1
|
Vincent CV, Bignell DRD. Regulation of virulence mechanisms in plant-pathogenic Streptomyces. Can J Microbiol 2024; 70:199-212. [PMID: 38190652 DOI: 10.1139/cjm-2023-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Streptomyces have a uniquely complex developmental life cycle that involves the coordination of morphological differentiation with the production of numerous bioactive specialized metabolites. The majority of Streptomyces spp. are soil-dwelling saprophytes, while plant pathogenicity is a rare attribute among members of this genus. Phytopathogenic Streptomyces are responsible for economically important diseases such as common scab, which affects potato and other root crops. Following the acquisition of genes encoding virulence factors, Streptomyces pathogens are expected to have specifically adapted their regulatory pathways to enable transition from a primarily saprophytic to a pathogenic lifestyle. Investigations of the regulation of pathogenesis have primarily focused on Streptomyces scabiei and the principal pathogenicity determinant thaxtomin A. The coordination of growth and thaxtomin A production in this species is controlled in a hierarchical manner by cluster-situated regulators, pleiotropic regulators, signalling and plant-derived molecules, and nutrients. Although the majority of phytopathogenic Streptomyces produce thaxtomins, many also produce additional virulence factors, and there are scab-causing pathogens that do not produce thaxtomins. The development of effective control strategies for common scab and other Streptomyces plant diseases requires a more in-depth understanding of the genetic and environmental factors that modulate the plant pathogenic lifestyle of these organisms.
Collapse
Affiliation(s)
- Corrie V Vincent
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Dawn R D Bignell
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
2
|
Karagoz K, Dadasoglu F, Alaylar B, Kotan R. Evaluation of molecular typing methods for some scab-causing Streptomyces strains from Turkey. World J Microbiol Biotechnol 2024; 40:122. [PMID: 38441818 PMCID: PMC10914884 DOI: 10.1007/s11274-024-03914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024]
Abstract
This study was conducted for identifying phylogenetic relationships between 15 scab-causing Streptomyces species including S. bottropensis, S. europaeiscabiei, S. scabiei, S. stelliscabiei and, other 11 Streptomyces sp. All of the strains were originally isolated from symptomatic potatoes in Erzurum Province, The Eastern Anatolia Region of Turkey. Some morphological and biochemical properties of the strains were defined in our former research. Then, 16 s rRNA regions of them were sequenced. After the sequence data assembly, phylogenetic analyzes were performed. The phylogenetic analyses revealed that the strains are involved in the same major group and, substantially similar to reference strains. Additionally, some subgroup formations were also recorded. Moreover, Repetitive element-based PCR (Rep-PCR), Enterobacterial repetitive intergenic consensus (ERIC-PCR), and BOX-PCR fingerprinting molecular typing methods were used for as molecular typing methods. According to our knowledge, this is the first report on phylogenetic relationships of scab-causing Streptomyces species from Turkey. However, the identification of most pathogenic strains remained at the species level.
Collapse
Affiliation(s)
- Kenan Karagoz
- Faculty of Science and Literature, Department of Molecular Biology and Genetics, Agri Ibrahim Cecen University, 04100, Agri, Turkey.
| | - Fatih Dadasoglu
- Agricultural Faculty, Department of Plant Protection, Ataturk University, 25240, Erzurum, Turkey
| | - Burak Alaylar
- Faculty of Science and Literature, Department of Molecular Biology and Genetics, Agri Ibrahim Cecen University, 04100, Agri, Turkey
| | - Recep Kotan
- Agricultural Faculty, Department of Plant Protection, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
3
|
Bobek J, Filipová E, Bergman N, Čihák M, Petříček M, Lara AC, Kristufek V, Megyes M, Wurzer T, Chroňáková A, Petříčková K. Polyenic Antibiotics and Other Antifungal Compounds Produced by Hemolytic Streptomyces Species. Int J Mol Sci 2022; 23:15045. [PMID: 36499372 PMCID: PMC9740855 DOI: 10.3390/ijms232315045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Streptomyces are of great interest in the pharmaceutical industry as they produce a plethora of secondary metabolites that act as antibacterial and antifungal agents. They may thrive on their own in the soil, or associate with other organisms, such as plants or invertebrates. Some soil-derived strains exhibit hemolytic properties when cultivated on blood agar, raising the question of whether hemolysis could be a virulence factor of the bacteria. In this work we examined hemolytic compound production in 23 β-hemolytic Streptomyces isolates; of these 12 were soil-derived, 10 were arthropod-associated, and 1 was plant-associated. An additional human-associated S. sp. TR1341 served as a control. Mass spectrometry analysis suggested synthesis of polyene molecules responsible for the hemolysis: candicidins, filipins, strevertene A, tetrafungin, and tetrin A, as well as four novel polyene compounds (denoted here as polyene A, B, C, and D) in individual liquid cultures or paired co-cultures. The non-polyene antifungal compounds actiphenol and surugamide A were also identified. The findings indicate that the ability of Streptomyces to produce cytolytic compounds (here manifested by hemolysis on blood agar) is an intrinsic feature of the bacteria in the soil environment and could even serve as a virulence factor when colonizing available host organisms. Additionally, a literature review of polyenes and non-polyene hemolytic metabolites produced by Streptomyces is presented.
