1
|
Brochu AS, Dumonceaux TJ, Valenzuela M, Bélanger R, Pérez-López E. A New Multiplex TaqMan qPCR for Precise Detection and Quantification of Clavibacter michiganensis in Seeds and Plant Tissue. PLANT DISEASE 2024; 108:2272-2282. [PMID: 38381965 DOI: 10.1094/pdis-06-23-1194-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Bacterial canker of tomato caused by Clavibacter michiganensis (Cm) is one of the most devastating bacterial diseases affecting the tomato industry worldwide. As the result of Cm colonization of the xylem, the susceptible host shows typical symptoms of wilt, marginal leaf necrosis, stem cankers, and ultimately plant death. However, what makes Cm an even more dangerous pathogen is its ability to infect seeds and plants without causing symptoms. Unfortunately, there are no resistant cultivars or effective chemical or biological control methods available to growers against Cm. Its control relies heavily on prevention. The implementation of a rapid and accurate detection tool is imperative to monitor the presence of Cm and prevent its spread. In this study, we developed a specific and sensitive multiplex TaqMan qPCR assay to detect Cm and distinguish it from related bacterial species that affect tomato plants. Two Cm chromosomal virulence-related genes, rhuM and tomA, were used as specific targets. The plant internal control tubulin alpha-3 was included in each of the multiplexes to improve the reliability of the assay. Specificity was evaluated with 37 bacterial strains including other Clavibacter spp. and related and unrelated bacterial pathogens from different geographic locations affecting a wide variety of hosts. Results showed that the assay is able to discriminate Cm strains from other related bacteria. The assay was validated on tissue and seed samples following artificial infection, and all tested samples accurately detected the presence of Cm. The tool described here is highly specific, sensitive, and reliable for the detection of Cm and allows the quantification of Cm in seeds, roots, stems, and leaves. The diagnostic assay can also be adapted for multiple purposes such as seed certification programs, surveillance, biosafety, the effectiveness of control methods, border protection, and epidemiological studies.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Anne-Sophie Brochu
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec City, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Canada
- L'Institute EDS, Université Laval, Québec City, Canada
| | - Tim J Dumonceaux
- Agriculture and Agri-Food Canada Saskatoon Research and Development Centre, Saskatoon, SK, Canada
| | - Miryam Valenzuela
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry & Center of Biotechnology Dr. Daniel Alkalay Lowitt, Universidad Tecnica Federico Santa Maria, Valparaiso 2390123, Chile
| | - Richard Bélanger
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec City, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Canada
| | - Edel Pérez-López
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec City, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Canada
| |
Collapse
|
2
|
Deletion of pbpC Enhances Bacterial Pathogenicity on Tomato by Affecting Biofilm Formation, Exopolysaccharides Production, and Exoenzyme Activities in Clavibacter michiganensis. Int J Mol Sci 2023; 24:ijms24065324. [PMID: 36982399 PMCID: PMC10049144 DOI: 10.3390/ijms24065324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/14/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Penicillin-binding proteins (PBPs) are considered essential for bacterial peptidoglycan biosynthesis and cell wall assembly. Clavibacter michiganensis is a representative Gram-positive bacterial species that causes bacterial canker in tomato. pbpC plays a significant role in maintaining cell morphological characteristics and stress responses in C. michiganensis. The current study demonstrated that the deletion of pbpC commonly enhances bacterial pathogenicity in C. michiganensis and revealed the mechanisms through which this occurs. The expression of interrelated virulence genes, including celA, xysA, xysB, and pelA, were significantly upregulated in △pbpC mutants. Compared with those in wild-type strains, exoenzyme activities, the formation of biofilm, and the production of exopolysaccharides (EPS) were significantly increased in △pbpC mutants. It is noteworthy that EPS were responsible for the enhancement in bacterial pathogenicity, with the degree of necrotic tomato stem cankers intensifying with the injection of a gradient of EPS from C. michiganensis. These findings highlight new insights into the role of pbpC affecting bacterial pathogenicity, with an emphasis on EPS, advancing the current understanding of phytopathogenic infection strategies for Gram-positive bacteria.
