1
|
Stucky T, Sy ET, Egger J, Mathlouthi E, Krauss J, De Gianni L, Ruthes AC, Dahlin P. Control of the plant-parasitic nematode Meloidogyne incognita in soil and on tomato roots by Clonostachys rosea. J Appl Microbiol 2024; 135:lxae111. [PMID: 38692851 DOI: 10.1093/jambio/lxae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/03/2024]
Abstract
AIMS Clonostachys rosea is a well-known mycoparasite that has recently been investigated as a bio-based alternative to chemical nematicides for the control of plant-parasitic nematodes. In the search for a promising biocontrol agent, the ability of the C. rosea strain PHP1701 to control the southern root-knot nematode Meloidogyne incognita was tested. METHODS AND RESULTS Control of M. incognita in vitro and in soil by C. rosea strain PHP1701 was significant and concentration dependent. Small pot greenhouse trials confirmed a significant reduction in tomato root galling compared to the untreated control. In a large greenhouse trial, the control effect was confirmed in early and mid-season. Tomato yield was higher when the strain PHP1701 was applied compared to the untreated M. incognita-infected control. However, the yield of non-M. incognita-infected tomato plants was not reached. A similar reduction in root galling was also observed in a field trial. CONCLUSIONS The results highlight the potential of this fungal strain as a promising biocontrol agent for root-knot nematode control in greenhouses, especially as part of an integrated pest management approach. We recommend the use of C. rosea strain PHP1701 for short-season crops and/or to reduce M. incognita populations on fallow land before planting the next crop.
Collapse
Affiliation(s)
- Tobias Stucky
- Entomology and Nematology, Plant Protection, Agroscope, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland
| | - Eliana Thyda Sy
- Entomology and Nematology, Plant Protection, Agroscope, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland
| | - Jakob Egger
- Entomology and Nematology, Plant Protection, Agroscope, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland
| | - Enis Mathlouthi
- Vegetable-Production Extension, Plants and Plant Products, Agroscope, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland
| | - Jürgen Krauss
- Vegetable-Production Extension, Plants and Plant Products, Agroscope, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland
| | - Lara De Gianni
- Entomology and Nematology, Plant Protection, Agroscope, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland
| | | | - Paul Dahlin
- Entomology and Nematology, Plant Protection, Agroscope, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland
| |
Collapse
|
2
|
Lv B, Zhao X, Guo Y, Li S, Sun M. Serine protease CrKP43 interacts with MAPK and regulates fungal development and mycoparasitism in Clonostachys chloroleuca. Microbiol Spectr 2023; 11:e0244823. [PMID: 37831480 PMCID: PMC10715147 DOI: 10.1128/spectrum.02448-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Mycoparasites play important roles in the biocontrol of plant fungal diseases, during which they secret multiple hydrolases such as serine proteases to degrade their fungal hosts. In this study, we demonstrated that the serine protease CrKP43 was involved in C. chloroleuca development and mycoparasitism with the regulation of Crmapk. To the best of our knowledge, it is the first report on the functions and regulatory mechanisms of serine proteases in C. chloroleuca. Our findings will provide new insight into the regulatory mechanisms of serine proteases in mycoparasites and contribute to clarifying the mechanisms underlying mycoparasitism of C. chloroleuca, which will facilitate the development of highly efficient fungal biocontrol agents as well.