Collapse
Affiliation(s)
- Jan Bobek
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studničkova 7, 128 00 Prague, Czech Republic
- Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, České mládeže 8, 400 96 Ústí nad Labem, Czech Republic
| | - Eliška Filipová
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studničkova 7, 128 00 Prague, Czech Republic
| | - Natalie Bergman
- Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, České mládeže 8, 400 96 Ústí nad Labem, Czech Republic
| | - Matouš Čihák
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studničkova 7, 128 00 Prague, Czech Republic
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Miroslav Petříček
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studničkova 7, 128 00 Prague, Czech Republic
| | - Ana Catalina Lara
- Institute of Soil Biology and Biogeochemistry, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Vaclav Kristufek
- Institute of Soil Biology and Biogeochemistry, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Melinda Megyes
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Theresa Wurzer
- Institute of Soil Biology and Biogeochemistry, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Alica Chroňáková
- Institute of Soil Biology and Biogeochemistry, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Kateřina Petříčková
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studničkova 7, 128 00 Prague, Czech Republic
| |
Collapse
|
4
|
Zhang X, Wang J, Zhu H, Wang J, Zhang H. Chemical Composition, Antibacterial, Antioxidant and Enzyme Inhibitory Activities of the Essential Oil from Leaves of Psidium guajava L. Chem Biodivers 2022; 19:e202100951. [PMID: 35344272 DOI: 10.1002/cbdv.202100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/23/2022] [Indexed: 11/05/2022]
Abstract
Guava (Psidium guajava L.) leaf essential oil (GLEO) was extracted by water distillation, and its in vitro antioxidant, antidiabetic, and antibacterial properties were evaluated. Using GC/MS to determine the chemical components of GLEO, 27 constituents were identified, accounting for 74.90 % of the total oil content, among which L-caryophyllene (24.46 %), L-calamenene (10.82 %), (-)-globulol (10.69 %), and α-copaene (8.71 %) were the main components. Subsequently, the antioxidant activity of GLEO was determined by DPPH, ABTS, and β-carotene bleaching tests. The half maximal inhibitory concentration of GLEO for three free radicals were IC50 =17.66±0.07 μg/mL, IC50 =19.28±0.03 μg/mL, and IC50 =3.17±0.01 μg/mL, respectively. Moreover, GLEO exhibited remarkable α-amylase (IC50 =13.99±0.34 μg/mL) and α-glucosidase (IC50 =5.50±1.02 μg/mL) inhibitory activities. It was effective against Streptomyces acidiscabies (MIC=1.25 μg/mL), Ralstonia solanacearum (MIC=5 μg/mL), and Erwinia carotovora subsp carotovora borgey (MIC=2.5 μg/mL), showing significant antibacterial properties. Based on the findings, given the high biological activity of GLEO, it is a biological preservative for food, medicine, and cosmetics and is valuable in natural therapy and crop disease management.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Northeast Agricultural University, Harbin, 150030, China.,School of Life Science, Jiaying University, Meizhou, 514015, China
| | - Jiali Wang
- Northeast Agricultural University, Harbin, 150030, China
| | - Hongwei Zhu
- Northeast Agricultural University, Harbin, 150030, China
| | - Jianhao Wang
- Northeast Agricultural University, Harbin, 150030, China
| | - Huajiang Zhang
- Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
5
|
Nguyen HP, Weisberg AJ, Chang JH, Clarke CR. Streptomyces caniscabiei sp. nov., which causes potato common scab and is distributed across the world. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fourteen strains of
Streptomyces
isolated from scab lesions on potato are described as members of a novel species based on genetic distance, morphological observation and biochemical analyses. Morphological and biochemical characteristics of these strains are distinct from other described phytopathogenic species. Strain NE06-02DT has white aerial mycelium and grey, cylindrical, smooth spores on rectus-flexibilis spore chains. Members of this species group can utilize most of the International
Streptomyces
Project sugars, utilize melibiose and trehalose, produce melanin, grow on 6–7 % NaCl and pH 5–5.5 media, and are susceptible to oleandomycin (100 µg ml−1), streptomycin (20 µg ml−1) and penicillin G (30 µg ml−1). Though the 16S rRNA gene sequences from several members of this novel species are identical to the
Streptomyces bottropensis
16S rRNA gene sequence, whole-genome average nucleotide identity and multi-locus sequence analysis confirm that the strains are members of a novel species. Strains belonging to this novel species have been isolated from the United States, Egypt and China with the earliest known members being isolated in 1961 from common scab lesions of potato in both California, USA, and Maine, USA. The name Streptomyces caniscabiei sp. nov. is proposed for strain NE06-02DT (=DSM111602T=ATCC TSD-236T) and the other members of this novel species group.