Collapse
|
3
|
Tanner F, Tonn S, de Wit J, Van den Ackerveken G, Berger B, Plett D. Sensor-based phenotyping of above-ground plant-pathogen interactions. PLANT METHODS 2022; 18:35. [PMID: 35313920 PMCID: PMC8935837 DOI: 10.1186/s13007-022-00853-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/08/2022] [Indexed: 05/20/2023]
Abstract
Plant pathogens cause yield losses in crops worldwide. Breeding for improved disease resistance and management by precision agriculture are two approaches to limit such yield losses. Both rely on detecting and quantifying signs and symptoms of plant disease. To achieve this, the field of plant phenotyping makes use of non-invasive sensor technology. Compared to invasive methods, this can offer improved throughput and allow for repeated measurements on living plants. Abiotic stress responses and yield components have been successfully measured with phenotyping technologies, whereas phenotyping methods for biotic stresses are less developed, despite the relevance of plant disease in crop production. The interactions between plants and pathogens can lead to a variety of signs (when the pathogen itself can be detected) and diverse symptoms (detectable responses of the plant). Here, we review the strengths and weaknesses of a broad range of sensor technologies that are being used for sensing of signs and symptoms on plant shoots, including monochrome, RGB, hyperspectral, fluorescence, chlorophyll fluorescence and thermal sensors, as well as Raman spectroscopy, X-ray computed tomography, and optical coherence tomography. We argue that choosing and combining appropriate sensors for each plant-pathosystem and measuring with sufficient spatial resolution can enable specific and accurate measurements of above-ground signs and symptoms of plant disease.
Collapse
Affiliation(s)
- Florian Tanner
- Australian Plant Phenomics Facility, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA Australia
| | - Sebastian Tonn
- Department of Biology, Plant-Microbe Interactions, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Jos de Wit
- Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Guido Van den Ackerveken
- Department of Biology, Plant-Microbe Interactions, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Bettina Berger
- Australian Plant Phenomics Facility, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA Australia
| | - Darren Plett
- Australian Plant Phenomics Facility, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA Australia
| |
Collapse
|
4
|
Advances in the Characterization of the Mechanism Underlying Bacterial Canker Development and Tomato Plant Resistance. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacterial canker caused by the Gram-positive actinobacterium Clavibacter michiganensis is one of the most serious bacterial diseases of tomatoes, responsible for 10–100% yield losses worldwide. The pathogen can systemically colonize tomato vascular bundles, leading to wilting, cankers, bird’s eye lesions, and plant death. Bactericidal agents are insufficient for managing this disease, because the pathogen can rapidly migrate through the vascular system of plants and induce systemic symptoms. Therefore, the use of resistant cultivars is necessary for controlling this disease. We herein summarize the pathogenicity of C. michiganensis in tomato plants and the molecular basis of bacterial canker pathogenesis. Moreover, advances in the characterization of resistance to this pathogen in tomatoes are introduced, and the status of genetics-based research is described. Finally, we propose potential future research on tomato canker resistance. More specifically, there is a need for a thorough analysis of the host–pathogen interaction, the accelerated identification and annotation of resistance genes and molecular mechanisms, the diversification of resistance resources or exhibiting broad-spectrum disease resistance, and the production of novel and effective agents for control or prevention. This review provides researchers with the relevant information for breeding tomato cultivars resistant to bacterial cankers.