Collapse
Affiliation(s)
- Binna Lv
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Zhao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Guo
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shidong Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manhong Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Yu SF, Sun ZB, Li SD, Hu YF, Ren Q, Xu JL, Song HJ, Sun MH. The Adenylate Cyclase-Encoding Gene crac Is Involved in Clonostachys rosea Mycoparasitism. J Fungi (Basel) 2023; 9:861. [PMID: 37623632 PMCID: PMC10455997 DOI: 10.3390/jof9080861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Clonostachys rosea is an excellent biocontrol fungus against numerous fungal plant pathogens. The cAMP signaling pathway is a crucial signal transduction pathway in fungi. To date, the role of the cAMP signaling pathway in C. rosea mycoparasitism remains unknown. An adenylate cyclase-encoding gene, crac (an important component of the cAMP signaling pathway), was previously screened from C. rosea 67-1, and its expression level was dramatically upregulated during the C. rosea mycoparasitization of the sclerotia of Sclerotinia sclerotiorum. In this study, the function of crac in C. rosea mycoparasitism was explored through gene knockout and complementation. The obtained results show that the deletion of crac influenced the growth rate and colony morphology of C. rosea, as well as the tolerance to NaCl and H2O2 stress. The mycoparasitic effects on the sclerotia of S. sclerotiorum and the biocontrol capacity on soybean Sclerotinia stem rot in ∆crac-6 and ∆crac-13 were both attenuated compared with that of the wild-type strain and complementation transformants. To understand the regulatory mechanism of crac during C. rosea mycoparasitism, transcriptomic analysis was conducted between the wild-type strain and knockout mutant. A number of biocontrol-related genes, including genes encoding cell wall-degrading enzymes and transporters, were significantly differentially expressed during C. rosea mycoparasitism, suggesting that crac may be involved in C. rosea mycoparasitism by regulating the expression of these DEGs. These findings provide insight for further exploring the molecular mechanism of C. rosea mycoparasitism.
Collapse
Affiliation(s)
- Shu-Fan Yu
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Zhan-Bin Sun
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Shi-Dong Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ya-Feng Hu
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Qing Ren
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jia-Liang Xu
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Han-Jian Song
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Man-Hong Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Iqbal M, Broberg A, Andreasson E, Stenberg JA. Biocontrol Potential of Beneficial Fungus Aureobasidium pullulans Against Botrytis cinerea and Colletotrichum acutatum. PHYTOPATHOLOGY 2023; 113:1428-1438. [PMID: 36945727 DOI: 10.1094/phyto-02-23-0067-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Biological control is a promising approach to reduce plant diseases caused by fungal pathogens and ensure high productivity in horticultural production. In the present study, we evaluated the biocontrol potential and underlying mechanisms of the beneficial fungus Aureobasidium pullulans against Botrytis cinerea and Colletotrichum acutatum, casual agents of gray mold and anthracnose diseases in strawberry. Notably, this is the first time that A. pullulans has been tested against C. acutatum in strawberry. A. pullulans strains (AP-30044, AP-30273, AP-53383, and AP-SLU6) showed significant variation in terms of growth and conidia production. An inverse relationship was found between the growth and conidiation rate, suggesting a trade-off between resource allocation for growth and conidial production. Dual plate co-culturing assays showed that mycelial growth of B. cinerea and C. acutatum was reduced by up to 35 and 18%, respectively, when challenged with A. pullulans compared with control treatments. Likewise, culture filtrates of A. pullulans showed varying levels of antifungal activity against B. cinerea and C. acutatum, reducing the mycelial biomass by up to 90 and 72%, respectively. Furthermore, milk powder plate assays showed that A. pullulans produced substantial amounts of extracellular proteases, which are known to degrade fungal cuticle. Ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) analyses revealed that A. pullulans produced exophilins, liamocins, and free fatty acids known to have antifungal properties. A. pullulans shows high potential for successful biological control of strawberry diseases and discuss opportunities for further optimization of this beneficial fungus.
Collapse
Affiliation(s)
- Mudassir Iqbal
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| | - Anders Broberg
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| | - Johan A Stenberg
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| |
Collapse
|
5
|
Lv B, Guo Y, Zhao X, Li S, Sun M. Glucose-6-phosphate 1-Epimerase CrGlu6 Contributes to Development and Biocontrol Efficiency in Clonostachys chloroleuca. J Fungi (Basel) 2023; 9:764. [PMID: 37504752 PMCID: PMC10381721 DOI: 10.3390/jof9070764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
Clonostachys chloroleuca (formerly classified as C. rosea) is an important mycoparasite active against various plant fungal pathogens. Mitogen-activated protein kinase (MAPK) signaling pathways are vital in mycoparasitic interactions; they participate in responses to diverse stresses and mediate fungal development. In previous studies, the MAPK-encoding gene Crmapk has been proven to be involved in mycoparasitism and the biocontrol processes of C. chloroleuca, but its regulatory mechanisms remain unclear. Aldose 1-epimerases are key enzymes in filamentous fungi that generate energy for fungal growth and development. By protein-protein interaction assays, the glucose-6-phosphate 1-epimerase CrGlu6 was found to interact with Crmapk, and expression of the CrGlu6 gene was significantly upregulated when C. chloroleuca colonized Sclerotinia sclerotiorum sclerotia. Gene deletion and complementation analyses showed that CrGlu6 deficiency caused abnormal morphology of hyphae and cells, and greatly reduced conidiation. Moreover, deletion mutants presented much lower antifungal activities and mycoparasitic ability, and control efficiency against sclerotinia stem rot was markedly decreased. When the CrGlu6 gene was reinserted, all biological characteristics and biocontrol activities were recovered. These findings provide new insight into the mechanisms of glucose-6-phosphate 1-epimerase in mycoparasitism and help to further reveal the regulation of MAPK and its interacting proteins in the biocontrol of C. chloroleuca.
