1
|
Gordon MI, Thomas WJ, Putnam ML. Transmission and Management of Pathogenic Agrobacterium tumefaciens and Rhodococcus fascians in Select Ornamentals. PLANT DISEASE 2024; 108:50-61. [PMID: 37368442 DOI: 10.1094/pdis-11-22-2557-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Pathogenic Agrobacterium tumefaciens and Rhodococcus fascians are phytobacteria that induce crown gall and leafy gall disease, respectively, resulting in undesirable growth abnormalities. When present in nurseries, plants infected by either bacterium are destroyed, resulting in substantial losses for growers, especially those producing plants valued for their ornamental attributes. There are many unanswered questions regarding pathogen transmission on tools used to take cuttings for propagation and whether products used for bacterial disease control are effective. We investigated the ability to transmit pathogenic A. tumefaciens and R. fascians on secateurs and the efficacy of registered control products against both bacteria in vitro and in vivo. Experimental plants used were Rosa × hybrida, Leucanthemum × superbum, and Chrysanthemum × grandiflorum for A. tumefaciens and Petunia × hybrida and Oenothera 'Siskiyou' with R. fascians. In separate experiments, we found secateurs could convey both bacteria in numbers sufficient to initiate disease in a host-dependent manner and that bacteria could be recovered from secateurs after a single cut through an infected stem. In in vivo assays, none of six products tested against A. tumefaciens prevented crown gall disease, although several products appeared promising in in vitro trials. Likewise, four compounds trialed against R. fascians failed to prevent disease. Sanitation and clean planting material remain the primary means of disease management.
Collapse
Affiliation(s)
- Michael I Gordon
- Department of Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - William J Thomas
- Department of Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Melodie L Putnam
- Department of Plant Pathology, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
2
|
Khilyas IV, Markelova MI, Valeeva LR, Gritseva AS, Sorokina AV, Shafigullina LT, Tukhbatova RI, Shagimardanova EI, Berkutova ES, Sharipova MR, Lochnit G, Cohen MF. Genomic and metabolomic profiling of endolithic Rhodococcus fascians strain S11 isolated from an arid serpentine environment. Arch Microbiol 2022; 204:336. [PMID: 35587838 DOI: 10.1007/s00203-022-02955-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022]
Abstract
Genomic and metabolomic studies of endolithic bacteria are essential for understanding their adaptations to extreme conditions of the rock environment and their contributions to mineralization and weathering processes. The endoliths of arid serpentine rocks are exposed to different environmental stresses, including desiccation and re-hydration, temperature fluctuations, oligotrophy, and high concentrations of heavy metals. Bacteria of the genus Rhodococcus commonly inhabit endolithic environments. Here, we describe genomic and metabolomic analyses of the non-pathogenic wild-type Rhodococcus fascians strain S11, isolated from weathered serpentine rock at the arid Khalilovsky massif, Russia. We found that strain S11 lacks the virulence plasmid that functions in the phytopathogenecity of some R. fascians strains. Phenotypic profiling revealed a high pH tolerance, phytase activity and siderophore production. A widely untargeted metabolome analysis performed using an Orbitrap LC-MS/MS method demonstrated the presence of chrysobactin-type siderophores in the culture medium of strain S11. The natural variation of secondary metabolites produced by strain S11 might provide a practical basis for revealing antibacterial, fungicide or insecticidal activities. Finally, plant infection and plant growth stimulation studies showed no observable effect of exposure strain S11 bacteria on the aerial and root parts of Arabidopsis thaliana plants. Based on our findings, R. fascians strain S11 might be promising tool for investigations of organo-mineral interactions, heavy metal bioremediation, and mechanisms of bacterial mediated weathering of plant-free serpentine rock to soil.