Collapse
Affiliation(s)
- Hien P. Nguyen
- Genetic Improvement for Fruits and Vegetables Lab, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | | | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, OR 97331, USA
| | - Christopher R. Clarke
- Genetic Improvement for Fruits and Vegetables Lab, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| |
Collapse
|
6
|
Wei Q, Li J, Yang S, Wang W, Min F, Guo M, Zhang S, Dong X, Hu L, Li Z, Wang X. Streptomyces rhizophilus Causes Potato Common Scab Disease. PLANT DISEASE 2022; 106:266-274. [PMID: 34615364 DOI: 10.1094/pdis-09-20-1902-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Common scab (CS) caused by Streptomyces spp. is a significant soilborne potato disease that results in tremendous economic losses globally. Identification of CS-associated species of the genus Streptomyces can enhance understanding of the genetic variation of these bacterial species and is necessary for the control of this epidemic disease. The present study isolated Streptomyces strain 6-2-1(1) from scabby potatoes in Keshan County, Heilongjiang Province, China. PCR analysis confirmed that the strain harbored the characteristic Streptomyces pathogenicity island (PAI) genes (txtA, txtAB, nec1, and tomA). Pathogenicity assays proved that the strain caused typical scab lesions on potato tuber surfaces and necrosis on radish seedlings and potato slices. Subsequently, the strain was systemically characterized at morphological, physiological, biochemical, and phylogenetic levels. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 6-2-1(1) shared 99.86% sequence similarity with Streptomyces rhizophilus JR-41T, isolated initially from bamboo in rhizospheric soil in Korea. PCR amplification followed by Sanger sequencing of the 16S rRNA gene of 164 scabby potato samples collected in Heilongjiang Province from 2019 to 2020 demonstrated that approximately 2% of the tested samples were infected with S. rhizophilus. Taken together, these results demonstrate that S. rhizophilus is capable of causing potato CS disease and may pose a potential challenge to potato production in Heilongjiang Province of China.
Collapse
Affiliation(s)
- Qi Wei
- Potato Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150016, China
| | - Jie Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shuai Yang
- Potato Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150016, China
| | - Wenzhong Wang
- Potato Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150016, China
| | - Fanxiang Min
- Potato Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150016, China
| | - Mei Guo
- Potato Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150016, China
| | - Shu Zhang
- Potato Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150016, China
| | - Xuezhi Dong
- Potato Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150016, China
| | - Linshuang Hu
- Potato Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150016, China
| | - Zhugang Li
- Institute of Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150016, China
| | - Xiaodan Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Cui L, Yang C, Jin M, Wei L, Yang L, Zhou J. Identification and biological characterization of a new pathogen that causes potato scab in Gansu Province, China. Microb Pathog 2021; 161:105276. [PMID: 34728371 DOI: 10.1016/j.micpath.2021.105276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
Potato scab caused by pathogenic Streptomyces is a serious soil-borne disease on potato. In this study, a new Streptomyces strain 5A-1 was isolated from potato samples in China. Based on morphological characteristics, 16S rDNA gene sequence analyses, it was identified as Streptomyces griseoplanus (Streptacidiphilus griseoplanus), pathogenicity of which was measured by the methods of small potato chips, radish slices and potato pot trial inoculation. Moreover, the pathogenic genes txtAB and tomA from the Streptomyces pathogenicity island (PAI) were detected. Determination of biological characteristics showed that the optimal temperature for the growth of S. griseoplanus strain 5A-1 was 25 °C, the optimal light condition was darkness, the optimal pH value was 8.5 and the most preferred carbon source and nitrogen source is glucose and aspartate, respectively. To our knowledge, it is the first report for S. griseoplanus, as a new pathogen, to cause potato scab.
