1
|
Hu ZH, Huang T, Zhang N, Chen C, Yang KX, Sun MZ, Yang N, Chen Y, Tao JP, Liu H, Li XH, Chen X, You X, Xiong AS, Zhuang J. Interference of skeleton photoperiod in circadian clock and photosynthetic efficiency of tea plant: in-depth analysis of mathematical model. HORTICULTURE RESEARCH 2024; 11:uhae226. [PMID: 39415971 PMCID: PMC11480659 DOI: 10.1093/hr/uhae226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/30/2024] [Indexed: 10/19/2024]
Abstract
The circadian system of plants is a complex physiological mechanism, a biological process in which plants can adjust themselves according to the day and night cycle. To understand the effects of different photoperiods on the biological clock of tea plants, we analyzed the expression levels of core clock genes (CCA1, PRR9, TOC1, ELF4) and photosynthesis-related genes (Lhcb, RbcS, atpA) under normal light (light/dark = 12 h/12 h, 12L12D) and took the cost function defined by cycle and phase errors as the basic model parameter. In the continuous light environment (24 h light, 24L), the peak activity and cycle of key genes that control the biological clock and photosynthesis were delayed by 1-2 h. Under a skeleton photoperiod (6L6D, 3L3D), the expression profiles of clock genes and photosynthesis-related genes in tea plants were changed and stomatal opening showed a circadian rhythm. These observations suggest that a skeleton photoperiod may have an effect on the circadian rhythm, photosynthetic efficiency and stomatal regulation of tea plants. Our study and model analyzed the components of circadian rhythms under different photoperiodic pathways, and also revealed the underlying mechanisms of circadian regulation of photosynthesis in tea plants.
Collapse
Affiliation(s)
- Zhi-Hang Hu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ting Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Nan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chen Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kai-Xin Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Meng-Zhen Sun
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ni Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yi Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian-Ping Tao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xing-Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xuan Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiong You
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
2
|
Jin Y, Zhang Y, Lin L, Ying S, Yu C. Cucumber PGIP2 is involved in resistance to gray mold disease. Gene 2024; 923:148588. [PMID: 38763363 DOI: 10.1016/j.gene.2024.148588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Polygalacturonase inhibitor protein (PGIP) restricts fungal growth and colonization and functions in plant immunity. Gray mold in cucumber is a common fungal disease caused by Botrytis cinerea, and is widespread and difficult to control in cucumber (Cucumis sativus L.) production. In this study, Cucumis sativus polygalacturonase-inhibiting protein 2 (CsPGIP2) was found to be upregulated in response to gray mold in cucumber. CsPGIP2 was detected in the endoplasmic reticulum, cell membrane, and cell wall after transient transformation of protoplasts and tobacco. A possible interaction between Botrytis cinerea polygalacturonase 3 (BcPG3) and CsPGIP2 was supported by protein interaction prediction and BiFC analysis. Transgenic Arabidopsis plants expressing CsPGIP2 were constructed and exhibited smaller areas of gray mold infection compared to wild type (WT) plants after simultaneous inoculation. Evans blue dye (EBD) confirmed greater damage for WT plants, with more intense dyeing than for the transgenic Arabidopsis. Interestingly, compared to WT, transgenic Arabidopsis exhibited higher superoxide dismutase (AtSOD1) expression, antioxidant enzyme activities, lignin content, net photosynthetic rate (Pn), and photochemical activity. Our results suggest that CsPGIP2 stimulates a variety of plant defense mechanisms to enhance transgenic Arabidopsis resistance against gray mold disease.
Collapse
Affiliation(s)
- Yinhe Jin
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yinan Zhang
- People's Government of Xianliang Town, Qingyuan County, Zhejiang Province 323800, China
| | - Lili Lin
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Shupeng Ying
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Chao Yu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; School of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou 311300, China.
