1
|
Tatulli G, Baldassarre F, Schiavi D, Tacconi S, Cognigni F, Costantini F, Balestra GM, Dini L, Pucci N, Rossi M, Scala V, Ciccarella G, Loreti S. Chitosan-Coated Fosetyl-Al Nanocrystals' Efficacy on Nicotiana tabacum Colonized by Xylella fastidiosa. PHYTOPATHOLOGY 2024; 114:1466-1479. [PMID: 38700944 DOI: 10.1094/phyto-04-24-0144-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Xylella fastidiosa (Xf) is a quarantine plant pathogen capable of colonizing the xylem of a wide range of hosts. Currently, there is no cure able to eliminate the pathogen from a diseased plant, but several integrated strategies have been implemented for containing the spread of Xf. Nanotechnology represents an innovative strategy based on the possibility of maximizing the potential antibacterial activity by increasing the surface-to-volume ratio of nanoscale formulations. Nanoparticles based on chitosan and/or fosetyl-Al have shown different in vitro antibacterial efficacy against Xf subsp. fastidiosa (Xff) and pauca (Xfp). This work demonstrated the uptake of chitosan-coated fosetyl-Al nanocrystals (CH-nanoFos) by roots and their localization in the stems and leaves of Olea europaea plants. Additionally, the antibacterial activity of fosetyl-Al, nano-fosetyl, nano-chitosan, and CH-nanoFos was tested on Nicotiana tabacum cultivar SR1 (Petite Havana) inoculated with Xff, Xfp, or Xf subsp. multiplex (Xfm). The bacterial load was evaluated with qPCR, and the results showed that CH-nanoFos was the only treatment able to reduce the colonization of Xff, Xfm, and Xfp in tobacco plants. Additionally, the area under the disease progress curve, used to assess symptom development in tobacco plants inoculated with Xff, Xfm, and Xfp and treated with CH-nanoFos, showed a reduction in symptom development. Furthermore, the twitching assay and bacterial growth under microfluidic conditions confirmed the antibacterial activity of CH-nanoFos.
Collapse
Affiliation(s)
- Giuseppe Tatulli
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
| | - Francesca Baldassarre
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| | - Daniele Schiavi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, Snc, 01100 Viterbo, Italy
| | - Stefano Tacconi
- CarMeN Laboratory, INSERM 1060-INRAE 1397, Department of Human Nutrition, Lyon Sud Hospital, University of Lyon, Lyon, France
| | - Flavio Cognigni
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Rome, Italy
| | - Francesca Costantini
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, p.le A. Moro 5, 00185, Rome, Italy
| | - Giorgio Mariano Balestra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, Snc, 01100 Viterbo, Italy
- Phytoparasites Diagnostics (PhyDia) s.r.l. Via S. Camillo Delellis Snc 01100 Viterbo, Italy
| | - Luciana Dini
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Nicoletta Pucci
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Rome, Italy
- Research Center on Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, Rome, Italy
| | - Valeria Scala
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
| | - Giuseppe Ciccarella
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| | - Stefania Loreti
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156 Rome, Italy
| |
Collapse
|
2
|
Vergine M, Nicolì F, Sabella E, Aprile A, De Bellis L, Luvisi A. Secondary Metabolites in Xylella fastidiosa-Plant Interaction. Pathogens 2020; 9:pathogens9090675. [PMID: 32825425 PMCID: PMC7559865 DOI: 10.3390/pathogens9090675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
During their evolutionary history, plants have evolved the ability to synthesize and accumulate small molecules known as secondary metabolites. These compounds are not essential in the primary cell functions but play a significant role in the plants’ adaptation to environmental changes and in overcoming stress. Their high concentrations may contribute to the resistance of the plants to the bacterium Xylella fastidiosa, which has recently re-emerged as a plant pathogen of global importance. Although it is established in several areas globally and is considered one of the most dangerous plant pathogens, no cure has been developed due to the lack of effective bactericides and the difficulties in accessing the xylem vessels where the pathogen grows and produces cell aggregates and biofilm. This review highlights the role of secondary metabolites in the defense of the main economic hosts of X. fastidiosa and identifies how knowledge about biosynthetic pathways could improve our understanding of disease resistance. In addition, current developments in non-invasive techniques and strategies of combining molecular and physiological techniques are examined, in an attempt to identify new metabolic engineering options for plant defense.