Collapse
Affiliation(s)
- Binna Lv
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yan Guo
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Zhao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shidong Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Manhong Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
6
|
Giehl A, dos Santos AA, Cadamuro RD, Tadioto V, Guterres IZ, Prá Zuchi ID, Minussi GDA, Fongaro G, Silva IT, Alves SL. Biochemical and Biotechnological Insights into Fungus-Plant Interactions for Enhanced Sustainable Agricultural and Industrial Processes. PLANTS (BASEL, SWITZERLAND) 2023; 12:2688. [PMID: 37514302 PMCID: PMC10385130 DOI: 10.3390/plants12142688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
The literature is full of studies reporting environmental and health issues related to using traditional pesticides in food production and storage. Fortunately, alternatives have arisen in the last few decades, showing that organic agriculture is possible and economically feasible. And in this scenario, fungi may be helpful. In the natural environment, when associated with plants, these microorganisms offer plant-growth-promoting molecules, facilitate plant nutrient uptake, and antagonize phytopathogens. It is true that fungi can also be phytopathogenic, but even they can benefit agriculture in some way-since pathogenicity is species-specific, these fungi are shown to be useful against weeds (as bioherbicides). Finally, plant-associated yeasts and molds are natural biofactories, and the metabolites they produce while dwelling in leaves, flowers, roots, or the rhizosphere have the potential to be employed in different industrial activities. By addressing all these subjects, this manuscript comprehensively reviews the biotechnological uses of plant-associated fungi and, in addition, aims to sensitize academics, researchers, and investors to new alternatives for healthier and more environmentally friendly production processes.
Collapse
Affiliation(s)
- Anderson Giehl
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Angela Alves dos Santos
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
| | - Rafael Dorighello Cadamuro
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Viviani Tadioto
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Iara Zanella Guterres
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Graduate Program in Pharmacy, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Isabella Dai Prá Zuchi
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Graduate Program in Pharmacy, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Gabriel do Amaral Minussi
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
- Graduate Program in Environment and Sustainable Technologies, Federal University of Fronteira Sul, Cerro Largo 97900-000, RS, Brazil
| | - Gislaine Fongaro
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Izabella Thais Silva
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Graduate Program in Pharmacy, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Sergio Luiz Alves
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Graduate Program in Environment and Sustainable Technologies, Federal University of Fronteira Sul, Cerro Largo 97900-000, RS, Brazil
| |
Collapse
|
7
|
Bahadoor A, Robinson KA, Loewen MC, Demissie ZA. Clonostachys rosea 'omics profiling: identification of putative metabolite-gene associations mediating its in vitro antagonism against Fusarium graminearum. BMC Genomics 2023; 24:352. [PMID: 37365507 DOI: 10.1186/s12864-023-09463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Clonostachys rosea is an established biocontrol agent. Selected strains have either mycoparasitic activity against known pathogens (e.g. Fusarium species) and/or plant growth promoting activity on various crops. Here we report outcomes from a comparative 'omics analysis leveraging a temporal variation in the in vitro antagonistic activities of C. rosea strains ACM941 and 88-710, toward understanding the molecular mechanisms underpinning mycoparasitism. RESULTS Transcriptomic data highlighted specialized metabolism and membrane transport related genes as being significantly upregulated in ACM941 compared to 88-710 at a time point when the ACM941 strain had higher in vitro antagonistic activity than 88-710. In addition, high molecular weight specialized metabolites were differentially secreted by ACM941, with accumulation patterns of some metabolites matching the growth inhibition differences displayed by the exometabolites of the two strains. In an attempt to identify statistically relevant relationships between upregulated genes and differentially secreted metabolites, transcript and metabolomic abundance data were associated using IntLIM (Integration through Linear Modeling). Of several testable candidate associations, a putative C. rosea epidithiodiketopiperazine (ETP) gene cluster was identified as a prime candidate based on both co-regulation analysis and transcriptomic-metabolomic data association. CONCLUSIONS Although remaining to be validated functionally, these results suggest that a data integration approach may be useful for identification of potential biomarkers underlying functional divergence in C. rosea strains.