| |
Collapse
|
3
|
Pastor-Fernández J, Sanmartín N, Manresa-Grao M, Cassan C, Pétriacq P, Gibon Y, Gamir J, Romero-Rodriguez B, Castillo AG, Cerezo M, Flors V, Sánchez-Bel P. Deciphering molecular events behind Systemin-induced resistance to Botrytis cinerea in tomato plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4111-4127. [PMID: 38581374 DOI: 10.1093/jxb/erae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/05/2024] [Indexed: 04/08/2024]
Abstract
Plant defence peptides are paramount endogenous danger signals secreted after a challenge, intensifying the plant immune response. The peptidic hormone Systemin (Sys) was shown to participate in resistance in several plant pathosystems, although the mechanisms behind Sys-induced resistance when exogenously applied remain elusive. We performed proteomic, metabolomic, and enzymatic studies to decipher the Sys-induced changes in tomato plants in either the absence or the presence of Botrytis cinerea infection. Sys treatments triggered direct proteomic rearrangement mostly involved in carbon metabolism and photosynthesis. However, the final induction of defence proteins required concurrent challenge, triggering priming of pathogen-targeted proteins. Conversely, at the metabolomic level, Sys-treated plants showed an alternative behaviour following a general priming profile. Of the primed metabolites, the flavonoids rutin and isorhamnetin and two alkaloids correlated with the proteins 4-coumarate-CoA-ligase and chalcone-flavanone-isomerase triggered by Sys treatment. In addition, proteomic and enzymatic analyses revealed that Sys conditioned the primary metabolism towards the production of available sugars that could be fuelling the priming of callose deposition in Sys-treated plants; furthermore, PR1 appeared as a key element in Sys-induced resistance. Collectively, the direct induction of proteins and priming of specific secondary metabolites in Sys-treated plants indicated that post-translational protein regulation is an additional component of priming against necrotrophic fungi.
Collapse
Affiliation(s)
- Julia Pastor-Fernández
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| | - Neus Sanmartín
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| | - Maria Manresa-Grao
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| | - Cédric Cassan
- Univ Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d'Ornon, France
| | - Pierre Pétriacq
- Univ Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d'Ornon, France
| | - Yves Gibon
- Univ Bordeaux, INRAE, UMR1332 BFP, 33882 Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d'Ornon, France
| | - Jordi Gamir
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| | - Beatriz Romero-Rodriguez
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM 'La Mayora'), Universidad de Málaga-Consejo Superior de Investigaciones Cientificas (UMA-CSIC), Campus Teatinos, 29010 Málaga, Spain
| | - Araceli G Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM 'La Mayora'), Universidad de Málaga-Consejo Superior de Investigaciones Cientificas (UMA-CSIC), Campus Teatinos, 29010 Málaga, Spain
| | - Miguel Cerezo
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| | - Victor Flors
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| | - Paloma Sánchez-Bel
- Plant Immunity and Biochemistry Laboratory, Biochemistry and Molecular Biology Section, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Avd Vicente Sos Baynat s/n 12071 Castellón, Spain
| |
Collapse
|
4
|
Yi S, Guo X, Lou W, Mao S, Luan G, Lu X. Structure, Regulation, and Significance of Cyanobacterial and Chloroplast Adenosine Triphosphate Synthase in the Adaptability of Oxygenic Photosynthetic Organisms. Microorganisms 2024; 12:940. [PMID: 38792770 PMCID: PMC11124002 DOI: 10.3390/microorganisms12050940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
In cyanobacteria and chloroplasts (in algae and plants), ATP synthase plays a pivotal role as a photosynthetic membrane complex responsible for producing ATP from adenosine diphosphate and inorganic phosphate, utilizing a proton motive force gradient induced by photosynthesis. These two ATP synthases exhibit similarities in gene organization, amino acid sequences of subunits, structure, and functional mechanisms, suggesting that cyanobacterial ATP synthase is probably the evolutionary precursor to chloroplast ATP synthase. In this review, we explore the precise synthesis and assembly of ATP synthase subunits to address the uneven stoichiometry within the complex during transcription, translation, and assembly processes. We also compare the regulatory strategies governing ATP synthase activity to meet varying energy demands in cyanobacteria and chloroplasts amid fluctuating natural environments. Furthermore, we delve into the role of ATP synthase in stress tolerance and photosynthetic carbon fixation efficiency in oxygenic photosynthetic organisms (OPsOs), along with the current researches on modifying ATP synthase to enhance carbon fixation efficiency under stress conditions. This review aims to offer theoretical insights and serve as a reference for understanding the functional mechanisms of ATP synthase, sparking innovative ideas for enhancing photosynthetic carbon fixation efficiency by utilizing ATP synthase as an effective module in OPsOs.