Collapse
|
5
|
Oh EJ, Hwang IS, Park IW, Oh CS. Comparative Genome Analyses of Clavibacter michiganensis Type Strain LMG7333 T Reveal Distinct Gene Contents in Plasmids From Other Clavibacter Species. Front Microbiol 2022; 12:793345. [PMID: 35178040 PMCID: PMC8844524 DOI: 10.3389/fmicb.2021.793345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Clavibacter michiganensis, a Gram-positive, plant-pathogenic bacterium belonging to Actinobacteria, is a causal agent of bacterial canker in tomatoes. Although LMG7333T is the type strain of C. michiganensis, it has not been used in many studies, probably because of a lack of the complete genome sequence being available. Therefore, in this study, the complete genome sequence of this type strain was obtained, and comparative genome analysis was conducted with the genome sequences of two other C. michiganensis strains and type strains of Clavibacter species, of which their complete genome sequences are available. C. michiganensis LMG7333T carries one chromosome and two plasmids, pCM1 and pCM2, like two other C. michiganensis strains. All three chromosomal DNA sequences were almost identical. However, the DNA sequences of two plasmids of LMG7333T are similar to those of UF1, but different from those of NCPPB382, indicating that both plasmids carry distinct gene content among C. michiganensis strains. Moreover, 216 protein-coding sequences (CDSs) were only present in the LMG7333T genome compared with type strains of other Clavibacter species. Among these 216 CDSs, approximately 83% were in the chromosome, whereas others were in both plasmids (more than 6% in pCM1 and 11% in pCM2). However, the ratio of unique CDSs of the total CDSs in both plasmids were approximately 38% in pCM1 and 30% in pCM2, indicating that the high gene content percentage in both plasmids of C. michiganensis are different from those of other Clavibacter species, and plasmid DNAs might be derived from different origins. A virulence assay with C. michiganensis LMG7333T using three different inoculation methods, root-dipping, leaf-clipping, and stem injection, resulted in typical disease symptoms, including wilting and canker in tomato. Altogether, our results indicate that two plasmids of C. michiganensis carry distinct gene content, and the genome information of the type strain LMG7333T will help to understand the genetic diversity of the two plasmids of Clavibacter species, including C. michiganensis.
Collapse
Affiliation(s)
- Eom-Ji Oh
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
| | - In Sun Hwang
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
| | - In Woong Park
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
| | - Chang-Sik Oh
- Department of Horticultural Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea.,Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
6
|
Monitoring of transfer and internalization of Escherichia coli from inoculated knives to fresh cut cucumbers (Cucumis sativus L.) using bioluminescence imaging. Sci Rep 2021; 11:11425. [PMID: 34075080 PMCID: PMC8169731 DOI: 10.1038/s41598-021-90584-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/14/2021] [Indexed: 11/19/2022] Open
Abstract
Slicing may cause the risk of cross-contamination in cucumber. In this study, knife inoculated with Escherichia coli (E. coli) was used to cut cucumbers, bioluminescence imaging (BLI) was used to visualize the possible distribution and internalization of E. coli during cutting and storage. Results showed that the initial two slices resulted in greater bacterial transfer. The bacterial transfer exhibited a fluctuating decay trend, E. coli was most distributed at the initial cutting site. The contaminated area on the surface of cucumber slices decreased during the storage period, which can be attributed to the death and internalization of E. coli. The maximum internalization distance of E. coli was about 2–3 mm, and did not further spread after 30 min from inoculation. Hence, our results provide useful information for risk management in both home and industrial environment.
Collapse
|
7
|
Du H, Wen C, Zhang X, Xu X, Yang J, Chen B, Geng S. Identification of a Major QTL ( qRRs-10.1) That Confers Resistance to Ralstonia solanacearum in Pepper ( Capsicum annuum) Using SLAF-BSA and QTL Mapping. Int J Mol Sci 2019; 20:ijms20235887. [PMID: 31771239 PMCID: PMC6928630 DOI: 10.3390/ijms20235887] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/04/2019] [Accepted: 11/21/2019] [Indexed: 11/24/2022] Open
Abstract
The soilborne pathogen Ralstonia solanacearum is the causal agent of bacterial wilt (BW), a major disease of pepper (Capsicum annuum). The genetic basis of resistance to this disease in pepper is not well known. This study aimed to identify BW resistance markers in pepper. Analysis of the dynamics of bioluminescent R. solanacearum colonization in reciprocal grafts of a resistant (BVRC 1) line and a susceptible (BVRC 25) line revealed that the resistant rootstock effectively suppressed the spreading of bacteria into the scion. The two clear-cut phenotypic distributions of the disease severity index in 440 F2 plants derived from BVRC 25 × BVRC 1 indicated that a major genetic factor as well as a few minor factors that control BW resistance. By specific-locus amplified fragment sequencing combined with bulked segregant analysis, two adjacent resistance-associated regions on chromosome 10 were identified. Quantitative trait (QTL) mapping revealed that these two regions belong to a single QTL, qRRs-10.1. The marker ID10-194305124, which reached a maximum log-likelihood value at 9.79 and accounted for 19.01% of the phenotypic variation, was located the closest to the QTL peak. A cluster of five predicted R genes and three defense-related genes, which are located in close proximity to the significant markers ID10-194305124 or ID10-196208712, are important candidate genes that may confer BW resistance in pepper.