Collapse
|
3
|
Alencar VC, Jabes DL, Menegidio FB, Sassaki GL, de Souza LR, Puzer L, Meneghetti MCZ, Lima MA, Tersariol ILDS, de Oliveira RC, Nunes LR. Functional and Evolutionary Characterization of a UDP-Xylose Synthase Gene from the Plant Pathogen Xylella fastidiosa, Involved in the Synthesis of Bacterial Lipopolysaccharide. Biochemistry 2017; 56:779-792. [PMID: 28125217 DOI: 10.1021/acs.biochem.6b00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xylella fastidiosa is a plant-infecting bacillus, responsible for many important crop diseases, such as Pierce's disease of vineyards, citrus variegated chlorosis, and coffee leaf scorch (CLS), among others. Recent genomic comparisons involving two CLS-related strains, belonging to X. fastidiosa subsp. pauca, revealed that one of them carries a frameshift mutation that inactivates a gene encoding an oxidoreductase of the short-chain dehydrogenase/reductase (SDR) superfamily, which may play important roles in determining structural variations in bacterial glycans and glycoconjugates. However, the exact nature of this SDR has been a matter of controversy, as different annotations of X. fastidiosa genomes have implicated it in distinct reactions. To confirm the nature of this mutated SDR, a comparative analysis was initially performed, suggesting that it belongs to a subgroup of SDR decarboxylases, representing a UDP-xylose synthase (Uxs). Functional assays, using a recombinant derivative of this enzyme, confirmed its nature as XfUxs, and carbohydrate composition analyses, performed with lipopolysaccharide (LPS) molecules obtained from different strains, indicate that inactivation of the X. fastidiosa uxs gene affects the LPS structure among CLS-related X. fastidiosa strains. Finally, a comparative sequence analysis suggests that this mutation is likely to result in a morphological and evolutionary hallmark that differentiates two subgroups of CLS-related strains, which may influence interactions between these bacteria and their plant and/or insect hosts.
Collapse
Affiliation(s)
- Valquíria Campos Alencar
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC) , Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes, SP CEP 08780-911, Brazil
| | - Daniela Leite Jabes
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC) , Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes, SP CEP 08780-911, Brazil
| | - Fabiano Bezerra Menegidio
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC) , Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes, SP CEP 08780-911, Brazil
| | - Guilherme Lanzi Sassaki
- Setor de Ciências Biológicas-Departamento de Bioquímica e Biologia Molecular Laboratório de Química de Carboidratos, Universidade Federal do Paraná (UFPR) , Rua Cel. Francisco H. dos Santos, 100, Curitiba, Paraná CEP 81531-980, Brazil
| | - Lucas Rodrigo de Souza
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC) , Rua Santa Adélia, 166, Santo André, SP CEP 09210-170, Brazil
| | - Luciano Puzer
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC) , Rua Santa Adélia, 166, Santo André, SP CEP 09210-170, Brazil
| | - Maria Cecília Zorél Meneghetti
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP) , Rua Três de Maio, Vila Clementino, São Paulo CEP 04044-020, Brazil
| | - Marcelo Andrade Lima
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP) , Rua Três de Maio, Vila Clementino, São Paulo CEP 04044-020, Brazil
| | - Ivarne Luis Dos Santos Tersariol
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP) , Rua Três de Maio, Vila Clementino, São Paulo CEP 04044-020, Brazil
| | - Regina Costa de Oliveira
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes (UMC) , Av. Dr. Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes, SP CEP 08780-911, Brazil
| | - Luiz R Nunes
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC) , Rua Santa Adélia, 166, Santo André, SP CEP 09210-170, Brazil
| |
Collapse
|
4
|
Vaidya C, Cruz M, Kuesel R, Gonthier DJ, Iverson A, Ennis KK, Perfecto I. Local and Landscape Constraints on Coffee Leafhopper (Hemiptera: Cicadellidae) Diversity. JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:3064078. [PMID: 28355478 PMCID: PMC5416845 DOI: 10.1093/jisesa/iew127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Indexed: 06/06/2023]
Abstract