Collapse
Affiliation(s)
- Siyan Yi
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China;
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (X.G.); (G.L.); (X.L.)
| | - Xin Guo
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (X.G.); (G.L.); (X.L.)
- College of Live Science, Henan University, Kaifeng 450001, China
| | - Wenjing Lou
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (X.G.); (G.L.); (X.L.)
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Shaoming Mao
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China;
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China
| | - Guodong Luan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (X.G.); (G.L.); (X.L.)
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xuefeng Lu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (X.G.); (G.L.); (X.L.)
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
5
|
Xiao N, Wu Y, Zhang X, Hao Z, Chen Z, Yang Z, Cai Y, Wang R, Yu L, Wang Z, Lu Y, Shi W, Pan C, Li Y, Zhou C, Liu J, Huang N, Liu G, Ji H, Zhu S, Fang S, Ning Y, Li A. Pijx confers broad-spectrum seedling and panicle blast resistance by promoting the degradation of ATP β subunit and OsRbohC-mediated ROS burst in rice. MOLECULAR PLANT 2023; 16:1832-1846. [PMID: 37798878 DOI: 10.1016/j.molp.2023.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/11/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most important diseases of rice. Utilization of blast-resistance genes is the most economical, effective, and environmentally friendly way to control the disease. However, genetic resources with broad-spectrum resistance (BSR) that is effective throughout the rice growth period are rare. In this work, using a genome-wide association study, we identify a new blast-resistance gene, Pijx, which encodes a typical CC-NBS-LRR protein. Pijx is derived from a wild rice species and confers BSR to M. oryzae at both the seedling and panicle stages. The functions of the resistant haplotypes of Pijx are confirmed by gene knockout and overexpression experiments. Mechanistically, the LRR domain in Pijx interacts with and promotes the degradation of the ATP synthase β subunit (ATPb) via the 26S proteasome pathway. ATPb acts as a negative regulator of Pijx-mediated panicle blast resistance, and interacts with OsRbohC to promote its degradation. Consistently, loss of ATPb function causes an increase in NAPDH content and ROS burst. Remarkably, when Pijx is introgressed into two japonica rice varieties, the introgression lines show BSR and increased yields that are approximately 51.59% and 79.31% higher compared with those of their parents in a natural blast disease nursery. In addition, we generate PPLPijx Pigm and PPLPijx Piz-t pyramided lines and these lines also have higher BSR to panicle blast compared with Pigm- or Piz-t-containing rice plants. Collectively, this study demonstrates that Pijx not only confers BSR to M. oryzae but also maintains high and stable rice yield, providing new genetic resources and molecular targets for breeding rice varieties with broad-spectrum blast resistance.
Collapse
Affiliation(s)
- Ning Xiao
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou Rice Experiment Station of the China Agricultural Research System, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou 225009, China
| | - Yunyu Wu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou Rice Experiment Station of the China Agricultural Research System, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou 225009, China
| | - Xiaoxiang Zhang
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou Rice Experiment Station of the China Agricultural Research System, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou 225009, China
| | - Zeyun Hao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zichun Chen
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou Rice Experiment Station of the China Agricultural Research System, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou 225009, China
| | - Zefeng Yang
- Key Laboratory of Plant Functional Genomics, Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Yue Cai
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou Rice Experiment Station of the China Agricultural Research System, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou 225009, China
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ling Yu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou Rice Experiment Station of the China Agricultural Research System, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou 225009, China
| | - Zhiping Wang
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou Rice Experiment Station of the China Agricultural Research System, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou 225009, China
| | - Yue Lu
- Key Laboratory of Plant Functional Genomics, Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Wei Shi
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou Rice Experiment Station of the China Agricultural Research System, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou 225009, China
| | - Cunhong Pan
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou Rice Experiment Station of the China Agricultural Research System, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou 225009, China
| | - Yuhong Li
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou Rice Experiment Station of the China Agricultural Research System, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou 225009, China
| | - Changhai Zhou
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou Rice Experiment Station of the China Agricultural Research System, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou 225009, China
| | - Jianju Liu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou Rice Experiment Station of the China Agricultural Research System, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou 225009, China
| | - Niansheng Huang
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou Rice Experiment Station of the China Agricultural Research System, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou 225009, China
| | - Guangqing Liu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou Rice Experiment Station of the China Agricultural Research System, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou 225009, China
| | - Hongjuan Ji
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou Rice Experiment Station of the China Agricultural Research System, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou 225009, China
| | - Shuhao Zhu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou Rice Experiment Station of the China Agricultural Research System, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou 225009, China
| | - Shuai Fang
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou Rice Experiment Station of the China Agricultural Research System, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou 225009, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Aihong Li
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou Rice Experiment Station of the China Agricultural Research System, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou 225009, China.
