores in this study, isolated glass chambers were employed in two independent experiments to grow out oospore-infested spinach seed and noninfested seeds mixed with oospore-infested crop debris. Downy mildew diseased spinach plants were observed 37 and 34 days after planting in the two isolator experiments, respectively, in the chambers that contained one of two oospore-infested seed lots or seeds coated with oospore-infested leaves. Spinach plants in isolated glass chambers initiated from seeds without oospores did not show downy mildew symptoms. Similar findings were obtained using the same seed lot samples in a third experiment conducted in a growth chamber. In direct grow out tests to examine oospore infection on seedlings performed in a containment greenhouse with oospore-infested seed of two different cultivars, characteristic Peronospora sporangiophores were observed growing from a seedling of each cultivar. The frequency of seedlings developing symptoms from 82 of these oospore-infested seed indicated that approximately 2.4% of seedlings from infested seed developed symptoms, and 0.55% of seedlings from total seeds assayed developed symptoms. The results provide evidence that oospores can serve as a source of inoculum for downy mildew and provide further evidence of direct seed transmission of the downy mildew pathogen to seedlings in spinach via seedborne oospores.
Collapse
Affiliation(s)
| | - Kelley J Clark
- Crop Improvement and Protection Research Unit, USDA-ARS, Salinas, CA
| | - Amy G Anchieta
- Crop Improvement and Protection Research Unit, USDA-ARS, Salinas, CA
| | | | - Beiquan Mou
- Crop Improvement and Protection Research Unit, USDA-ARS, Salinas, CA
| | - Margaret T McGrath
- Long Island Horticultural Research and Extension Center, Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Riverhead, NY
| | - James C Correll
- Department of Plant Pathology and Entomology, University of Arkansas, Fayetteville, AR
| | - Nina Shishkoff
- Foreign Disease-Weed Science Research Unit, USDA-ARS, Ft. Detrick, MD
| |
Collapse
|
2
|
Clark KJ, Anchieta AG, da Silva MB, Kandel SL, Choi YJ, Martin FN, Correll JC, Van Denyze A, Brummer EC, Klosterman SJ. Early Detection of the Spinach Downy Mildew Pathogen in Leaves by Recombinase Polymerase Amplification. PLANT DISEASE 2022; 106:1793-1802. [PMID: 35253491 DOI: 10.1094/pdis-11-21-2398-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Downy mildew of spinach, caused by Peronospora effusa, is a major economic threat to both organic and conventional spinach production. Symptomatic spinach leaves are unmarketable and spinach with latent infections are problematic because symptoms can develop postharvest. Therefore, early detection methods for P. effusa could help producers identify infection before visible symptoms appear. Recombinase polymerase amplification (RPA) provides sensitive and specific detection of pathogen DNA and is a rapid, field-applicable method that does not require advanced technical knowledge or equipment-heavy DNA extraction. Here, we used comparative genomics to identify a unique region of the P. effusa mitochondrial genome to develop an RPA assay for the early detection of P. effusa in spinach leaves. In tandem, we established a TaqMan quantitative PCR (qPCR) assay and used this assay to validate the P. effusa specificity of the locus across Peronospora spp. and to compare assay performance. Neither the TaqMan qPCR nor the RPA showed cross reactivity with the closely related beet downy mildew pathogen, P. schachtii. TaqMan qPCR and RPA have detection thresholds of 100 and 900 fg of DNA, respectively. Both assays could detect P. effusa in presymptomatic leaves, with RPA-based detection occurring as early as 5 days before the appearance of symptoms and TaqMan qPCR-based detection occurring after 24 h of plant exposure to airborne spores. Implementation of the RPA detection method could provide real-time information for point-of-care management strategies at field sites.
Collapse
Affiliation(s)
- Kelley J Clark
- United States Department of Agriculture-Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905, U.S.A
| | - Amy G Anchieta
- United States Department of Agriculture-Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905, U.S.A
| | - Mychele B da Silva
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - Shyam L Kandel
- United States Department of Agriculture-Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905, U.S.A
| | - Young-Joon Choi
- Department of Biology, Kunsan National University, Gunsan, 54150, Korea
| | - Frank N Martin
- United States Department of Agriculture-Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905, U.S.A
| | - James C Correll
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Allen Van Denyze
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - E Charles Brummer
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - Steven J Klosterman
- United States Department of Agriculture-Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905, U.S.A
| |
Collapse
|
3
|
Bhattarai G, Yang W, Shi A, Feng C, Dhillon B, Correll JC, Mou B. High resolution mapping and candidate gene identification of downy mildew race 16 resistance in spinach. BMC Genomics 2021; 22:478. [PMID: 34174825 PMCID: PMC8234665 DOI: 10.1186/s12864-021-07788-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 06/10/2021] [Indexed: 11/10/2022] Open
Abstract
Background Downy mildew, the most devastating disease of spinach (Spinacia oleracea L.), is caused by the oomycete Peronospora effusa [=P. farinosa f. sp. spinaciae]. The P. effusa shows race specificities to the resistant host and comprises 19 reported races and many novel isolates. Sixteen new P. effusa races were identified during the past three decades, and the new pathogen races are continually overcoming the genetic resistances used in commercial cultivars. A spinach breeding population derived from the cross between cultivars Whale and Lazio was inoculated with P. effusa race 16 in an environment-controlled facility; disease response was recorded and genotyped using genotyping by sequencing (GBS). The main objective of this study was to identify resistance-associated single nucleotide polymorphism (SNP) markers from the cultivar Whale against the P. effusa race 16. Results Association analysis conducted using GBS markers identified six significant SNPs (S3_658,306, S3_692697, S3_1050601, S3_1227787, S3_1227802, S3_1231197). The downy mildew resistance locus from cultivar Whale was mapped to a 0.57 Mb region on chromosome 3, including four disease resistance candidate genes (Spo12736, Spo12784, Spo12908, and Spo12821) within 2.69–11.28 Kb of the peak SNP. Conclusions Genomewide association analysis approach was used to map the P. effusa race 16 resistance loci and identify associated SNP markers and the candidate genes. The results from this study could be valuable in understanding the genetic basis of downy mildew resistance, and the SNP marker will be useful in spinach breeding to select resistant lines.