The intensification of agriculture drives many ecological and environmental consequences including impacts on crop pest populations and communities. These changes are manifested at multiple scales including small-scale management practices and changes to the composition of land-use types in the surrounding landscape. In this study, we sought to examine the influence of local and landscape-scale agricultural factors on a leafhopper herbivore community in Mexican coffee plantations. We sampled leafhopper (Hemiptera: Cicadellidae) diversity in 38 sites from 9 coffee plantations of the Soconusco region of Chiapas, Mexico. While local management factors such as coffee density, branches per coffee bush, tree species, and density were not important in explaining leafhopper abundance and richness, shade management at the landscape level and elevation significantly affected leafhoppers. Specifically, the percentage of low-shade coffee in the landscape (1,000-m radius surrounding sites) increased total leafhopper abundance. In addition, Shannon's diversity of leafhoppers was increased with coffee density. Our results show that abundance and diversity of leafhoppers are greater in simplified landscapes, thereby suggesting that these landscapes will have higher pest pressure and may be more at-risk for diseases vectored by these species in an economically important crop.
Collapse
Affiliation(s)
- Chatura Vaidya
- Ecology and Evolutionary Biology, University of Michigan, 830 N University St, Ann Arbor, MI 48109
| | - Magdalena Cruz
- Ecology and Evolutionary Biology, University of Michigan, 830 N University St, Ann Arbor, MI 48109
| | - Ryan Kuesel
- Ecology and Evolutionary Biology, University of Michigan, 830 N University St, Ann Arbor, MI 48109
| | - David J Gonthier
- Environmental Science, Policy & Management, University of California, 130 Mulford Hall, Berkeley, CA 94720
| | - Aaron Iverson
- Ecology and Evolutionary Biology, Cornell University, E331 Corson Hall, Ithaca, NY 14853
| | - Katherine K Ennis
- Environmental Studies Department, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA 95064
| | - Ivette Perfecto
- School of Natural Resources and Environment, University of Michigan, 440 Church St, Ann Arbor, MI 48109
| |
Collapse
|
5
|
Jeger M, Bragard C, Caffier D, Chatzivassiliou E, Dehnen-Schmutz K, Gilioli G, Grégoire JC, Jaques Miret JA, MacLeod A, Navajas Navarro M, Niere B, Parnell S, Potting R, Rafoss T, Rossi V, Urek G, Van Bruggen A, Van Der Werf W, West J, Winter S, Tramontini S, Andueza M, Candresse T. Susceptibility of Phoenix roebeleniito Xylella fastidiosa. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
6
|
Jacques MA, Denancé N, Legendre B, Morel E, Briand M, Mississipi S, Durand K, Olivier V, Portier P, Poliakoff F, Crouzillat D. New Coffee Plant-Infecting Xylella fastidiosa Variants Derived via Homologous Recombination. Appl Environ Microbiol 2015; 82:1556-68. [PMID: 26712553 PMCID: PMC4771316 DOI: 10.1128/aem.03299-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/19/2015] [Indexed: 11/20/2022] Open
Abstract
Xylella fastidiosa is a xylem-limited phytopathogenic bacterium endemic to the Americas that has recently emerged in Asia and Europe. Although this bacterium is classified as a quarantine organism in the European Union, importation of plant material from contaminated areas and latent infection in asymptomatic plants have engendered its inevitable introduction. In 2012, four coffee plants (Coffea arabica and Coffea canephora) with leaf scorch symptoms growing in a confined greenhouse were detected and intercepted in France. After identification of the causal agent, this outbreak was eradicated. Three X. fastidiosa strains were isolated from these plants, confirming a preliminary identification based on immunology. The strains were characterized by multiplex PCR and by multilocus sequence analysis/typing (MLSA-MLST) based on seven housekeeping genes. One strain, CFBP 8073, isolated from C. canephora imported from Mexico, was assigned to X. fastidiosa subsp. fastidiosa/X. fastidiosa subsp. sandyi. This strain harbors a novel sequence type (ST) with novel alleles at two loci. The two other strains, CFBP 8072 and CFBP 8074, isolated from Coffea arabica imported from Ecuador, were allocated to X. fastidiosa subsp. pauca. These two strains shared a novel ST with novel alleles at two loci. These MLST profiles showed evidence of recombination events. We provide genome sequences for CFBP 8072 and CFBP 8073 strains. Comparative genomic analyses of these two genome sequences with publicly available X. fastidiosa genomes, including the Italian strain CoDiRO, confirmed these phylogenetic positions and provided candidate alleles for coffee plant adaptation. This study demonstrates the global diversity of X. fastidiosa and highlights the diversity of strains isolated from coffee plants.