Collapse
Affiliation(s)
- Adilah Bahadoor
- Metrology Research Center, National Research Council Canada, 1200 Montreal Rd, Ottawa, ON, K1A 0R6, Canada
| | - Kelly A Robinson
- Aquatic and Crop Resource Development, National Research Council of Canada, Ottawa, ON, Canada
| | - Michele C Loewen
- Aquatic and Crop Resource Development, National Research Council of Canada, Ottawa, ON, Canada.
| | - Zerihun A Demissie
- Aquatic and Crop Resource Development, National Research Council of Canada, Ottawa, ON, Canada.
| |
Collapse
|
8
|
Chen X, Lei W, Meng H, Jiang Y, Zhang S, Chen H, Du M, Xue X. Succinylation modification provides new insights for the treatment of immunocompromised individuals with drug-resistant Aspergillus fumigatus infection. Front Immunol 2023; 14:1161642. [PMID: 37138872 PMCID: PMC10150703 DOI: 10.3389/fimmu.2023.1161642] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Invasive Aspergillus fumigatus infection poses a serious threat to global human health, especially to immunocompromised individuals. Currently, triazole drugs are the most commonly used antifungals for aspergillosis. However, owing to the emergence of drug-resistant strains, the effect of triazole drugs is greatly restricted, resulting in a mortality rate as high as 80%. Succinylation, a novel post-translational modification, is attracting increasing interest, although its biological function in triazole resistance remains unclear. In this study, we initiated the screening of lysine succinylation in A. fumigatus. We discovered that some of the succinylation sites differed significantly among strains with unequal itraconazole (ITR) resistance. Bioinformatics analysis showed that the succinylated proteins are involved in a broad range of cellular functions with diverse subcellular localizations, the most notable of which is cell metabolism. Further antifungal sensitivity tests confirmed the synergistic fungicidal effects of dessuccinylase inhibitor nicotinamide (NAM) on ITR-resistant A. fumigatus. In vivo experiments revealed that treatment with NAM alone or in combination with ITR significantly increased the survival of neutropenic mice infected with A. fumigatus. In vitro experiments showed that NAM enhanced the killing effect of THP-1 macrophages on A. fumigatus conidia. Our results suggest that lysine succinylation plays an indispensable role in ITR resistance of A. fumigatus. Dessuccinylase inhibitor NAM alone or in combination with ITR exerted good effects against A. fumigatus infection in terms of synergistic fungicidal effect and enhancing macrophage killing effect. These results provide mechanistic insights that will aid in the treatment of ITR-resistant fungal infections.