Collapse
Affiliation(s)
- Gehendra Bhattarai
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Wei Yang
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA.
| | - Chunda Feng
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Braham Dhillon
- Department of Plant Pathology, University of Florida - Fort Lauderdale Research and Education Center, Davie, FL, 33314, USA
| | - James C Correll
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA.
| | - Beiquan Mou
- USDA-ARS Crop Improvement and Protection Research Unit, Salinas, CA, 93906, USA.
| |
Collapse
|
4
|
Fujiwara K, Inoue H, Sonoda R, Iwamoto Y, Kusaba M, Tashiro N, Miyasaka A. Real-Time PCR Detection of the Onion Downy Mildew Pathogen Peronospora destructor From Symptomless Onion Seedlings and Soils. PLANT DISEASE 2021; 105:643-649. [PMID: 33467897 DOI: 10.1094/pdis-05-20-1095-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An outbreak of downy mildew disease of onion, caused by Peronospora destructor, in Japan in 2016 necessitated a reevaluation of the primary inoculum sources to optimize disease management. Detection of the P. destructor pathogen in plants with asymptomatic infection and in soil would guide the application of fungicides according to the extent of infection before disease development. Here, we detected P. destructor in both plants and soil using newly developed primer sets (Pd ITS and Pd ITS 614) by both conventional and real-time PCR. Validation by real-time PCR with Pd ITS 614 showed that P. destructor DNA was amplified from symptomless seedlings at 3.7 × 102 to 1.0 × 100 conidium cells/50 mg leaf tissue, suggesting the detection of asymptomatic infection. Real-time PCR with Pd ITS amplified pathogen DNA from field soils at 1.6 × 103 to 8.3 × 101 oospore cells/g of soil. This real-time PCR assay provides a useful tool for identifying and quantifying inoculum sources, which may be the foundation of the design of integrated disease management strategies.
Collapse
Affiliation(s)
- Kazuki Fujiwara
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Koshi, Kumamoto 861-1192, Japan
| | - Hiroyoshi Inoue
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Koshi, Kumamoto 861-1192, Japan
| | - Ryoichi Sonoda
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Koshi, Kumamoto 861-1192, Japan
| | - Yutaka Iwamoto
- Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Kasai, Hyogo 679-0198, Japan
| | - Motoaki Kusaba
- Faculty of Agriculture, Saga University, Saga City, Saga 840-8502, Japan
| | - Nobuya Tashiro
- Saga Prefectural Upland Farming Research and Extension Center, Karatsu, Saga 847-0326, Japan
| | - Atsushi Miyasaka
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Koshi, Kumamoto 861-1192, Japan
| |
Collapse
|
5
|
Si Ammour M, Castaldo E, Fedele G, Rossi V. Use of LAMP for Assessing Botrytis cinerea Colonization of Bunch Trash and Latent Infection of Berries in Grapevines. PLANTS 2020; 9:plants9111538. [PMID: 33187064 PMCID: PMC7696620 DOI: 10.3390/plants9111538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
A real-time loop-mediated isothermal amplification (LAMP) assay was evaluated for the detection of Botrytis cinerea in grapevine bunch trash, immature berries, and ripening berries. A simple method for the preparation of crude extracts of grape tissue was also developed for on-site LAMP analysis. When tested with 14 other fungal species frequently found in grapevines, the LAMP assay was specific and sensitive to a B. cinerea DNA quantity of 0.1 ng/µL. The sensitivity was further tested using bunch trash samples with B. cinerea colonization levels between 6 and 100% and with bulk-berry samples composed of 4 pathogen-free berries or 4 berries among which 25 to 100% had been inoculated with B. cinerea. The LAMP assay detected the lowest B. cinerea colonization level tested in bunch trash and in immature and mature berries in less than 20 min. In single-berry experiments, LAMP amplified B. cinerea DNA from all artificially inoculated individual immature and mature berries. No amplification occurred in B. cinerea-free material. The real-time LAMP assay has the potential to be used as a rapid on-site diagnostic tool for assessing B. cinerea colonization in bunch trash and B. cinerea latent infections in berries, which represent critical stages for decision-making about disease management.