Collapse
Affiliation(s)
- Irina V Khilyas
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation.
| | - Maria I Markelova
- Laboratory of Omics Technologies, Institute Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Lia R Valeeva
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Anastasia S Gritseva
- Department of Genetics, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Alyona V Sorokina
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Lilia T Shafigullina
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Rezeda I Tukhbatova
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region), Federal University, Kazan, Russian Federation
| | - Elena I Shagimardanova
- Laboratory of Extreme Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Ekaterina S Berkutova
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Margarita R Sharipova
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Guenter Lochnit
- Faculty of Medicine Protein Analytics, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Michael F Cohen
- Department of Biology, Sonoma State University, Rohnert Park, CA, USA
| |
Collapse
|
3
|
Detection of Rhodococcus fascians, the Causative Agent of Lily Fasciation in South Korea. Pathogens 2021; 10:pathogens10020241. [PMID: 33672562 PMCID: PMC7924060 DOI: 10.3390/pathogens10020241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/03/2022] Open
Abstract
Rhodococcus fascians is an important pathogen that infects various herbaceous perennials and reduces their economic value. In this study, we examined R. fascians isolates carrying a virulence gene from symptomatic lily plants grown in South Korea. Phylogenetic analysis using the nucleotide sequences of 16S rRNA, vicA, and fasD led to the classification of the isolates into four different strains of R. fascians. Inoculation of Nicotiana benthamiana with these isolates slowed root growth and resulted in symptoms of leafy gall. These findings elucidate the diversification of domestic pathogenic R. fascians and may lead to an accurate causal diagnosis to help reduce economic losses in the bulb market.
Collapse
|
4
|
Yeon-Jeong L, Kong HG, Lee YH, Kim HR, Park DH. First Report of Rhodococcus fascians Causing Fasciation of Lilies ( Lilium longiflorum Thunb.) in South Korea. PLANT DISEASE 2020; 105:1190. [PMID: 33349008 DOI: 10.1094/pdis-10-20-2288-pdn] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rhodococcus fascians is a bacterium that causes growth abnormalities such as leafy galls, fasciation, and shoot proliferation in many plants, including ornamental plants. In February 2020, the Animal and Plant Quarantine Agency of South Korea detected 492,000 contaminated lily bulbs using an in-house PCR test based on the R. fascians fasD gene, and subsequently 1.3 million imported bulbs were destroyed. Because no pathogen isolation was associated with this diagnosis, there has been great cultivator demanded for bacterial isolation evidence of lily bulb infection with pathogenic R. fascians. To isolate the causal bacterium of the PCR tests, we sampled leaf, stem, and bulb tissues from 130 lilies with growth abnormality symptoms, collected from 24 South Korean mass production lily farms from June to August 2020. Supernatants of the homogenized samples were spread on mD2 medium (Kado and Heskett 1970) and incubated at 28°C for 10 days. Yellow to orange colonies were isolated into pure culture on mD2. Total DNA was extracted from cultures grown in yeast extract broth (YEB) at 28°C for 24 hours with Wizard DNA prep kit (Promega, Madison, WI, USA). PCR was performed to test for pathogenicity genes fas (A,D, and R) and att (A and R) (Putnam and Miller 2007). Colonies that produced at least one amplicon from these pathogenicity genes were analyzed by partial 16s rRNA gene sequencing to determine the corresponding species. Three strains that were isolated from the bulbs of fasciated lilies from Wanju (35°56´22.1˝N; 127°08´52.0˝E), Gwacheon (37°26´51.6˝N; 127°00´11.8˝E), and Yeongwol (37°18´45.8˝N; 128°11´05.6˝E), or W1, G3, and Y5 strains, yielded PCR products of the expected size for fas and att genes with the primer sets published in Serdani et al. (2013) and developed in this study (attAF: 5'-CCCGGCTACACGCATTCGC-3', attAR: 5'-CGAACGCGGTGTGCAGGT-3' and attRF: 5'-AGTGTCCCGTCGGCGAG-3', attRR: 5'-CGCGGCAGATCGAAGTCCT-3'). Sequences of the three strains were deposited in Genbank for fasA (accession MW122940-942), fasD (G3:MW122935 and 936), and fasR (MW122937-939); all shared 98.3 - 100% nucleotide identity to corresponding sequences from phytopathogenic