| |
Collapse
|
6
|
Huang T, Liu H, Tao JP, Zhang JQ, Zhao TM, Hou XL, Xiong AS, You X. Low light intensity elongates period and defers peak time of photosynthesis: a computational approach to circadian-clock-controlled photosynthesis in tomato. HORTICULTURE RESEARCH 2023; 10:uhad077. [PMID: 37323229 PMCID: PMC10261901 DOI: 10.1093/hr/uhad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/09/2023] [Indexed: 06/17/2023]
Abstract
Photosynthesis is involved in the essential process of transforming light energy into chemical energy. Although the interaction between photosynthesis and the circadian clock has been confirmed, the mechanism of how light intensity affects photosynthesis through the circadian clock remains unclear. Here, we propose a first computational model for circadian-clock-controlled photosynthesis, which consists of the light-sensitive protein P, the core oscillator, photosynthetic genes, and parameters involved in the process of photosynthesis. The model parameters were determined by minimizing the cost function ( [Formula: see text]), which is defined by the errors of expression levels, periods, and phases of the clock genes (CCA1, PRR9, TOC1, ELF4, GI, and RVE8). The model recapitulates the expression pattern of the core oscillator under moderate light intensity (100 μmol m -2 s-1). Further simulation validated the dynamic behaviors of the circadian clock and photosynthetic outputs under low (62.5 μmol m-2 s-1) and normal (187.5 μmol m-2 s-1) intensities. When exposed to low light intensity, the peak times of clock and photosynthetic genes were shifted backward by 1-2 hours, the period was elongated by approximately the same length, and the photosynthetic parameters attained low values and showed delayed peak times, which confirmed our model predictions. Our study reveals a potential mechanism underlying the circadian regulation of photosynthesis by the clock under different light intensities in tomato.
Collapse
Affiliation(s)
- Ting Huang
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
| | - Hui Liu
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
| | - Jian-Ping Tao
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
- The Institute of Agricultural Information, Jiangsu Province Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Jia-Qi Zhang
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
| | - Tong-Min Zhao
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Institute of Vegetable Crop, Jiangsu Province Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Xi-Lin Hou
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
| | - Ai-Sheng Xiong
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
| | - Xiong You
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu China
| |
Collapse
|
7
|
Identification of Key Gene Network Modules and Hub Genes Associated with Wheat Response to Biotic Stress Using Combined Microarray Meta-analysis and WGCN Analysis. Mol Biotechnol 2023; 65:453-465. [PMID: 35996047 DOI: 10.1007/s12033-022-00541-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/05/2022] [Indexed: 12/31/2022]
Abstract
Wheat (Triticum aestivum) is one of the major crops worldwide and a primary source of calories for human food. Biotic stresses such as fungi, bacteria, and diseases limit wheat production. Although plant breeding and genetic engineering for biotic stress resistance have been suggested as promising solutions to handle losses caused by biotic stress factors, a comprehensive understanding of molecular mechanisms and identifying key genes is a critical step to obtaining success. Here, a network-based meta-analysis approach based on two main statistical methods was used to identify key genes and molecular mechanisms of the wheat response to biotic stress. A total of 163 samples (21,792 genes) from 10 datasets were analyzed. Fisher Z test based on the p-value and REM method based on effect size resulted in 533 differentially expressed genes (p < 0.001 and FDR < 0.001). WGCNA analysis using a dynamic tree-cutting algorithm was used to construct a co-expression network and three significant modules were detected. The modules were significantly enriched by 16 BP terms and 4 KEGG pathways (Benjamini-Hochberg FDR < 0.001). A total of nine hub genes (a top 1.5% of genes with the highest degree) were identified from the constructed network. The identification of DE genes, gene-gene co-expressing network, and hub genes may contribute to uncovering the molecular mechanisms of the wheat response to biotic stress.