Collapse
Affiliation(s)
- Xianzhen Chen
- Institute of Dermatology, Naval Medical University, Shanghai, China
- Department of Dermatology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenzhi Lei
- Institute of Dermatology, Naval Medical University, Shanghai, China
| | - Hui Meng
- Department of Pharmacy, 905th Hospital of People's Liberation Army of China (PLA) Navy, Shanghai, China
| | - Yi Jiang
- Department of Pharmacy, 905th Hospital of People's Liberation Army of China (PLA) Navy, Shanghai, China
| | - Sanli Zhang
- Department of Nephrology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Huyan Chen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Huyan Chen, ; Mingwei Du, ; Xiaochun Xue,
| | - Mingwei Du
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- *Correspondence: Huyan Chen, ; Mingwei Du, ; Xiaochun Xue,
| | - Xiaochun Xue
- Department of Pharmacy, 905th Hospital of People's Liberation Army of China (PLA) Navy, Shanghai, China
- *Correspondence: Huyan Chen, ; Mingwei Du, ; Xiaochun Xue,
| |
Collapse
|
9
|
Iqbal M, Jützeler M, França SC, Wäckers F, Andreasson E, Stenberg JA. Bee-Vectored Aureobasidium pullulans for Biological Control of Gray Mold in Strawberry. PHYTOPATHOLOGY 2022; 112:232-237. [PMID: 34181440 DOI: 10.1094/phyto-05-21-0205-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Gray mold caused by Botrytis cinerea is a common postharvest disease in strawberries, reducing shelf life considerably. We investigated the potential of the yeast-like biocontrol fungus Aureobasidium pullulans (AP-SLU6) vectored by bumblebees (Bombus terrestris) in the Flying Doctors® system to inhibit the pathogen and increase the shelf life of harvested strawberries (cultivar Sonata). Using bumblebees as vectors of various biocontrol agents is becoming increasingly popular, but any potentially negative effects on bee performance have been understudied. Our results show that, over the 4-week period of the trial, the performance and activity of the bees were not negatively affected by A. pullulans. The bees successfully picked up the powder formulation; then, they carried and deposited it on the flowers. The vectoring of the biocontrol agent significantly reduced gray mold development on the harvested fruits by 45% and increased shelf life by 100% in comparison with control treatments. This suggests that the biocontrol fungus applied during flowering successfully reduced Botrytis infection and thus, effectively protected the fruits from gray mold. In addition, the bee-vectored application of the biocontrol agent was found to be significantly more effective than spray application because the latter may temporarily increase humidity around the flower, thereby creating a suitable environment for the pathogen to thrive. In summary, our study demonstrates that A. pullulans vectored by bumblebees can decrease gray mold infection and improve the shelf life of strawberries without adversely affecting the bees, thus providing a basis for the sustainable and efficient control of gray mold on strawberry.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Mudassir Iqbal
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053 Alnarp, Sweden
- Department of Plant Pathology, University of Agriculture Faisalabad, 38000 Faisalabad, Pakistan
| | - Matilda Jützeler
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053 Alnarp, Sweden
| | | | - Felix Wäckers
- Biobest N.V., Ilse Velden 18, 2260 Westerlo, Belgium
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053 Alnarp, Sweden
| | - Johan A Stenberg
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, 23053 Alnarp, Sweden
| |
Collapse
|
10
|
Dou K, Pang G, Cai F, Chenthamara K, Zhang J, Liu H, Druzhinina IS, Chen J. Functional Genetics of Trichoderma Mycoparasitism. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Broberg M, Dubey M, Iqbal M, Gudmundssson M, Ihrmark K, Schroers H, Funck Jensen D, Brandström Durling M, Karlsson M. Comparative genomics highlights the importance of drug efflux transporters during evolution of mycoparasitism in Clonostachys subgenus Bionectria (Fungi, Ascomycota, Hypocreales). Evol Appl 2021; 14:476-497. [PMID: 33664789 PMCID: PMC7896725 DOI: 10.1111/eva.13134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/09/2020] [Accepted: 09/02/2020] [Indexed: 12/16/2022] Open
Abstract
Various strains of the mycoparasitic fungal species Clonostachys rosea are used commercially as biological control agents for the control of fungal plant diseases in agricultural crop production. Further improvements of the use and efficacy of C. rosea in biocontrol require a mechanistic understanding of the factors that determines the outcome of the interaction between C. rosea and plant pathogenic fungi. Here, we determined the genome sequences of 11 Clonostachys strains, representing five species in Clonostachys subgenus Bionectria, and performed a comparative genomic analysis with the aim to identify gene families evolving under selection for gene gains or losses. Several gene families predicted to encode proteins involved in biosynthesis of secondary metabolites, including polyketide synthases, nonribosomal peptide syntethases and cytochrome P450s, evolved under selection for gene gains (p ≤ .05) in the Bionectria subgenus lineage. This was accompanied with gene copy number increases (p ≤ .05) in ATP-binding cassette (ABC) transporters and major facilitator superfamily (MFS) transporters predicted to contribute to drug efflux. Most Clonostachys species were also characterized by high numbers of auxiliary activity (AA) family 9 lytic polysaccharide monooxygenases, AA3 glucose-methanol-choline oxidoreductases and additional carbohydrate-active enzyme gene families with putative activity (or binding) towards xylan and rhamnose/pectin substrates. Particular features of the C. rosea genome included expansions (p ≤ .05) of the ABC-B4 multidrug resistance transporters, the ABC-C5 multidrug resistance-related transporters and the 2.A.1.3 drug:H + antiporter-2 MFS drug resistance transporters. The ABC-G1 pleiotropic drug resistance transporter gene abcG6 in C. rosea was induced (p ≤ .009) by exposure to the antifungal Fusarium mycotoxin zearalenone (1121-fold) and various fungicides. Deletion of abcG6 resulted in mutants with reduced (p < .001) growth rates on media containing the fungicides boscalid, fenhexamid and iprodione. Our results emphasize the role of biosynthesis of, and protection against, secondary metabolites in Clonostachys subgenus Bionectria.