R. fascians A25f (CP049745.1 Protein_ID fasA:QII09280.1, fasD:QII09282.1, and fasR:QII09277.1). The attA and attR products were only present in G3 (attA: MW122943 and attR: MW122944) and resulted in 100% identity to those of A25f (CP049745.1 Protein_ID attA:QII09269.1, attR:QII09267.1). Partial 16s rRNA gene sequences were obtained (MW064131-133) and clustered with phytopathogenic R. fascians strains D188, A21d2, and A25f. Thus we concluded that strains (W1, G3, and Y5) corresponded to R. fascians. To test the pathogenicity of these three strains, 10 seeds of garden peas for each strain were inoculated at 108 CFU/ml according to Nikolaeva et al. (2009), and the length of the main stem of each seedling was calculated 22 days post-inoculation. Seedlings inoculated with G3 and Y5 resulted in a stunted phenotype with up to 40% height reduction (p ≤ 0.001) compared to non-inoculated seedlings. As for the seedlings inoculated with W1, they exhibited as much as 15% height reduction (p ≤ 0.001). Colonies were recovered from the inoculated seedlings, identity was confirmed through colony PCR for fas and att genes. To our knowledge, this is the first report of phytopathogenic R. fascians in lilies cultivated in South Korea.
Collapse
Affiliation(s)
- Lim Yeon-Jeong
- Kangwon National University, Department of Applied Biology, College of Agriculture and Life Sciences, Chuncheon, Korea (the Republic of);
| | - Hyun Gi Kong
- Rural Development Administration, 54670, National Institute of Agricultural Sciences, Wanju-gun, 54875, South Korea, Jeonju, Korea (the Republic of), 54875;
| | - Yong Hwan Lee
- National Institute of Agricultural Sciences, 230986, Crop Protection Division, 166, Nongsaengmyeong-ro, Iseo-myeon, Wanju, Jeollabuk-do, Korea (the Republic of), 55365;
| | - Hyun Ran Kim
- National Institute of Horticultural&herbal science, fruit science, 203, cheoncheon-ro jangan-gu, Suwon, gyeonggi-do, Korea (the Republic of), 440-706;
| | - Duck Hwan Park
- Kangwon National University, Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon daehak road 1, Chuncheon, Korea (the Republic of), 24341;
| |
Collapse
|
5
|
Vereecke D, Zhang Y, Francis IM, Lambert PQ, Venneman J, Stamler RA, Kilcrease J, Randall JJ. Functional Genomics Insights Into the Pathogenicity, Habitat Fitness, and Mechanisms Modifying Plant Development of Rhodococcus sp. PBTS1 and PBTS2. Front Microbiol 2020; 11:14. [PMID: 32082278 PMCID: PMC7002392 DOI: 10.3389/fmicb.2020.00014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/06/2020] [Indexed: 01/05/2023] Open
Abstract
Pistachio Bushy Top Syndrome (PBTS) is a recently emerged disease that has strongly impacted the pistachio industry in California, Arizona, and New Mexico. The disease is caused by two bacteria, designated PBTS1 that is related to Rhodococcus corynebacterioides and PBTS2 that belongs to the species R. fascians. Here, we assessed the pathogenic character of the causative agents and examined their chromosomal sequences to predict the presence of particular functions that might contribute to the observed co-occurrence and their effect on plant hosts. In diverse assays, we confirmed the pathogenicity of the strains on "UCB-1" pistachio rootstock and showed that they can also impact the development of tobacco species, but concurrently inconsistencies in the ability to induce symptoms were revealed. We additionally evidence that fas genes are present only in a subpopulation of pure PBTS1 and PBTS2 cultures after growth on synthetic media, that these genes are easily lost upon cultivation in rich media, and that they are enriched for in an in planta environment. Analysis of the chromosomal sequences indicated that PBTS1 and PBTS2 might have complementary activities that would support niche partitioning. Growth experiments showed that the nutrient utilization pattern of both PBTS bacteria was not identical, thus avoiding co-inhabitant competition. PBTS2 appeared to have the potential to positively affect the habitat fitness of PBTS1 by improving its resistance against increased concentrations of copper and penicillins. Finally, mining the chromosomes of PBTS1 and PBTS2 suggested that the bacteria could produce cytokinins, auxins, and plant growth-stimulating volatiles and that PBTS2 might interfere with ethylene levels, in support of their impact on plant development. Subsequent experimentation supported these in silico predictions. Altogether, our data provide an explanation for the observed pathogenic behavior and unveil part of the strategies used by PBTS1 and PBTS2 to interact with plants.