Collapse
Affiliation(s)
- Marie-Agnès Jacques
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
| | - Nicolas Denancé
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France Anses Laboratoire de la Santé des Végétaux, Angers, France
| | - Bruno Legendre
- Anses Laboratoire de la Santé des Végétaux, Angers, France
| | | | - Martial Briand
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
| | - Stelly Mississipi
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France Anses Laboratoire de la Santé des Végétaux, Angers, France Nestlé R&D Tours, Tours, France
| | - Karine Durand
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
| | | | - Perrine Portier
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
| | | | | |
Collapse
|
7
|
Nunney L, Ortiz B, Russell SA, Ruiz Sánchez R, Stouthamer R. The complex biogeography of the plant pathogen Xylella fastidiosa: genetic evidence of introductions and Subspecific introgression in Central America. PLoS One 2014; 9:e112463. [PMID: 25379725 PMCID: PMC4224490 DOI: 10.1371/journal.pone.0112463] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/09/2014] [Indexed: 11/28/2022] Open
Abstract
The bacterium Xylella fastidiosa is a plant pathogen with a history of economically damaging introductions of subspecies to regions where its other subspecies are native. Genetic evidence is presented demonstrating the introduction of two new taxa into Central America and their introgression into the native subspecies, X. fastidiosa subsp. fastidiosa. The data are from 10 genetic outliers detected by multilocus sequence typing (MLST) of isolates from Costa Rica. Six (five from oleander, one from coffee) defined a new sequence type (ST53) that carried alleles at six of the eight loci sequenced (five of the seven MLST loci) diagnostic of the South American subspecies Xylella fastidiosa subsp. pauca which causes two economically damaging plant diseases, citrus variegated chlorosis and coffee leaf scorch. The two remaining loci of ST53 carried alleles from what appears to be a new South American form of X. fastidiosa. Four isolates, classified as X. fastidiosa subsp. fastidiosa, showed a low level of introgression of non-native DNA. One grapevine isolate showed introgression of an allele from X. fastidiosa subsp. pauca while the other three (from citrus and coffee) showed introgression of an allele with similar ancestry to the alleles of unknown origin in ST53. The presence of X. fastidiosa subsp. pauca in Central America is troubling given its disease potential, and establishes another route for the introduction of this economically damaging subspecies into the US or elsewhere, a threat potentially compounded by the presence of a previously unknown form of X. fastidiosa.