Collapse
Affiliation(s)
- Martin Broberg
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Mudassir Iqbal
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Mikael Gudmundssson
- Department of Molecular SciencesSwedish University of Agricultural SciencesUppsalaSweden
| | - Katarina Ihrmark
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | | | - Dan Funck Jensen
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Mikael Brandström Durling
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
12
|
Yang Z, Wu Q, Fan J, Huang J, Wu Z, Lin J, Bin S, Shu B. Effects of the entomopathogenic fungus Clonostachys rosea on mortality rates and gene expression profiles in Diaphorina citri adults. J Invertebr Pathol 2021; 179:107539. [PMID: 33508316 DOI: 10.1016/j.jip.2021.107539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/20/2022]
Abstract
Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a serious pest of citrus. The insect also transmits Candidatus Liberibacter asiaticus, the pathogen of a devastating citrus disease called Huanglongbing. Clonostachys rosea is a versatile fungus that possesses nematicidal and insecticidal activities. The effect of C. rosea against D. citri remains unclear. Here we examined the pathogenicity of C. rosea against D. citri adults. A mortality rate of 46.67% was observed in adults treated with 1 × 108 conidia/mL spore suspension. Comparative transcriptomic analyses identified 259 differentially-expressed genes (DEGs) between controls and samples treated with fungi. Among the DEGs, 183 were up-regulated and 76 down-regulated. Genes with altered expression included those involved in immunity, apoptosis and cuticle formation. Our preliminary observation indicated that C. rosea is virulent against ACP adults and has the potential as a biological control agent for ACP management in the field.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qijing Wu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jinlan Fan
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jierong Huang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhongzhen Wu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shuying Bin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
13
|
Iqbal M, Broberg M, Haarith D, Broberg A, Bushley KE, Brandström Durling M, Viketoft M, Funck Jensen D, Dubey M, Karlsson M. Natural variation of root lesion nematode antagonism in the biocontrol fungus Clonostachys rosea and identification of biocontrol factors through genome-wide association mapping. Evol Appl 2020; 13:2264-2283. [PMID: 33005223 PMCID: PMC7513725 DOI: 10.1111/eva.13001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 01/28/2023] Open
Abstract
Biological control is a promising approach to reduce plant diseases caused by nematodes to ensure high productivity in agricultural production. Large-scale analyses of genetic variation in fungal species used for biocontrol can generate knowledge regarding interaction mechanisms that can improve efficacy of biocontrol applications. In this study, we performed a genome-wide association study (GWAS) for in vitro antagonism against the root lesion nematode Pratylenchus penetrans in 53 previously genome re-sequenced strains of the biocontrol fungus Clonostachys rosea. Nematode mortality in C. rosea potato dextrose broth (PDB) culture filtrates was highly variable and showed continuous variation (p < .001) between strains, indicating a polygenic inheritance. Twenty-one strains produced culture filtrates with higher (p ≤ .05) nematode mortality compared with the PDB control treatment, while ten strains lowered (p ≤ .05) the mortality. The difference in in vitro antagonism against P. penetrans correlated with antagonism against the soybean cyst nematode Heterodera glycines, indicating lack of host specificity in C. rosea. An empirical Bayesian multiple hypothesis testing approach identified 279 single nucleotide polymorphism markers significantly (local false sign rate < 10-10) associated with the trait. Genes present in the genomic regions associated with nematicidal activity included several membrane transporters, a chitinase and genes encoding proteins predicted to biosynthesize secondary metabolites. Gene deletion strains of the predicted nonribosomal peptide synthetase genes nps4 and nps5 were generated and showed increased (p ≤ .001) fungal growth and conidiation rates compared to the wild type. Deletion strains also exhibited reduced (p < .001) nematicidal activity and reduced (p ≤ .05) biocontrol efficacy against nematode root disease and against fusarium foot rot on wheat. In summary, we show that the GWAS approach can be used to identify biocontrol factors in C. rosea, specifically the putative nonribosomal peptide synthetases NPS4 and NPS5.