Collapse
|
8
|
Guan F, Shi B, Zhang J, Wan X. Transcriptome analysis provides insights into lignin synthesis and MAPK signaling pathway that strengthen the resistance of bitter gourd (Momordica charantia) to Fusarium wilt. Genomics 2023; 115:110538. [PMID: 36494076 DOI: 10.1016/j.ygeno.2022.110538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Fusarium wilt is a typical soil-borne disease caused by Fusarium oxysporum f. sp. momordicae (FOM) in bitter gourd. In this study, by comparing sequencing data at multiple time points and considering the difference between resistant (R) and susceptible (S) varieties, differentially expressed genes were screened out. Short time-series expression miner analysis revealed the upregulated expression trend of genes, which were enriched in phenylpropanoid biosynthesis, plant-pathogen interaction, and mitogen-activated protein kinase signaling pathway. Further, observation of the microstructure revealed that the R variety may form tyloses earlier than the S variety to prevent mycelium diffusion from the xylem vessel. After Fusarium wilt infection, the enzymatic activities of superoxide dismutase, peroxidase, phenylalanine ammonia lyase, and catalaseas well as levels of superoxide anion and malondialdehyde were increased in the R variety higher than those in the S variety. This study provides a reference to elucidate the disease resistance mechanism of bitter gourd.
Collapse
Affiliation(s)
- Feng Guan
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, China.
| | - Bo Shi
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Jingyun Zhang
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Xinjian Wan
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, China.
| |
Collapse
|
9
|
Ali O, Ramsubhag A, Jayaraman J. Transcriptome-wide modulation by Sargassum vulgare and Acanthophora spicifera extracts results in a prime-triggered plant signalling cascade in tomato and sweet pepper. AOB PLANTS 2022; 14:plac046. [PMID: 36483312 PMCID: PMC9724562 DOI: 10.1093/aobpla/plac046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/04/2022] [Indexed: 06/17/2023]
Abstract
Seaweed extracts (SWEs) are becoming integrated into crop production systems due to their multiple beneficial effects including growth promotion and induction of defence mechanisms. However, the comprehensive molecular mechanisms of these effects are yet to be elucidated. The current study investigated the transcriptomic changes induced by SWEs derived from Sargassum vulgare and Acanthophora spicifera on tomato and sweet pepper plants. Tomato and sweet pepper plants were subjected to foliar treatment with alkaline extracts prepared from the above seaweeds. Transcriptome changes in the plants were assessed 72 h after treatments using RNA sequencing. The treated plants were also analysed for defence enzyme activities, nutrient composition and phytohormonal profiles. The results showed the significant enrichment of genes associated with several growth and defence processes including photosynthesis, carbon and nitrogen metabolism, plant hormone signal transduction, plant-pathogen interaction, secondary metabolite metabolism, MAPK signalling and amino acid biosynthesis. Activities of defence enzymes were also significantly increased in SWE-treated plants. Plant nutrient profiling showed significant increases in calcium, potassium, nitrogen, sulphur, boron, copper, iron, manganese, zinc and phosphorous levels in SWE-treated plants. Furthermore, the levels of auxins, cytokinins and gibberellins were also significantly increased in the treated plants. The severity of bacterial leaf spot and early blight incidence in plants treated with SWE was significantly reduced, in addition to other effects like an increase in chlorophyll content, plant growth, and fruit yield. The results demonstrated the complex effect of S. vulgare and A. spicifera extracts on the plants' transcriptome and provided evidence of a strong role of these extracts in increasing plant growth responses while priming the plants against pathogenic attack simultaneously. The current study contributes to the understanding of the molecular mechanisms of SWEs in plants and helps their usage as a viable organic input for sustainable crop production.
