1
|
Ouyang Z, Wang X, Peng X, Zhong L, Zeng W, Huang T, Li R. Transcriptomic analysis reveals differential transcriptional regulation underlying Citrus Bacterial Canker (CBC) tolerance in Citrus sinensis. BMC Genomics 2024; 25:1136. [PMID: 39587469 PMCID: PMC11587780 DOI: 10.1186/s12864-024-11070-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024] Open
Abstract
The sustainable development of the citrus industry is greatly affected by citrus canker, an important bacterial disease. To explore the transcriptional regulatory mechanism of citrus resistance to canker disease, this study used the susceptible Citrus sinensis cv. 'Newhall' and its citrus canker-resistant bud mutation variety 'Longhuitian' (LHT) as materials. Through analysing the variances in leaf phenotypes between Newhall and LHT, as well as the variations in their transcriptional expression under Xanthomonas citri subsp. citri (Xcc) inoculation, our study concluded that LHT displays markedly greater resistance to Xcc compared to Newhall. Additionally, the spongy parenchyma of LHT leaves is significantly thicker than that of Newhall, and the stomatal number is significantly higher in LHT leaves, while the length and width of individual stomata in LHT leaves are significantly smaller than those in Newhall. RNA-seq analysis indicates that the differentially expressed genes between LHT and Newhall are involved in biotic stress-related biological processes, secondary metabolite biosynthesis, as well as phytohormone signalling pathways. Furthermore, significant differences were observed in reactive oxygen metabolism and phenylalanine metabolism pathways. The findings of our study provide data support for a deeper understanding of the citrus-Xcc interactions and offer valuable clues for unravelling citrus resistance to citrus canker.
Collapse
Affiliation(s)
- Zhigang Ouyang
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
- National Navel Orange Engineering Research Center, Ganzhou, 341000, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, 341000, China
| | - Xinyou Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Xi Peng
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Leijian Zhong
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Wei Zeng
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Tongqi Huang
- Junping Fruit Industry Development Co., Ltd, Ganzhou, 341000, China
| | - Ruimin Li
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China.
- National Navel Orange Engineering Research Center, Ganzhou, 341000, China.
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
2
|
Xu J, Zhang Y, Li J, Teper D, Sun X, Jones D, Wang Y, Tao J, Goss EM, Jones JB, Wang N. Phylogenomic analysis of 343 Xanthomonas citri pv. citri strains unravels introduction history and dispersal paths. PLoS Pathog 2023; 19:e1011876. [PMID: 38100539 PMCID: PMC10756548 DOI: 10.1371/journal.ppat.1011876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/29/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Xanthomonas citri pv. citri (Xcc) causes the devastating citrus canker disease. Xcc is known to have been introduced into Florida, USA in at least three different events in 1915, 1986 and 1995 with the first two claimed to be eradicated. It was questioned whether the Xcc introduction in 1986 has been successfully eradicated. Furthermore, it is unknown how Xcc has spread throughout the citrus groves in Florida. In this study, we investigated the population structure of Xcc to address these questions. We sequenced the whole genome of 343 Xcc strains collected from Florida groves between 1997 and 2016. Our analysis revealed two distinct clusters of Xcc. Our data strongly indicate that the claimed eradication of the 1986 Xcc introduction was not successful and Xcc strains from 1986 introduction were present in samples from at least 8 counties collected after 1994. Importantly, our data revealed that the Cluster 2 strains, which are present in all 20 citrus-producing counties sampled in Florida, originated from the Xcc introduction event in the Miami area in 1995. Our data suggest that Polk County is the epicenter of the dispersal of Cluster 2 Xcc strains, which is consistent with the fact that three major hurricanes passed through Polk County in 2004. As copper-based products have been extensively used to control citrus canker, we also investigated whether Xcc strains have developed resistance to copper. Notably, none of the 343 strains contained known copper resistance genes. Twenty randomly selected Xcc strains displayed sensitivity to copper. Overall, this study provides valuable insights into the introduction, eradication, spread, and copper resistance of Xcc in Florida.