Collapse
Affiliation(s)
- Mudassir Iqbal
- Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| | - Martin Broberg
- Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| | - Deepak Haarith
- Department of Plant and Microbial Biology University of Minnesota St. Paul MN USA
| | - Anders Broberg
- Department of Molecular Sciences Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| | - Kathryn E Bushley
- Department of Plant and Microbial Biology University of Minnesota St. Paul MN USA
| | - Mikael Brandström Durling
- Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| | - Maria Viketoft
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology Uppsala BioCenter Swedish University of Agricultural Sciences Uppsala Sweden
| |
Collapse
|
14
|
Henzelyová J, Antalová M, Nigutová K, Logoida M, Schreiberová A, Kusari S, Čellárová E. Isolation, Characterization and Targeted Metabolic Evaluation of Endophytic Fungi Harbored in 14 Seed-Derived Hypericum Species. PLANTA MEDICA 2020; 86:997-1008. [PMID: 32294787 DOI: 10.1055/a-1130-4703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Medicinal plants of the genus Hypericum are rich sources of bioactive naphthodianthrones, which are unique in the plant kingdom, but quite common in fungal endophytes. Cultivable endophytic fungi were isolated from 14 different Hypericum spp. originating from seeds grown under in vitro conditions and further acclimated to outdoor conditions. Among 37 fungal isolates yielded from the aerial and underground plant organs, 25 were identified at the species level by the fungal barcode marker internal transcribed spacer rDNA and protein-coding gene region of tef1α. Ten of them were isolated from Hypericum spp. for the first time. The axenic cultures of the isolated endophytes were screened for the production of extracellular enzymes, as well as bioactive naphthodianthrones and their putative precursors by Bornträger's test and HPLC-HRMS. Traces of naphthodianthrones and their intermediates, emodin, emodin anthrone, skyrin, or pseudohypericin, were detected in the fungal mycelia of Acremonium sclerotigenum and Plectosphaerella cucumerina isolated from Hypericum perforatum and Hypericum maculatum, respectively. Traces of emodin, hypericin, and pseudohypericin were released in the broth by Scedosporium apiospermum, P. cucumerina, and Fusarium oxysporum during submerged fermentation. These endophytes were isolated from several hypericin-producing Hypericum spp. Taken together, our results reveal the biosynthetic potential of cultivable endophytic fungi harbored in Hypericum plants as well as evidence of the existence of remarkable plant-endophyte relationships in selected non-native ecological niches. A possible role of the extracellular enzymes in plant secondary metabolism is discussed.
Collapse
Affiliation(s)
- Jana Henzelyová
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| | - Michaela Antalová
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| | - Katarína Nigutová
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| | - Mariia Logoida
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| | - Andrea Schreiberová
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| | - Souvik Kusari
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Dortmund, Germany
| | - Eva Čellárová
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| |
Collapse
|
15
|
Lv B, Jiang N, Hasan R, Chen Y, Sun M, Li S. Cell Wall Biogenesis Protein Phosphatase CrSsd1 Is Required for Conidiation, Cell Wall Integrity, and Mycoparasitism in Clonostachys rosea. Front Microbiol 2020; 11:1640. [PMID: 32760382 PMCID: PMC7373758 DOI: 10.3389/fmicb.2020.01640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/24/2020] [Indexed: 12/29/2022] Open
Abstract
Cell wall biogenesis protein phosphatases play important roles in various cellular processes in fungi. However, their functions in the widely distributed mycoparasitic fungus Clonostachys rosea remain unclear, as do their potential for controlling plant fungal diseases. Herein, the function of cell wall biogenesis protein phosphatase CrSsd1 in C. rosea 67-1 was investigated using gene disruption and complementation approaches. The gene-deficient mutant ΔCrSsd1 exhibited much lower conidiation, hyphal growth, mycoparasitic ability, and biocontrol efficacy than the wild-type (WT) strain, and it was more sensitive to sorbitol and Congo red. The results indicate that CrSsd1 is involved in fungal conidiation, osmotic stress adaptation, cell wall integrity, and mycoparasitism in C. rosea.