Collapse
Affiliation(s)
- Omar Ali
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine TTO, 00000, Trinidad and Tobago
| | - Adesh Ramsubhag
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine TTO, 00000, Trinidad and Tobago
| | | |
Collapse
|
10
|
Wang P, Yang L, Sun J, Yang Y, Qu Y, Wang C, Liu D, Huang L, Cui X, Liu Y. Structure and Function of Rhizosphere Soil and Root Endophytic Microbial Communities Associated With Root Rot of Panax notoginseng. FRONTIERS IN PLANT SCIENCE 2022; 12:752683. [PMID: 35069616 PMCID: PMC8766989 DOI: 10.3389/fpls.2021.752683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Panax notoginseng (Burk.) F. H. Chen is a Chinese medicinal plant of the Araliaceae family used for the treatment of cardiovascular and cerebrovascular diseases in Asia. P. notoginseng is vulnerable to root rot disease, which reduces the yield of P. notoginseng. In this study, we analyzed the rhizosphere soil and root endophyte microbial communities of P. notoginseng from different geographical locations using high-throughput sequencing. Our results revealed that the P. notoginseng rhizosphere soil microbial community was more diverse than the root endophyte community. Rhodopseudomonas, Actinoplanes, Burkholderia, and Variovorax paradoxus can help P. notoginseng resist the invasion of root rot disease. Ilyonectria mors-panacis, Pseudomonas fluorescens, and Pseudopyrenochaeta lycopersici are pathogenic bacteria of P. notoginseng. The upregulation of amino acid transport and metabolism in the soil would help to resist pathogens and improve the resistance of P. notoginseng. The ABC transporter and gene modulating resistance genes can improve the disease resistance of P. notoginseng, and the increase in the number of GTs (glycosyltransferases) and GHs (glycoside hydrolases) families may be a molecular manifestation of P. notoginseng root rot. In addition, the complete genomes of two Flavobacteriaceae species and one Bacteroides species were obtained. This study demonstrated the microbial and functional diversity in the rhizosphere and root microbial community of P. notoginseng and provided useful information for a better understanding of the microbial community in P. notoginseng root rot. Our results provide insights into the molecular mechanism underlying P. notoginseng root rot and other plant rhizosphere microbial communities.
Collapse
Affiliation(s)
- Panpan Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lifang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jialing Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| | - Yuan Qu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| | - Chengxiao Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| | - Diqiu Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| | - Yuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| |
Collapse
|
11
|
Sun H, Zhang H, Xu Z, Wang Y, Liu X, Li Y, Tian B, Sun G, Zhang H. TMT-based quantitative proteomic analysis of the effects of Pseudomonas syringae pv. tabaci (Pst) infection on photosynthetic function and the response of the MAPK signaling pathway in tobacco leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:657-667. [PMID: 34214776 DOI: 10.1016/j.plaphy.2021.06.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
To reveal the mechanism of photosynthesis inhibition by infection and the response of the MAPK signaling pathway to pathogen infection, tobacco leaves were inoculated with Pseudomonas syringae pv. tabaci (Pst), and the effects of Pst infection on photosynthesis of tobacco leaves were studied by physiological and proteomic techniques, with a focus on MAPK signaling pathway related proteins. Pst infection was observed to lead to the degradation of chlorophyll (especially Chl b) in tobacco leaves and the down-regulation of light harvesting antenna proteins expression, thus limiting the light harvesting ability. The photosystem II and I (PSII and PSI) activities were also decreased, and Pst infection inhibited the utilization of light and CO2. Proteomic analyses showed that the number of differentially expressed proteins (DEPs) under Pst infection at 3 d were significantly higher than at 1 d, especially the number of down-regulated proteins. The KEGG enrichment of DEPs was mainly enriched in the energy metabolism processes such as photosynthesis antenna proteins and photosynthesis. The down-regulation of chlorophyll a-b binding protein, photosynthetic electron transport related proteins (e.g., PSII and PSI core proteins, the Cytb6/f complex, PC, Fd, FNR), ATP synthase subunits, and key enzymes in the Calvin cycle were the key changes associated with Pst infection that may inhibit tobacco photosynthesis. The effect of Pst infection on the PSII electron acceptor side was significantly greater than that on the PSII donor side. The main factor that decreased the photosynthetic ability of tobacco leaves with Pst infection at 1 d may be the inhibition of photochemical reactions leading to an insufficient supply of ATP, rather than decreased expression of enzymes involved in the Calvin cycle. At 1 d into Pst infection, the PSII regulated energy dissipation yield Y(NPQ) may play a role in preventing photosynthetic inhibition in tobacco leaves, but the long-term Pst infection significantly inhibited Y(NPQ) and the expression of PsbS proteins. Proteins involved in the MAPK signaling pathway were up-regulated, suggesting the MAPK signaling pathway was activated to respond to Pst infection. However, at the late stage of Pst infection (at 3 d), MAPK signaling pathway proteins were degraded, and the defense function of the MAPK signaling pathway in tobacco leaves was damaged.