Collapse
Affiliation(s)
- Lingxiao Cui
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Chengde Yang
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Mengjun Jin
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lijuan Wei
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Liping Yang
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jingjiang Zhou
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China; State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxin District, Guiyang, 550025, China
| |
Collapse
|
8
|
Corrêa DBA, do Amaral DT, da Silva MJ, Destéfano SAL. Streptomyces brasiliscabiei, a new species causing potato scab in south Brazil. Antonie van Leeuwenhoek 2021; 114:913-931. [PMID: 33881637 DOI: 10.1007/s10482-021-01566-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/29/2021] [Indexed: 12/01/2022]
Abstract
This study aimed to characterize six Streptomyces strains associated with potato scab in south Brazil through polyphasic taxonomy involving morphology, pathogenicity and genetic features. These strains were compared with other potato-scab Streptomyces species mainly S. europaeiscabiei, S. scabiei and S. stelliscabiei. South-Brazilian Streptomyces strains were morphologically distinct from the type strains of S. scabiei (CFBP 4517T) and their genomospecies S. europaeiscabiei (CFBP 4497 T) and S. stelliscabiei (CFBP 4521T), producing a brown substrate mycelium with red borders and cream-grey brown aerial spores. Red-brown diffusible pigment on YME was also observed. The carbon sources L-Arabinose, D-Fructose, D-Glucose, D-Mannitol, meso-Inositol, Raffinose, Rhamnose, Sucrose, D-Xylose were tested for these strains. All strains were pathogenic causing symptoms of necrosis on radish and several potato cultivars commonly used in potato growing areas in Brazil. In greenhouse conditions, the strains caused scab disease and produced deep-pitted lesions covering large areas of the tuber. These results were correlated with presence of pathogenicity marker genes (txtAB, tomA or nec1) detected by PCR amplifications. In both phylogenetic analyses, 16S rRNA and MLSA, Streptomyces sp. Brazilian strains were closely related to S. europaeiscabiei, S. scabiei and S. stelliscabiei species, but they were allocated in separated branches supported by high bootstrap values and/or with low sequence similarity values. Sequencing of whole genome showed an 10,846,379 bp linear chromosome with high GC content (71.3%) consisting of 9179 putative genes, 3 rRNAs, 89 tRNAs and 1 CRISPRS. The molecular data, including genomic features, associated with morphological, biochemical and pathogenic characteristics warrant that the six Streptomyces Brazilian strains represent a new species associated with potato scab in Brazil, which would be named Streptomyces brasiliscabiei with IBSBF 2867T as the type strain.
Collapse
Affiliation(s)
- Daniele Bussioli Alves Corrêa
- Laboratório de Bacteriologia Vegetal, Instituto Biológico, Centro Avançado em Proteção de Plantas e Sanidade Animal-CAPSA, Alameda Dos Vidoeiros, 1097, Gramado, Campinas, SP, CEP:13101-680, Brazil
| | - Danilo Trabuco do Amaral
- Faculdade de Filosofia, Ciências E Letras, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Márcio José da Silva
- Centro de Biologia Molecular E Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Suzete Aparecida Lanza Destéfano
- Laboratório de Bacteriologia Vegetal, Instituto Biológico, Centro Avançado em Proteção de Plantas e Sanidade Animal-CAPSA, Alameda Dos Vidoeiros, 1097, Gramado, Campinas, SP, CEP:13101-680, Brazil.