Collapse
Affiliation(s)
- Leonard Nunney
- Department of Biology, University of California Riverside, Riverside, California, United States of America
| | - Beatriz Ortiz
- Centro de Investigacion en Biologıa Celular y Molecular, Universidad de Costa Rica, San José, Costa Rica
| | - Stephanie A. Russell
- Department of Entomology, University of California Riverside, Riverside, California, United States of America
| | - Rebeca Ruiz Sánchez
- Centro de Investigacion en Biologıa Celular y Molecular, Universidad de Costa Rica, San José, Costa Rica
| | - Richard Stouthamer
- Department of Entomology, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
8
|
Montero-Astúa M, Chacón-Díaz C, Aguilar E, Rodríguez CM, Garita L, Villalobos W, Moreira L, Hartung JS, Rivera C. Isolation and molecular characterization of Xylella fastidiosa from coffee plants in Costa Rica. J Microbiol 2008; 46:482-90. [PMID: 18974947 DOI: 10.1007/s12275-008-0072-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 08/14/2008] [Indexed: 10/21/2022]
Abstract
Coffee plants exhibiting a range of symptoms including mild to severe curling of leaf margins, chlorosis and deformation of leaves, stunting of plants, shortening of internodes, and dieback of branches have been reported since 1995 in several regions of Costa Rica's Central Valley. The symptoms are referred to by coffee producers in Costa Rica as "crespera" disease and have been associated with the presence of the bacterium Xylella fastidiosa. Coffee plants determined to be infected by the bacterium by enzyme linked immunosorbent assay (ELISA), were used for both transmission electron microscopy (TEM) and for isolation of the bacterium in PW broth or agar. Petioles examined by TEM contained rod-shaped bacteria inside the xylem vessels. The bacteria measured 0.3 to 0.5 microm in width and 1.5 to 3.0 microm in length, and had rippled cell walls 10 to 40 nm in thickness, typical of X. fastidiosa. Small, circular, dome-shaped colonies were observed 7 to 26 days after plating of plant extracts on PW agar. The colonies were comprised of Gram-negative rods of variable length and a characteristic slight longitudinal bending. TEM of the isolated bacteria showed characteristic rippled cell walls, similar to those observed in plant tissue. ELISA and PCR with specific primer pairs 272-l-int/272-2-int and RST31/RST33 confirmed the identity of the isolated bacteria as X. fastidiosa. RFLP analysis of the amplification products revealed diversity within X. fastidiosa strains from Costa Rica and suggest closer genetic proximity to strains from the United States of America than to other coffee or citrus strains from Brazil.
Collapse
Affiliation(s)
- Mauricio Montero-Astúa
- Centro de Investigación en Biología Celular y Molecular (CIBCM), Universidad de Costa Rica, San Pedro 2060, Costa Rica
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Montero-Astúa M, Hartung JS, Aguilar E, Chacón C, Li W, Albertazzi FJ, Rivera C. Genetic Diversity of Xylella fastidiosa Strains from Costa Rica, São Paulo, Brazil, and United States. PHYTOPATHOLOGY 2007; 97:1338-47. [PMID: 18943693 DOI: 10.1094/phyto-97-10-1338] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
ABSTRACT The diversity of 42 Xylella fastidiosa strains from Costa Rica, São Paulo, Brazil, and the United States were analyzed using the sequence of the 16S rRNA gene by variable number of tandem repeat (VNTR) fragment analysis and by restriction fragment length polymorphisms (RFLP) of a specific polymerase chain reaction (PCR)-amplification product using enzyme CfoI. Limited variability in the sequence of the 16S rRNA gene was observed and, although the separation was not absolute, most strains from Costa Rica clustered with strains from the United States and not with strains from São Paulo. The PCR-RFLP produced different patterns of DNA bands. The same pattern was shared by strains from Costa Rica, the United States, and two coffee strains from São Paulo, but a different pattern was observed in six coffee and orange strains from Brazil. In all, 32 amplification products were scored in the VNTR fragment analysis. The total variation observed among the X. fastidiosa strains had significant (P < 0.001) contributions from both geography and host origin as inferred by Nei's values of genetic diversity and WINAMOVA statistics. The strains from Costa Rica were isolated from diseased grapevines, coffee, and sweet orange and these strains grouped together and could be distinguished from strains from grapevine from the United States or from either coffee or sweet orange from São Paulo. The strains tested from Costa Rica are most likely of local origin, although the possibility that they have been introduced along with horticultural crops cannot be excluded. In either case, they are examples of independent selection of strains of X. fastidiosa affecting coffee and sweet orange. Greater genetic similarity was observed between strains from Costa Rica and the United States than with those from São Paulo.