Collapse
Affiliation(s)
- Danny Vereecke
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| | - Yucheng Zhang
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Isolde M Francis
- Department of Biology, California State University, Bakersfield, CA, United States
| | - Paul Q Lambert
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| | - Jolien Venneman
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Rio A Stamler
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| | - James Kilcrease
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| | - Jennifer J Randall
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
6
|
Francis IM, Vereecke D. Plant-Associated Rhodococcus Species, for Better and for Worse. BIOLOGY OF RHODOCOCCUS 2019. [DOI: 10.1007/978-3-030-11461-9_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Randall JJ, Stamler RA, Kallsen CE, Fichtner EJ, Heerema RJ, Cooke P, Francis I. Comment on "Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management". eLife 2018; 7:35272. [PMID: 29737967 PMCID: PMC5951677 DOI: 10.7554/elife.35272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/13/2018] [Indexed: 01/01/2023] Open
Abstract
We would like to address a number of concerns regarding this paper (Savory et al., 2017)
Collapse
Affiliation(s)
- Jennifer J Randall
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, United States
| | - Rio A Stamler
- Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, United States
| | - Craig E Kallsen
- University of California, Cooperative Extension, Bakersfield, United States
| | | | - Richard J Heerema
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, United States
| | - Peter Cooke
- Core University Research Resource Laboratory, New Mexico State University, Las Cruces, United States
| | - Isolde Francis
- Department of Biology, California State University, Bakersfield, United States
| |
Collapse
|
8
|
Vereecke D. Comment on "Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management". eLife 2018; 7:35238. [PMID: 29737966 PMCID: PMC5951678 DOI: 10.7554/elife.35238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
I would like to report significant issues of concern regarding this paper (Savory et al., 2017).
Collapse
Affiliation(s)
- Danny Vereecke
- Department of Applied Biosciences, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Chang JH, Putnam ML, Grünwald NJ, Savory EA, Fuller SL, Weisberg AJ. Response to comments on "Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management". eLife 2018; 7:35852. [PMID: 29737968 PMCID: PMC5951679 DOI: 10.7554/elife.35852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/13/2018] [Indexed: 11/26/2022] Open
Abstract
Randall et al., 2018 and Vereecke, 2018 have raised concerns about a paper we published (Savory et al., 2017). Here, we respond to those concerns.