| |
Collapse
|
9
|
Hudec C, Novinscak A, Filion M. Diversity and Virulence of Streptomyces spp. Causing Potato Common Scab in Prince Edward Island, Canada. PHYTOPATHOLOGY 2021; 111:617-626. [PMID: 32976057 DOI: 10.1094/phyto-08-20-0339-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Common scab (CS) is a potato disease that significantly decreases the market value of potato tubers after the development of necrotic lesions on their surface. Streptomyces scabiei is the main causal agent of CS; however, other closely related species, including S. acidiscabies and S. turgidiscabies, have also been shown to cause the disease. In this study, we characterized the genetic and phenotypic diversity of Streptomyces spp. causing CS in Prince Edward Island, the main potato-producing province in Canada. Two hundred and ninety-six pathogenic Streptomyces spp. isolates were retrieved from diseased tubers harvested from six fields located across a longitudinal geographical gradient. Genome fingerprinting analyses using repetitive elements PCR (ERIC- and BOX-PCR) revealed 14 distinct genetic groups. Thirteen groups were taxonomically affiliated with S. scabiei, whereas the fourteenth group was affiliated with S. acidiscabies. Their geographical distribution was characterized and revealed that on average between six and eight different genetic groups were detected per field, with variable abundance. Virulence assays showed strong differences in virulence between the genetic groups, ranging from low to highly virulent. Interestingly, pathogenic Streptomyces spp. populations in each field seem to be dominated by the most virulent genetic groups. The results obtained will contribute to better understanding of the population dynamic of pathogenic Streptomyces spp. causing CS of potato and promoting the development of more efficient detection and intervention tools to manage this important potato disease.
Collapse
Affiliation(s)
- Cindy Hudec
- Department of Biology, Université de Moncton, Moncton, New Brunswick, Canada
| | - Amy Novinscak
- Department of Biology, Université de Moncton, Moncton, New Brunswick, Canada
| | - Martin Filion
- Saint-Jean-sur-Richelieu Research and Development Center, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Quebec, Canada
| |
Collapse
|
10
|
Marques HMC, Appy MP, Destéfano SAL. Effect of pH soil and irrigation regimes on management of potato scab. ARQUIVOS DO INSTITUTO BIOLÓGICO 2021. [DOI: 10.1590/1808-1657000552020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Zhang XY, Li C, Hao JJ, Li YC, Li DZ, Zhang DM, Xing X, Liang Y. A Novel Streptomyces sp. Strain PBSH9 for Controlling Potato Common Scab Caused by Streptomyces galilaeus. PLANT DISEASE 2020; 104:1986-1993. [PMID: 32441579 DOI: 10.1094/pdis-07-19-1469-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Potato common scab is an important soilborne disease worldwide that can significantly reduce the quality and economic values of potato. The disease is caused by multiple species of Streptomyces, which are not well controlled due to lack of effective strategies. Streptomyces galilaeus has been recently identified as a dominant species causing potato common scab in Inner Mongolia, China. This study was focused on screening and characterizing antagonists for biological control against pathogenic S. galilaeus. Bacterial strain PBSH9 was isolated from a potato tuber. PBSH9 was identified as a Streptomyces sp. on the basis of morphological, physiological, and biochemical characteristics, as well as DNA sequence analysis. PBSH9 inhibited S. galilaeus with a diameter of inhibitory zone of 19.8 mm on agar plates. The extracellular filtrate of PBSH9 also inhibited S. galilaeus growth with a diameter of inhibition zone of 10.0 mm. Furthermore, PBSH9 promoted potato sprouting and emergence. Disease control was up to 81.88% in greenhouse trials, and from 47.64 to 73.97% in 3-year field trials. Among the tested inoculation methods, seed treatment was more effective than soil drenching for PBSH9 application. PBSH9 not only effectively controlled potato common scab but also increased potato growth. Thus, it can be a potential candidate for biocontrol agent.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Chi Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Jian-Jun Hao
- School of Food and Agriculture, University of Maine, Orono, ME 04469, U.S.A
| | - Yu-Chen Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - De-Zhou Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China
- Development Planning Office, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dong-Mei Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Xing Xing
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Yan Liang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China
| |
Collapse
|
12
|
Sarwar A, Latif Z, Zhang S, Zhu J, Zechel DL, Bechthold A. Biological Control of Potato Common Scab With Rare Isatropolone C Compound Produced by Plant Growth Promoting Streptomyces A1RT. Front Microbiol 2018; 9:1126. [PMID: 29899736 PMCID: PMC5989138 DOI: 10.3389/fmicb.2018.01126] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/14/2018] [Indexed: 12/01/2022] Open
Abstract