Collapse
|
8
|
Takishita Y, Charron JB, Smith DL. Biocontrol Rhizobacterium Pseudomonas sp. 23S Induces Systemic Resistance in Tomato ( Solanum lycopersicum L.) Against Bacterial Canker Clavibacter michiganensis subsp. michiganensis. Front Microbiol 2018; 9:2119. [PMID: 30254615 PMCID: PMC6141633 DOI: 10.3389/fmicb.2018.02119] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/20/2018] [Indexed: 01/27/2023] Open
Abstract
Tomato bacterial canker disease, caused by Clavibacter michiganensis subsp. michiganensis (Cmm) is a destructive disease and has been a serious concern for tomato industries worldwide. Previously, a rhizosphere isolated strain of Pseudomonas sp. 23S showed antagonistic activity toward Cmm in vitro. This Pseudomonas sp. 23S was characterized to explore the potential of this bacterium for its use in agriculture. Pseudomonas sp. 23S possesses ability to solubilize inorganic phosphorus, and to produce siderophores, indole acetic acid, and hydrogen cyanide. The strain also showed antagonistic activity against Pseudomonas syringae pv. tomato DC 3000. A plant assay indicated that Pseudomonas sp. 23S could promote growth of tomato seedlings. The potential of treating tomato plants with Pseudomonas sp. 23S to reduce the severity of tomato bacterial canker by inducing systemic resistance (ISR) was investigated using well characterized marker genes such as PR1a [salicylic acid (SA)], PI2 [jasmonic acid (JA)], and ACO [ethylene (ET)]. Two-week-old tomato plants were treated with Pseudomonas sp. 23S by soil drench, and Cmm was inoculated into the stem by needle injection on 3, 5, or 7 days post drench. The results indicated that plants treated with Pseudomonas sp. 23S, 5 days prior to Cmm inoculation significantly delayed the progression of the disease. These plants, after 3 weeks from the date of Cmm inoculation, had significantly higher dry shoot and root weight, higher levels of carbon, nitrogen, phosphorus, and potassium in the leaf tissue, and the number of Cmm population in the stem was significantly lower for the plants treated with Pseudomonas sp. 23S. From the real-time quantitative PCR (qRT-PCR) analysis, the treatment with Pseudomonas sp. 23S alone was found to trigger a significant increase in the level of PR1a transcripts in tomato plants. When the plants were treated with Pseudomonas sp. 23S and inoculated with Cmm, the level of PR1a and ACO transcripts were increased, and this response was faster and greater as compared to plants inoculated with Cmm but not treated with Pseudomonas sp. 23S. Overall, the results suggested the involvement of SA signaling pathways for ISR induced by Pseudomonas sp. 23S.