Collapse
Affiliation(s)
- Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States.,Center for Genome Research and Biocomputing, Oregon State University, Corvallis, United States.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, United States
| | - Melodie L Putnam
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Niklaus J Grünwald
- Department of Agriculture, Agricultural Research Service, Corvallis, United States
| | - Elizabeth A Savory
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Skylar L Fuller
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, United States
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| |
Collapse
|
10
|
Savory EA, Fuller SL, Weisberg AJ, Thomas WJ, Gordon MI, Stevens DM, Creason AL, Belcher MS, Serdani M, Wiseman MS, Grünwald NJ, Putnam ML, Chang JH. Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management. eLife 2017; 6:30925. [PMID: 29231813 PMCID: PMC5726852 DOI: 10.7554/elife.30925] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/03/2017] [Indexed: 02/02/2023] Open
Abstract
Understanding how bacteria affect plant health is crucial for developing sustainable crop production systems. We coupled ecological sampling and genome sequencing to characterize the population genetic history of Rhodococcus and the distribution patterns of virulence plasmids in isolates from nurseries. Analysis of chromosome sequences shows that plants host multiple lineages of Rhodococcus, and suggested that these bacteria are transmitted due to independent introductions, reservoir populations, and point source outbreaks. We demonstrate that isolates lacking virulence genes promote beneficial plant growth, and that the acquisition of a virulence plasmid is sufficient to transition beneficial symbionts to phytopathogens. This evolutionary transition, along with the distribution patterns of plasmids, reveals the impact of horizontal gene transfer in rapidly generating new pathogenic lineages and provides an alternative explanation for pathogen transmission patterns. Results also uncovered a misdiagnosed epidemic that implicated beneficial Rhodococcus bacteria as pathogens of pistachio. The misdiagnosis perpetuated the unnecessary removal of trees and exacerbated economic losses. All organisms live in a world teeming with bacteria. Some bacteria are beneficial and, for example, provide their hosts with nutrients. Others cause harm, for example, by stealing nutrients and causing disease. Many bacteria can also gain DNA from other bacteria, and the genes encoded within the new DNA can help them to live with other organisms. This can start the bacteria on an evolutionary path to becoming beneficial or harmful. Rhodococcus are bacteria that live in association with many species of plants, including trees. Most are harmless but some cause disease. Plants infected with harmful Rhodococcus can show deformed growth, which causes major losses to the nursery industry. Savory, Fuller, Weisberg et al. set out to understand how disease-causing Rhodococcus are introduced into nurseries, if they are transferred between nurseries, whether they persist in nurseries, and how to limit their spread. It turns out that harmless Rhodococcus are beneficial to plants. However, if these harmless bacteria gain a certain DNA molecule – called a virulence plasmid – they can convert into harmful bacteria. Further analysis showed that some nurseries repeatedly acquired the harmful bacteria. The pattern of affected nurseries suggested that some might have purchased diseased plants from a common provider. In other cases, the sources remained a mystery. Savory et al. also report that, contrary to previous findings, there is no evidence to support the diagnosis that Rhodococcus without a virulence plasmid are responsible for an unusual growth problem that has plagued the pistachio industry. In recent years, this incorrect diagnosis led to trees being unnecessarily destroyed, worsening the economic losses. These findings suggest that genes moving between bacteria can dramatically change how those bacteria interact with the organisms in which they live. It needs to be shown whether this is an exceptional process, unique to only certain groups of bacteria, or if it is more widespread in nature. These findings could inform future disease management strategies to better protect agricultural systems.
Collapse
Affiliation(s)
- Elizabeth A Savory
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Skylar L Fuller
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, United States
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - William J Thomas
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Michael I Gordon
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Danielle M Stevens
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Allison L Creason
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, United States
| | - Michael S Belcher
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Maryna Serdani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Michele S Wiseman
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Niklaus J Grünwald
- Horticultural Crops Research Laboratory, United States Department of Agriculture and Agricultural Research Service, Corvallis, United States
| | - Melodie L Putnam
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, United States.,Center for Genome Research, Oregon State University, Corvallis, United States
| |
Collapse
|
11
|
Mining the genome of Rhodococcus fascians, a plant growth-promoting bacterium gone astray. N Biotechnol 2016; 33:706-717. [PMID: 26877150 DOI: 10.1016/j.nbt.2016.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/16/2015] [Accepted: 01/05/2016] [Indexed: 11/21/2022]
Abstract
Rhodococcus fascians is a phytopathogenic Gram-positive Actinomycete with a very broad host range encompassing especially dicotyledonous herbaceous perennials, but also some monocots, such as the Liliaceae and, recently, the woody crop pistachio. The pathogenicity of R. fascians strain D188 is known to be encoded by the linear plasmid pFiD188 and to be dictated by its capacity to produce a mixture of cytokinins. Here, we show that D188-5, the nonpathogenic plasmid-free derivative of the wild-type strain D188 actually has a plant growth-promoting effect. With the availability of the genome sequence of R. fascians, the chromosome of strain D188 was mined for putative plant growth-promoting functions and the functionality of some of these activities was tested. This analysis together with previous results suggests that the plant growth-promoting activity of R. fascians is due to production of plant growth modulators, such as auxin and cytokinin, combined with degradation of ethylene through 1-amino-cyclopropane-1-carboxylic acid deaminase. Moreover, R. fascians has several functions that could contribute to efficient colonization and competitiveness, but there is little evidence for a strong impact on plant nutrition. Possibly, the plant growth promotion encoded by the D188 chromosome is imperative for the epiphytic phase of the life cycle of R. fascians and prepares the plant to host the bacteria, thus ensuring proper continuation into the pathogenic phase.