Collapse
Affiliation(s)
- Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, Florida, United States of America
| | - Yanan Zhang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, Florida, United States of America
| | - Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, Florida, United States of America
| | - Doron Teper
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, Florida, United States of America
| | - Xiaoan Sun
- Florida Department of Agriculture and Consumer Services, Gainesville, Florida, United States of America
| | - Debra Jones
- Florida Department of Agriculture and Consumer Services, Gainesville, Florida, United States of America
| | - Yayu Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jin Tao
- Guangdong Magigene Biotechnology Co., Ltd., Guangzhou, China
| | - Erica M. Goss
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Jeffrey B. Jones
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, Florida, United States of America
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, Florida, United States of America
| |
Collapse
|
3
|
de Souza-Neto RR, Vasconcelos FNDC, Teper D, Carvalho IGB, Takita MA, Benedetti CE, Wang N, de Souza AA. The Expansin Gene CsLIEXP1 Is a Direct Target of CsLOB1 in Citrus. PHYTOPATHOLOGY 2023; 113:1266-1277. [PMID: 36825333 DOI: 10.1094/phyto-11-22-0424-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transcription activator-like effectors are key virulence factors of Xanthomonas. They are secreted into host plant cells and mimic transcription factors inducing the expression of host susceptibility (S) genes. In citrus, CsLOB1 is a direct target of PthA4, the primary effector associated with citrus canker symptoms. CsLOB1 is a transcription factor, and its expression is required for canker symptoms induced by Xanthomonas citri subsp. citri. Several genes are up-regulated by PthA4; however, only CsLOB1 was described as an S gene induced by PthA4. Here, we investigated whether other up-regulated genes could be direct targets of PthA4 or CsLOB1. Seven up-regulated genes by PthA4 were investigated; however, an expansin-coding gene was more induced than CsLOB1. In Nicotiana benthamiana transient expression experiments, we demonstrate that the expansin-coding gene, referred here to as CsLOB1-INDUCED EXPANSIN 1 (CsLIEXP1), is not a direct target of PthA4, but CsLOB1. Interestingly, CsLIEXP1 was induced by CsLOB1 even without the predicted CsLOB1 binding site, which suggested that CsLOB1 has other unknown binding sites. We also investigated the minimum promoter regulated by CsLOB1, and this region and LOB1 domain were conserved among citrus species and relatives, which suggests that the interaction PthA4-CsLOB1-CsLIEXP1 is conserved in citrus species and relatives. This is the first study that experimentally demonstrated a CsLOB1 downstream target and lays the foundation to identify other new targets. In addition, we demonstrated that the CsLIEXP1 is a putative S gene indirectly induced by PthA4, which may serve as the target for genome editing to generate citrus canker-resistant varieties.
Collapse
Affiliation(s)
- Reinaldo Rodrigues de Souza-Neto
- Citrus Research Center "Sylvio Moreira", Agronomic Institute-IAC, Brazil
- Departament of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Brazil
| | | | - Doron Teper
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, Volcani Center, Israel
| | | | | | - Celso Eduardo Benedetti
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Brazil
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, U.S.A
| | | |
Collapse
|
4
|
Licciardello G, Caruso P, Bella P, Boyer C, Smith MW, Pruvost O, Robene I, Cubero J, Catara V. Pathotyping Citrus Ornamental Relatives with Xanthomonas citri pv. citri and X. citri pv. aurantifolii Refines Our Understanding of Their Susceptibility to These Pathogens. Microorganisms 2022; 10:microorganisms10050986. [PMID: 35630430 PMCID: PMC9148020 DOI: 10.3390/microorganisms10050986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Xanthomonas citri pv. citri (Xcc) and X. citri pv. aurantifolii (Xca) are causal agents of Citrus Bacterial Canker (CBC), a devastating disease that severely affects citrus plants. They are harmful organisms not reported in Europe or the Mediterranean Basin. Host plants are in the Rutaceae family, including the genera Citrus, Poncirus, and Fortunella, and their hybrids. In addition, other genera of ornamental interest are reported as susceptible, but results are not uniform and sometimes incongruent. We evaluated the susceptibility of 32 ornamental accessions of the Rutaceae family belonging to the genera Citrus, Fortunella, Atalantia, Clausena, Eremocitrus, Glycosmis, Microcitrus, Murraya, Casimiroa, Calodendrum, and Aegle, and three hybrids to seven strains of Xcc and Xca. Pathotyping evaluation was assessed by scoring the symptomatic reactions on detached leaves. High variability in symptoms and bacterial population was shown among the different strains in the different hosts, indicative of complex host–pathogen interactions. The results are mostly consistent with past findings, with the few discrepancies probably due to our more complete experimental approach using multiple strains of the pathogen and multiple hosts. Our work supports the need to regulate non-citrus Rutaceae plant introductions into areas, like the EU and Mediterranean, that are currently free of this economically important pathogen.