Collapse
Affiliation(s)
| | | | - Donald L. Smith
- Department of Plant Science, McGill University, Montréal, QC, Canada
| |
Collapse
|
9
|
Sharifian S, Homaei A, Hemmati R, Khajeh K. Light emission miracle in the sea and preeminent applications of bioluminescence in recent new biotechnology. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 172:115-128. [DOI: 10.1016/j.jphotobiol.2017.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/16/2017] [Indexed: 02/08/2023]
|
10
|
Du H, Chen B, Zhang X, Zhang F, Miller SA, Rajashekara G, Xu X, Geng S. Evaluation of Ralstonia solanacearum Infection Dynamics in Resistant and Susceptible Pepper Lines Using Bioluminescence Imaging. PLANT DISEASE 2017; 101:272-278. [PMID: 30681918 DOI: 10.1094/pdis-05-16-0714-re] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bacterial wilt, incited by Ralstonia solanacearum, is a major disease affecting pepper (Capsicum annuum) production worldwide. The most effective management tactic is the deployment of wilt-resistant varieties. However, the lack of a nondestructive method to measure invasiveness and spatio-temporal distribution of R. solanacearum, a vascular pathogen, in planta limits better understanding of pepper resistance and plant-pathogen interactions. We evaluated the resistance of 100 pepper lines using R. solanacearum strain Rs-SY1 (phylotype I, isolated from a sweet pepper in South China). Based on the disease severity index (DSI) values, the elite inbred line BVRC 1 and the small-fruited accessions PI 640435 and PI 640444 were identified as resistant (DSI: 1.2, 1.8, and 1.9 out of 4.0, respectively). In order to evaluate bacterial infection dynamics in planta in real time, we generated seven bioluminescent R. solanacearum strains (BL-Rs1 to BL-Rs7) using vector pXX3 carrying luxCDABE genes, and selected BL-Rs7 for inoculation due to its similarity with parent strain Rs-SY1 in morphology, pathogenicity, and highest light emission in vitro. Luminescence intensity was strongly correlated to bacterial population in planta (R2 = 0.88). The utility of the bioluminescence assay was validated by comparing R. solanacearum infection dynamics in real-time in vivo between resistant line BVRC 1 and susceptible line BVRC 25. The distribution and multiplication of BL-Rs7 strain in resistant line BVRC 1 was conspicuously limited in plants inoculated in either roots or stem compared with susceptible line BVRC 25. These results suggest that pepper line BVRC 1 may resist colonization by interfering with R. solanacearum multiplication in the roots and stem.
Collapse
Affiliation(s)
- Heshan Du
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
| | - Bin Chen
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
| | - Xiaofen Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
| | - Fenglan Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
| | - Sally A Miller
- Department of Plant Pathology, Ohio Agricultural Research Development Center, The Ohio State University, Wooster, OH 44691
| | - Gireesh Rajashekara
- Food Animal Health Research Program, Ohio Agricultural Research Development Center, The Ohio State University, Wooster, OH 44691
| | - Xiulan Xu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
| | - Sansheng Geng
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
| |
Collapse
|
11
|
Vrisman CM, Deblais L, Rajashekara G, Miller SA. Differential Colonization Dynamics of Cucurbit Hosts by Erwinia tracheiphila. PHYTOPATHOLOGY 2016; 106:684-692. [PMID: 26926487 DOI: 10.1094/phyto-11-15-0289-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bacterial wilt is one of the most destructive diseases of cucurbits in the Midwestern and Northeastern United States. Although the disease has been studied since 1900, host colonization dynamics remain unclear. Cucumis- and Cucurbita-derived strains exhibit host preference for the cucurbit genus from which they were isolated. We constructed a bioluminescent strain of Erwinia tracheiphila (TedCu10-BL#9) and colonization of different cucurbit hosts was monitored. At the second-true-leaf stage, Cucumis melo plants were inoculated with TedCu10-BL#9 via wounded leaves, stems, and roots. Daily monitoring of colonization showed bioluminescent bacteria in the inoculated leaf and petiole beginning 1 day postinoculation (DPI). The bacteria spread to roots via the stem by 2 DPI, reached the plant extremities 4 DPI, and the plant wilted 6 DPI. However, Cucurbita plants inoculated with TedCu10-BL#9 did not wilt, even at 35 DPI. Bioluminescent bacteria were detected 6 DPI in the main stem of squash and pumpkin plants, which harbored approximately 10(4) and 10(1) CFU/g, respectively, of TedCu10-BL#9 without symptoms. Although significantly less systemic plant colonization was observed in nonpreferred host Cucurbita plants compared with preferred hosts, the mechanism of tolerance of Cucurbita plants to E. tracheiphila strains from Cucumis remains unknown.