Collapse
|
12
|
Serdani M, Curtis M, Miller ML, Kraus J, Putnam ML. Loop-Mediated Isothermal Amplification and Polymerase Chain Reaction Methods for Specific and Rapid Detection of Rhodococcus fascians. PLANT DISEASE 2013; 97:517-529. [PMID: 30722233 DOI: 10.1094/pdis-02-12-0214-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rhodococcus fascians is a phytopathogenic actinobacterium which causes leafy galls and other plant distortions that result in economically significant losses to nurseries producing ornamental plants. Traditional assays for detection and identification are time-consuming and laborious. We developed a rapid polymerase chain reaction (PCR) diagnostic assay based on two primer pairs, p450 and fas, which target the fasA and fasD genes, respectively, that are essential for pathogenicity. We also developed a faster, more convenient, loop-mediated isothermal amplification (LAMP) assay targeting the fasR gene, which regulates expression of virulence genes. Both assays were evaluated for sensitivity and specificity in vitro and in planta. The p450 and fas primers amplified DNA only from pure cultures of pathogenic reference isolates of R. fascians. Nonpathogenic isolates and 51 other plant-associated bacteria were not amplified. The PCR primers correctly detected pathogenic R. fascians from 73 of 75 (97%) bacterial strains isolated from naturally infected plants. The PCR assay correctly discriminated between pathogenic R. fascians and other bacteria in 132 of 139 (95%) naturally infected plants, and in 34 of 34 (100%) artificially inoculated plants. The fas primers were slightly more accurate than the p450 primers. The LAMP assay accurately detected pathogenic R. fascians in 26 of 28 (93%) naturally infected plants and did not react with 23 asymptomatic plants. The LAMP primers also amplified product for DNA extracts of 40 of 41 bacterial strains isolated from plants with leafy galls. The detection limit of both the PCR and LAMP assays was approximately 103 CFU/30-μl reaction. These new tools allow fast, reliable, and accurate detection of R. fascians in vitro and in planta. The LAMP assay in particular is a significant advancement in rapid R. fascians diagnostics, and enables those with limited laboratory facilities to confirm the presence of this pathogen in infected plants.
Collapse
Affiliation(s)
- M Serdani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - M Curtis
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - M L Miller
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - J Kraus
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - M L Putnam
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
13
|
Stes E, Vandeputte OM, El Jaziri M, Holsters M, Vereecke D. A successful bacterial coup d'état: how Rhodococcus fascians redirects plant development. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:69-86. [PMID: 21495844 DOI: 10.1146/annurev-phyto-072910-095217] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Rhodococcus fascians is a gram-positive phytopathogen that induces differentiated galls, known as leafy galls, on a wide variety of plants, employing virulence genes located on a linear plasmid. The pathogenic strategy consists of the production of a mixture of six synergistically acting cytokinins that overwhelm the plant's homeostatic mechanisms, ensuring the activation of a signaling cascade that targets the plant cell cycle and directs the newly formed cells to differentiate into shoot meristems. The shoots that are formed upon infection remain immature and never convert to source tissues resulting in the establishment of a nutrient sink that is a niche for the epiphytic and endophytic R. fascians subpopulations. Niche formation is accompanied by modifications of the transcriptome, metabolome, physiology, and morphology of both host and pathogen. Here, we review a decade of research and set the outlines of the molecular basis of the leafy gall syndrome.
Collapse
Affiliation(s)
- Elisabeth Stes
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium.
| | | | | | | | | |
Collapse
|