Potato is prone to many drastic diseases like potato common scab (CS). As no highly effective methods exist for managing CS, this study explored the possibility of using biological control. Ten bacterial strains were isolated from CS-infected potato tubers from four different locations of Punjab, Pakistan, and identified based on biochemical and molecular analysis. Analysis of 16s rDNA sequences amplified by PCR revealed the isolated bacterial strains to be Streptomyces scabies, S. turgidiscabies and S. stelliscabiei. Pathogenic islands were also confirmed among the isolates after identification of txtAB, nec1, and tomA genes with PCR amplification. One strain isolated from soil was antagonistic to the pathogenic Streptomyces spp., and determined to be Streptomyces A1RT on the basis of 16s rRNA sequencing. A methanolic extract of Streptomyces A1RT contained Isatropolone C, which was purified and structurally determined by 1H- and 13C-NMR, 1H/1H-COSY, HMQC, and HMBC techniques. Streptomyces A1RT also produced the plant growth hormone indole-3-acetic acid (IAA) with a titer of 26 μg ml-1 as confirmed by spectrophotometry and HPLC. In a greenhouse assay, disease severity index was established from 0 to 500. Average disease severity indexes were recorded as 63, 130.5, and 78 for Streptomyces scabies, S. turgidiscabies and S. stelliscabiei, respectively. When Streptomyces A1RT was applied in soil that contained one of these pathogenic isolates, the average disease severity indexes were significantly (P < 0.05) reduced to 11.1, 5.6 and 8.4, respectively. A significant increase in tuber weight and shoot development was also observed with the tubers treated with Streptomyces A1RT. The use of the plant growth-promoting Streptomyces A1RT against potato CS thus provides an alternative strategy to control the disease without affecting environmental, plants, animals and human health.
Collapse
Affiliation(s)
- Arslan Sarwar
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Zakia Latif
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Songya Zhang
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jing Zhu
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg im Breisgau, Germany
| | - David L Zechel
- Department of Chemistry, Queen's University, Kingston, ON, Canada
| | - Andreas Bechthold
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
13
|
Fyans JK, Bown L, Bignell DRD. Isolation and Characterization of Plant-Pathogenic Streptomyces Species Associated with Common Scab-Infected Potato Tubers in Newfoundland. PHYTOPATHOLOGY 2016; 106:123-131. [PMID: 26524546 DOI: 10.1094/phyto-05-15-0125-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Potato common scab (CS) is an economically important crop disease that is caused by several members of the genus Streptomyces. In this study, we characterized the plant-pathogenic Streptomyces spp. associated with CS-infected potato tubers harvested in Newfoundland, Canada. A total of 17 pathogenic Streptomyces isolates were recovered from potato scab lesions, of which eight were determined to be most similar to the known CS pathogen S. europaeiscabiei. All eight S. europaeiscabiei isolates were found to produce the thaxtomin A phytotoxin and to harbor the nec1 virulence gene, and most also carry the putative virulence gene tomA. The remaining isolates appear to be novel pathogenic species that do not produce thaxtomin A, and only two of these isolates were determined to harbor the nec1 or tomA genes. Of the non-thaxtomin-producing isolates, strain 11-1-2 was shown to exhibit a severe pathogenic phenotype against different plant hosts and to produce a novel, secreted phytotoxic substance. This is the first report documenting the plant-pathogenic Streptomyces spp. associated with CS disease in Newfoundland. Furthermore, our findings provide further evidence that phytotoxins other than thaxtomin A may also contribute to the development of CS by Streptomyces spp.
Collapse
Affiliation(s)
- Joanna K Fyans
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Luke Bown
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Dawn R D Bignell
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| |
Collapse
|
14
|
Bouizgarne B, Ait Ben Aouamar A. Diversity of Plant Associated Actinobacteria. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2014. [DOI: 10.1007/978-3-319-05936-5_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Wanner LA, Kirk WW, Qu XS. Field efficacy of nonpathogenic Streptomyces species against potato common scab. J Appl Microbiol 2013; 116:123-33. [PMID: 24034169 DOI: 10.1111/jam.12336] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/09/2013] [Accepted: 08/22/2013] [Indexed: 11/28/2022]
Abstract
AIMS The primary objective of these experiments was to reduce pathogenicity and virulence of endemic soil pathogenic Streptomyces strains that cause potato common scab (CS) using nonpathogenic Streptomyces strains to suppress CS in a field situation. METHODS AND RESULTS Nonpathogenic Streptomyces strains that had shown potential for mitigating CS in greenhouse assays were used in Michigan and Pennsylvania fields known to have high CS disease pressure. Five biocontrol (BC) strains and three potato cultivars were used in 2009, and three BC strains and three cultivars were used in 2010 in each location. The effects of BC strains on CS disease incidence and severity differed between locations, years and potato cultivars. When overall means of individual BC treatments were compared with nontreated controls, CS incidence and severity were decreased by all BC strains in PA2009, PA2010 and MI2010, particularly in cultivar 'Yukon Gold' in MI. Biocontrol treatments also significantly shifted the proportions of superficial, raised and pitted lesion types in some cultivar/biocontrol treatment combinations. CONCLUSIONS All BC strains significantly reduced CS incidence and severity on 'Yukon Gold' in three of four trials, and one BC strain significantly improved the lesion severity profile in cultivar 'Atlantic'. No BC strain significantly reduced CS incidence and severity on all potato cultivars in the different years and locations. SIGNIFICANCE AND IMPACT OF THE STUDY Several nonpathogenic Streptomyces strains showed potential to reduce CS incidence and severity on two important potato-chipping cultivars in the field. These results can be further applied to reduce CS disease severity in potatoes.