Collapse
Affiliation(s)
- Binna Lv
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Na Jiang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rakibul Hasan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingying Chen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manhong Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shidong Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Demissie ZA, Witte T, Robinson KA, Sproule A, Foote SJ, Johnston A, Harris LJ, Overy DP, Loewen MC. Transcriptomic and Exometabolomic Profiling Reveals Antagonistic and Defensive Modes of Clonostachys rosea Action Against Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:842-858. [PMID: 32116115 DOI: 10.1094/mpmi-11-19-0310-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The mycoparasite Clonostachys rosea ACM941 is under development as a biocontrol organism against Fusarium graminearum, the causative agent of Fusarium head blight in cereals. To identify molecular factors associated with this interaction, the transcriptomic and exometabolomic profiles of C. rosea and F. graminearum GZ3639 were compared during coculture. Prior to physical contact, the antagonistic activity of C. rosea correlated with a response heavily dominated by upregulation of polyketide synthase gene clusters, consistent with the detected accumulation of corresponding secondary metabolite products. Similarly, prior to contact, trichothecene gene clusters were upregulated in F. graminearum, while those responsible for fusarielin and fusarin biosynthesis were downregulated, correlating with an accumulation of trichothecene products in the interaction zone over time. A concomitant increase in 15-acetyl deoxynivalenol-3-glucoside in the interaction zone was also detected, with C. rosea established as the source of this detoxified mycotoxin. After hyphal contact, C. rosea was found to predominantly transcribe genes encoding cell wall-degradation enzymes, major facilitator superfamily sugar transporters, anion:cation symporters, as well as alternative carbon source utilization pathways, together indicative of a transition to necrotropism at this stage. F. graminearum notably activated the transcription of phosphate starvation pathway signature genes at this time. Overall, a number of signature molecular mechanisms likely contributing to antagonistic activity by C. rosea against F. graminearum, as well as its mycotoxin tolerance, are identified in this report, yielding several new testable hypotheses toward understanding the basis of C. rosea as a biocontrol agent for continued agronomic development and application.
Collapse
Affiliation(s)
- Zerihun A Demissie
- Aquatic and Crop Resource Development, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Thomas Witte
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Kelly A Robinson
- Aquatic and Crop Resource Development, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Amanda Sproule
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Simon J Foote
- Human Health Therapeutics, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Anne Johnston
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Linda J Harris
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - David P Overy
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Michele C Loewen
- Aquatic and Crop Resource Development, National Research Council of Canada, Ottawa, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queens University, Kingston, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
17
|
Sun ZB, Li SD, Ren Q, Xu JL, Lu X, Sun MH. Biology and applications of Clonostachys rosea. J Appl Microbiol 2020; 129:486-495. [PMID: 32115828 DOI: 10.1111/jam.14625] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 01/07/2023]
Abstract
Clonostachys rosea is a promising saprophytic filamentous fungus that belongs to phylum Ascomycota. Clonostachys rosea is widespread around the world and exists in many kinds of habitats, with the highest frequency in soil. As an excellent mycoparasite, C. rosea exhibits strong biological control ability against numerous fungal plant pathogens, nematodes and insects. These behaviours are based on the activation of multiple mechanisms such as secreted cell-wall-degrading enzymes, production of antifungal secondary metabolites and induction of plant defence systems. Besides having significant biocontrol activity, C. rosea also functions in the biodegradation of plastic waste, biotransformation of bioactive compounds, as a bioenergy sources and in fermentation. This mini review summarizes information about the biology and various applications of C. rosea and expands on its possible uses.
Collapse
Affiliation(s)
- Z-B Sun
- School of Light Industry, Beijing Technology and Business University, Beijing, China.,Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - S-D Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Q Ren
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - J-L Xu
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - X Lu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - M-H Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|