Collapse
Affiliation(s)
- Grazia Licciardello
- Dipartimento di Agricoltura Alimentazione e Ambiente, Università degli Studi di Catania, 95130 Catania, Italy;
- Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura-Consiglio per la Ricerca in Agricoltura e L’analisi Dell’Economia Agraria (CREA), 95024 Acireale, Italy;
| | - Paola Caruso
- Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura-Consiglio per la Ricerca in Agricoltura e L’analisi Dell’Economia Agraria (CREA), 95024 Acireale, Italy;
| | - Patrizia Bella
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, 90128 Palermo, Italy;
| | - Claudine Boyer
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), 97410 Saint Pierre, La Réunion, France; (C.B.); (O.P.); (I.R.)
| | - Malcolm W. Smith
- Department of Agriculture & Fisheries, Bundaberg Research Station, Bundaberg, QLD 4670, Australia;
| | - Olivier Pruvost
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), 97410 Saint Pierre, La Réunion, France; (C.B.); (O.P.); (I.R.)
| | - Isabelle Robene
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), 97410 Saint Pierre, La Réunion, France; (C.B.); (O.P.); (I.R.)
| | - Jaime Cubero
- Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain;
| | - Vittoria Catara
- Dipartimento di Agricoltura Alimentazione e Ambiente, Università degli Studi di Catania, 95130 Catania, Italy;
- Correspondence: ; Tel.: +39-095-714-7370
| |
Collapse
|
5
|
Long Y, Luo R, Xu Z, Cheng S, Li L, Ma H, Bao M, Li M, Ouyang Z, Wang N, Duan S. A Fluorescent Reporter-Based Evaluation Assay for Antibacterial Components Against Xanthomonas citri subsp. citri. Front Microbiol 2022; 13:864963. [PMID: 35602035 PMCID: PMC9114712 DOI: 10.3389/fmicb.2022.864963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Xanthomonas citri subsp. citri (Xcc) is the agent of citrus bacterial canker (CBC) disease, which has significantly reduced citrus quantity and quality in many producing areas worldwide. Copper-based bactericides are the primary products for CBC control and management, but the problems derived from copper-resistant and environmental contamination have become issues of anxiety. Thus, there is a need to find alternative antibacterial products instead of relying on a single type of agent. This study developed a method to evaluate the inhibition of antibacterial agents using the fluorescence-labeled recombinant Xcc strain (Xcc-eYFP). The optimization of timelines and parameters for the evaluation of antibacterial agents involved the use of a Spark™ multimode microplate reader. This evaluation and screening method can be applied to bactericides, cocktail-mixture formulations, antagonistic bacteria, and derived metabolites. The results showed that the minimum inhibitory concentration (MIC) of commercial bactericides determined by fluorescence agrees with the MIC values determined by the conventional method. A screened cocktail-mixture bactericide presents more activity than the individual agents during the protective effects. Notably, this method has been further developed in the screening of Xcc-antagonistic bacterial strains. In summary, we provide a validated strategy for screening and evaluation of different antibacterial components for inhibition against Xcc for CBC control and management.
Collapse
Affiliation(s)
- Yunfei Long
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Ruifang Luo
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Zhou Xu
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Shuyuan Cheng
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Ling Li
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Haijie Ma
- College of Agricultural and Food Sciences, Zhejiang A&F University, Hangzhou, China
| | - Minli Bao
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Min Li
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Zhigang Ouyang
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - Nian Wang
- Department of Microbiology and Cell Science, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Shuo Duan
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| |
Collapse
|