Collapse
Affiliation(s)
- Melissa Si Ammour
- Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, Via E. Parmense 84, 29122 Piacenza, Italy; (M.S.A.); (G.F.)
| | | | - Giorgia Fedele
- Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, Via E. Parmense 84, 29122 Piacenza, Italy; (M.S.A.); (G.F.)
| | - Vittorio Rossi
- Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, Via E. Parmense 84, 29122 Piacenza, Italy; (M.S.A.); (G.F.)
- Correspondence:
| |
Collapse
|
6
|
Bhattarai G, Shi A, Feng C, Dhillon B, Mou B, Correll JC. Genome Wide Association Studies in Multiple Spinach Breeding Populations Refine Downy Mildew Race 13 Resistance Genes. FRONTIERS IN PLANT SCIENCE 2020; 11:563187. [PMID: 33193490 PMCID: PMC7609621 DOI: 10.3389/fpls.2020.563187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/16/2020] [Indexed: 05/29/2023]
Abstract
Downy mildew, caused by the oomycete Peronospora effusa, is the most economically important disease on spinach. Fourteen new races of P. effusa have been identified in the last three decades. The frequent emergence of new races of P. effusa continually overcome the genetic resistance to the pathogen. The objectives of this research were to more clearly map the downy mildew resistance locus RPF1 in spinach, to identify single nucleotide polymorphism (SNP) markers associated with the resistance, and to refine the candidate genes responsible for the resistance. Progeny from populations generated from crosses of cultivars resistant (due to RPF1) to race 13 of P. effusa (Swan, T-Bird, Squirrel, and Tonga) with race 13 susceptible cultivars (Whale and Polka) were inoculated and the downy mildew disease response determined. Association analysis was performed in TASSEL, GAPIT, PLINK, and GENESIS programs using SNP markers identified from genotyping by sequencing (GBS). Association analysis mapped the race 13 resistance loci (RPF1) to positions 0.39, 0.69, 0.94-0.98, and 1.2 Mb of chromosome 3. The associated SNPs were within 1-7 kb of the disease resistance genes Spo12784, Spo12719, Spo12905, and Spo12821, and 11-18 Kb from Spo12903. This study extended our understanding of the genetic basis of downy mildew resistance in spinach and provided the most promising candidate genes Spo12784 and Spo12903 near the RPF1 locus, to pursue functional validation. The SNP markers may be used to select for the resistant lines to improve genetic resistance against the downy mildew pathogen and in developing durably resistant cultivars.
Collapse
Affiliation(s)
- Gehendra Bhattarai
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Chunda Feng
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR, United States
| | - Braham Dhillon
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR, United States
- Department of Plant Pathology, Fort Lauderdale Research and Education Center, University of Florida, Davie, FL, United States
| | - Beiquan Mou
- Crop Improvement and Protection Research Unit, United States Department of Agriculture, Agricultural Research Service, Salinas, CA, United States
| | - James C. Correll
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
7
|
Kandel SL, Mou B, Shishkoff N, Shi A, Subbarao KV, Klosterman SJ. Spinach Downy Mildew: Advances in Our Understanding of the Disease Cycle and Prospects for Disease Management. PLANT DISEASE 2019; 103:791-803. [PMID: 30939071 DOI: 10.1094/pdis-10-18-1720-fe] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Downy mildew on spinach is caused by Peronospora effusa, an oomycete pathogen that poses a challenge to spinach production worldwide, especially in organic production. Following infection, P. effusa produces abundant amounts of asexual sporangia. Sporangia become windborne and initiate new infections locally or distantly, leading to widespread epidemics. Oospores produced from the union of opposite mating types have been observed within infected leaves and seeds and may remain viable for many years. Sexual reproduction increases the genetic diversity of P. effusa through sexual recombination, and thus, the movement of oospores on seed has likely fueled the rapid explosion of new pathotypes in different regions of the world over the past 20 years. This review summarizes recent advances in spinach downy mildew research, especially in light of the findings of oospores in contemporary commercial spinach seed lots as well as their germination. Knowledge of the role of the oospores and other aspects of the disease cycle can directly translate into new and effective disease management strategies.
Collapse
Affiliation(s)
- Shyam L Kandel
- 1 USDA-ARS Crop Improvement and Protection Research Unit, Salinas, CA 93905
| | - Beiquan Mou
- 1 USDA-ARS Crop Improvement and Protection Research Unit, Salinas, CA 93905
| | - Nina Shishkoff
- 2 USDA-ARS Foreign Disease Weed Science Research Unit, Frederick, MD 21702
| | - Ainong Shi
- 3 Department of Horticulture, University of Arkansas, Fayetteville, AR; and
| | - Krishna V Subbarao
- 4 Department of Plant Pathology, University of California-Davis, Salinas, CA
| | | |
Collapse
|