Collapse
|
10
|
Brlansky RH, Damsteegt VD, Hartung JS. Transmission of the Citrus Variegated Chlorosis Bacterium Xylella fastidiosa with the Sharpshooter Oncometopia nigricans. PLANT DISEASE 2002; 86:1237-1239. [PMID: 30818474 DOI: 10.1094/pdis.2002.86.11.1237] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Citrus variegated chlorosis (CVC) is an economically important, destructive disease in Brazil and is caused by the bacterium Xylella fastidiosa Wells. The bacterium has been found to be transmitted in Brazil by sharpshooter leafhoppers (Cicadellidae). Sharpshooters are present in most citrus growing areas of the United States. The sharpshooter leafhopper, Oncometopia nigricans Walker, frequently is found feeding on citrus in Florida. This sharpshooter transmits the X. fastidiosa strains that cause Pierce's disease of grape and ragweed stunt. Research was initiated to determine if O. nigricans was capable of vectoring the X. fastidiosa that causes CVC. In 59 different transmission tests, using 1 to 57 insects per test, transmission of the bacterium was observed 12 times (20.3%). Symptom development in the greenhouse was not a reliable indicator of transmission. Transmission was verified by specific polymerase chain reaction-based assays. Individual insects were able to transmit the bacterium. This information on sharpshooter transmission of CVC is needed to assess the threat posed by the CVC disease to the citrus industries in the United States.
Collapse
Affiliation(s)
- R H Brlansky
- Professor, University of Florida, Citrus Research and Education Center, Lake Alfred 33850
| | - V D Damsteegt
- Research Plant Pathologist, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Foreign Disease-Weed Science Research Unit, Frederick, MD 21702
| | - J S Hartung
- Research Plant Pathologist, USDA-ARS, Fruit Lab, Beltsville, MD 20705
| |
Collapse
|
11
|
Li WB, Zhou CH, Pria WD, Teixeira DC, Miranda VS, Pereira EO, Ayres AJ, He CX, Costa PI, Hartung JS. Citrus and Coffee Strains of Xylella fastidiosa Induce Pierce's Disease in Grapevine. PLANT DISEASE 2002; 86:1206-1210. [PMID: 30818468 DOI: 10.1094/pdis.2002.86.11.1206] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Xylella fastidiosa causes citrus variegated chlorosis (CVC) disease in Brazil and Pierce's disease of grapevines in the United States. Both of these diseases cause significant production problems in the respective industries. The recent establishment of the glassy-winged sharpshooter in California has radically increased the threat posed by Pierce's disease to California viticulture. Populations of this insect reach very high levels in citrus groves in California and move from the orchards into the vineyards, where they acquire inoculum and spread Pierce's disease in the vineyards. Here we show that strains of X. fastidiosa isolated from diseased citrus and coffee in Brazil can incite symptoms of Pierce's disease after mechanical inoculation into seven commercial Vitis vinifera varieties grown in Brazil and California. Thus, any future introduction of the CVC strains of X. fastidiosa into the United States would pose a threat to both the sweet orange and grapevine industries. Previous work has clearly shown that the strains of X. fastidiosa isolated from Pierce's disease- and CVC-affected plants are the most distantly related of all strains in the diverse taxon X. fastidiosa. The ability of citrus strains of X. fastidiosa to incite disease in grapevine is therefore surprising and creates an experimental system with which to dissect mechanisms used by X. fastidiosa in plant colonization and disease development using the full genome sequence data that has recently become available for both the citrus and grapevine strains of this pathogen.
Collapse
Affiliation(s)
- W-B Li
- USDA-ARS, Beltsville, MD 20705
| | | | - W D Pria
- Fundecitrus, Araraquara, 14807-040, SP, Brazil
| | | | - V S Miranda
- Fundecitrus, Araraquara, 14807-040, SP, Brazil
| | - E O Pereira
- Fundecitrus, Araraquara, 14807-040, SP, Brazil
| | - A J Ayres
- Fundecitrus, Araraquara, 14807-040, SP, Brazil
| | - C-X He
- Institute of Chemistry, UNESP, Araraquara, SP, Brazil
| | - P I Costa
- Institute of Chemistry, UNESP, Araraquara, SP, Brazil
| | | |
Collapse
|