Collapse
Affiliation(s)
- Cláudio M Vrisman
- First, second, and fourth authors: Department of Plant Pathology, and second and third authors: Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691
| | - Loïc Deblais
- First, second, and fourth authors: Department of Plant Pathology, and second and third authors: Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691
| | - Gireesh Rajashekara
- First, second, and fourth authors: Department of Plant Pathology, and second and third authors: Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691
| | - Sally A Miller
- First, second, and fourth authors: Department of Plant Pathology, and second and third authors: Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691
| |
Collapse
|
12
|
Scientific Opinion on the pest categorisation of Clavibacter michiganensis subsp. michiganensis (Smith) Davis et al. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
13
|
Lewis Ivey ML, Xu X, Miller SA. Leveraging management strategies for seedborne plant diseases to reduce Salmonella enterica Serovar Typhimurium incidence on tomato seed and seedlings. J Food Prot 2014; 77:359-64. [PMID: 24674425 DOI: 10.4315/0362-028x.jfp-13-312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tomatoes have been linked to many outbreaks of salmonellosis over the last decade, but the routes of contamination have yet to be discerned. Many phytopathogens of tomato are seedborne and are effectively managed using seed sanitizers. Seed sanitizers effective against bacterial phytopathogens were evaluated for their efficacy in killing bioluminescent Salmonella enterica serovar Typhimurium strain SeT-A14 on tomato seed infested with moderately high and high levels of pathogen. SeT-A14 incidence on seedlings produced from contaminated seed following sanitation was also determined. At a moderately high infestation rate (40%), SeT-A14 was eradicated on seed sanitized with 1.2% sodium hypochlorite (NaClO) mixed with 0.03% surfactant for 2 min, hydrochloric acid (HCl) for 30 min, and trichloromelamine for 2 min. At a higher infestation rate (94%), only NaClO and HCl were effective in eradicating SeT-A14 from the seed. At both infestation rates, 2% Virkon-S for 15 min significantly reduced SeT-A14 incidence compared with the nontreated infested controls but did not eradicate the pathogen. Hot water, a commonly used sanitizer for managing seedborne bacterial plant diseases, significantly reduced SeT-A14 on heavily infested seed, but incidence was still moderate at 17.5%. On seedlings produced from moderately highly infested seed, SeT-A14 was not detected using RapidChek Salmonella test strips. Using heavily infested seed, SeT-A14 was detected with the test strips in one of four pooled samples of 14-day-old seedlings produced from nonsanitized seed and from seed sanitized with hot water and trichloromelamine. However, bioluminescence was not observed on 14-day-old seedlings. To our knowledge, this is the first report that provides evidence that S. enterica serovar Typhimurium can be seed transmitted and can lead to the contamination of tomato seedlings. In addition to eliminating important bacterial phytopathogens from tomato seed, NaClO or HCl may mitigate the risk of Salmonella seedling contamination.
Collapse
Affiliation(s)
- Melanie L Lewis Ivey
- The Ohio State University, Ohio Agriculture Research and Development Center, 1680 Madison Avenue, Wooster, Ohio 44691, USA; Louisiana State University, Louisiana State University Agricultural Center, 101 Efferson Hall, Baton Rouge, Louisiana 70803, USA.
| | - Xiulan Xu
- The Ohio State University, Ohio Agriculture Research and Development Center, 1680 Madison Avenue, Wooster, Ohio 44691, USA
| | - Sally A Miller
- The Ohio State University, Ohio Agriculture Research and Development Center, 1680 Madison Avenue, Wooster, Ohio 44691, USA
| |
Collapse
|
14
|
Kassem II, Splitter GA, Miller S, Rajashekara G. Let There Be Light! Bioluminescent Imaging to Study Bacterial Pathogenesis in Live Animals and Plants. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 154:119-45. [DOI: 10.1007/10_2014_280] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
|