Collapse
Affiliation(s)
- L A Wanner
- Genetic Improvement of Fruit and Vegetables Laboratory, USDA-ARS, Beltsville, MD, USA
| | | | | |
Collapse
|
16
|
Qu X, Wanner L, Christ B. Multiplex real-time PCR (TaqMan) assay for the simultaneous detection and discrimination of potato powdery and common scab diseases and pathogens. J Appl Microbiol 2011; 110:769-77. [DOI: 10.1111/j.1365-2672.2010.04930.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
What does it take to be a plant pathogen: genomic insights from Streptomyces species. Antonie van Leeuwenhoek 2010; 98:179-94. [DOI: 10.1007/s10482-010-9429-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 03/09/2010] [Indexed: 11/26/2022]
|
18
|
Hao JJ, Meng QX, Yin JF, Kirk WW. Characterization of a New Streptomyces Strain, DS3024, That Causes Potato Common Scab. PLANT DISEASE 2009; 93:1329-1334. [PMID: 30759507 DOI: 10.1094/pdis-93-12-1329] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A novel strain of Streptomyces (named DS3024) was isolated from a potato field in Michigan in 2006. The taxonomy of the organism was determined by morphology, biochemistry, and genetic analysis. Analysis of the 16S ribosomal RNA gene sequence indicated that the organism was most similar to an isolate of Streptomyces sp., ME02-6979.3a, which is not pathogenic to potato tubers but is distinct from other known pathogenic Streptomyces spp. Strain DS3024 has genes that encode thaxtomin synthetase (txtAB), which is required for pathogenicity and virulence, and tomatinase (tomA), which is a common marker for many pathogenic Streptomyces spp. However, the nec1 gene (associated with virulence in most pathogenic Streptomyces spp.) was not detected. The new strain was capable of growth at pH 4.5, caused necrosis on potato tuber slices, and produced thaxtomin A. In greenhouse experiments, DS3024 caused scab symptoms on potato tubers similar to those caused by Streptomyces scabies on tubers of potato cv. Atlantic, which is scab susceptible. We propose that DS3024 is a new strain of Streptomyces capable of causing common scab on potato tubers. The prevalence of this strain of Streptomyces in potato-producing areas in the north-central United States has not been determined.
Collapse
Affiliation(s)
- J J Hao
- Department of Plant Pathology, Michigan State University, East Lansing 48824
| | - Q X Meng
- Department of Plant Pathology, Michigan State University, East Lansing 48824
| | - J F Yin
- Department of Plant Pathology, University of Georgia, Tifton 31793
| | - W W Kirk
- Department of Plant Pathology, Michigan State University, East Lansing
| |
Collapse
|
19
|
Lerat S, Simao-Beaunoir AM, Beaulieu C. Genetic and physiological determinants of Streptomyces scabies pathogenicity. MOLECULAR PLANT PATHOLOGY 2009; 10:579-85. [PMID: 19694949 PMCID: PMC6640508 DOI: 10.1111/j.1364-3703.2009.00561.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
UNLABELLED SUMMARY Common scab is a severe disease worldwide affecting tap root crops and potato tubers. It is caused by soil-borne filamentous bacteria belonging to the genus Streptomyces. Streptomycetes usually are saprophytic microorganisms, but a few species have acquired the ability to infect underground plant tissues. The predominant causal agent of potato scab worldwide is Streptomyces scabies. The production of phytotoxins called thaxtomins is essential for the virulence of common scab-causing agents. The genes involved in the biosynthetic pathway of thaxtomins and other virulence genes are clustered on a large pathogenicity island. The pathogenicity island can be mobilized and transferred to nonpathogenic relatives, leading to the emergence of new pathogenic streptomycetes. In most pathogenic Streptomyces species, thaxtomin A is the predominant form found. The regulation of thaxtomin A synthesis is complex. Although the plant-derived compound cellobiose is now recognized as the inducer of thaxtomin A synthesis at a genetic level, other molecules (including aromatic amino acids and some secondary metabolites) show inhibitory effects on the production of the toxin. This paper is an overview of common scab with a focus on S. scabies and its virulence mechanisms. TAXONOMY Streptomyces scabies (Thaxt.) Lambert and Loria; Kingdom Bacteria; Phylum Actinobacteria; Class Actinomycetes; Order Actinomycetales; Family Streptomycetaceae; genus Streptomyces; species scabies or scabiei. HOST RANGE Streptomyces scabies (syn. S. scabiei) has a broad host range comprising tuber vegetables and most tap root crops. Streptomyces scabies causes common scab on potato (Solanum tuberosum), beet (Beta vulgaris), carrot (Daucus carota), parsnip (Pastinaca sativa), radish (Raphanus sativus), rutabaga (Brassica napobrassica) and turnip (Brassica rapa). Disease symptoms: Common scab symptoms appear as randomly distributed shallow, raised or deep-pitted corky lesions. Their size and colour are quite variable, but lesions typically are brown with a diameter of a few millimetres. No above-ground symptoms disclose the presence of the disease as aerial tissues of scab-infected plants remain healthy. Streptomyces scabies also inhibits the growth of seedlings in monocot and dicot plants. USEFUL WEBSITES http://www.sanger.ac.uk/Projects/S_scabies, http://www.potatodiseases.org/scab.html, http://www.uri.edu/ce/factsheets/sheets/potatoscab.html.
Collapse
Affiliation(s)
- Sylvain Lerat
- Centre SEVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada, J1K 2R1
| | | | | |
Collapse
|
20
|
Hiltunen LH, Ojanperä T, Kortemaa H, Richter E, Lehtonen MJ, Valkonen JPT. Interactions and biocontrol of pathogenicStreptomycesstrains co-occurring in potato scab lesions. J Appl Microbiol 2009; 106:199-212. [PMID: 19054229 DOI: 10.1111/j.1365-2672.2008.03992.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- L H Hiltunen
- Department of Applied Biology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
21
|
Qu X, Wanner LA, Christ BJ. Using the TxtAB operon to quantify pathogenic Streptomyces in potato tubers and soil. PHYTOPATHOLOGY 2008; 98:405-412. [PMID: 18944188 DOI: 10.1094/phyto-98-4-0405] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The phytotoxin thaxtomin, produced by plant pathogenic Streptomyces species, is the only known pathogenicity determinant for common scab diseases of potato and other root and tuber crops. Genes encoding thaxtomin synthetase (txtAB) are found on a pathogenicity island characteristic of genetically diverse plant pathogenic Streptomyces species. In this study, an SYBR Green quantitative real-time polymerase chain reaction (PCR) assay using primers designed to anneal to the txtAB operon of Streptomyces was developed to quantify pathogenic bacterial populations in potatoes and soil. The real-time PCR assay was specific for pathogenic Streptomyces strains. The detection limit of the assay was 10 fg of the target DNA, or one genome equivalent. Cycle threshold (Ct) values were linearly correlated with the concentration of the target DNA (correlation coefficient R(2) = 0.99) and were not affected by the presence of plant DNA extracts, indicating the usefulness of the assay for quantitative analyses of the pathogenic bacteria in plant tissues. The amount of pathogenic Streptomyces DNA in total DNA extracts from 1 g asymptomatic and symptomatic tubers was quantified using the assay and ranged from 10(1) to 10(6) pg. A standard curve was established to quantify pathogenic Streptomyces in soil. Using the standard curve, numbers of pathogenic Streptomyces colony forming units were extrapolated to range from 10(3) to 10(6) per gram of soil from potato fields where common scab was found. This real-time PCR assay using primers designed from the txtAB operon allows rapid, accurate, and cost effective quantification of pathogenic Streptomyces strains in potato tubers and in soil.
Collapse
Affiliation(s)
- Xinshun Qu
- Department of Plant Pathology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|