Collapse
Affiliation(s)
- Hongwei Sun
- Mudanjiang Tobacco Science Research Institute, Mudanjiang, Heilongjiang, China
| | - Hongbo Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Zisong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yue Wang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xiaoqian Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yuanyuan Li
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Bei Tian
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Guangyu Sun
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Huihui Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China.
| |
Collapse
|
12
|
Richards JK, Xiao CL, Jurick WM. Botrytis spp.: A Contemporary Perspective and Synthesis of Recent Scientific Developments of a Widespread Genus that Threatens Global Food Security. PHYTOPATHOLOGY 2021; 111:432-436. [PMID: 33231498 DOI: 10.1094/phyto-10-20-0475-ia] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This perspective presents a synopsis of the topics contained in the Phytopathology Pathogen Spotlight on Botrytis spp. causing gray mold, including pathogen biology and systematics, genomic characterization of new species, perspectives on genome editing, and fungicide resistance. A timely breakthrough to engineer host plant resistance against the gray mold fungus has been demonstrated in planta and may augment chemical controls in the near future. While B. cinerea has garnered much of the research attention, other economically important Botrytis spp. have been identified and characterized via morphological and genome-based approaches. Gray mold control is achieved primarily through fungicide applications but resistance to various chemical classes is a major concern that threatens global plant health and food security. In this issue, new information on molecular mechanism(s) of fungicide resistance and ways to manage control failures are presented. Finally, a significant leap in fundamental pathogen biology has been achieved via development of CRISPR/Cas9 to assess gene function in the fungus which likely will spawn new control mechanisms and facilitate gene discovery studies.
Collapse
Affiliation(s)
- Jonathan K Richards
- Assistant Professor, Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA
| | - Chang-Lin Xiao
- Supervisory Research Plant Pathologist, Commodity Protection and Quality Research Unit, USDA-ARS, Parlier, CA
| | - Wayne M Jurick
- Lead Scientist and Research Plant Pathologist, Food Quality Laboratory, USDA-ARS, Beltsville, MD
| |
Collapse
|
13
|
Cheng MZ, Gong C, Zhang B, Qu W, Qi HN, Chen XL, Wang XY, Zhang Y, Liu JY, Ding XD, Qiu YW, Wang AX. Morphological and anatomical characteristics of exserted stigma sterility and the location and function of SlLst (Solanum lycopersicum Long styles) gene in tomato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:505-518. [PMID: 33140169 DOI: 10.1007/s00122-020-03710-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Anatomical changes in and hormone roles of the exserted stigma were investigated, and localization and functional analysis of SlLst for the exserted stigma were performed using SLAF-BSA-seq, parental resequencing and overexpression of SlLst in tomato. Tomato accession T431 produces stigmas under relatively high temperatures (> 27 °C, the average temperature in Harbin, China, in June-August), so pollen can rarely reach the stigma properly. This allows the percentage of male sterility exceed 95%, making the use of this accession practical for hybrid seed production. To investigate the mechanism underlying the exserted stigma male sterility, the morphological changes of, anatomical changes of, and comparative endogenous hormone (IAA, ABA, GA3, ZT, SA) changes in flowers during flower development of tomato accessions DL5 and T431 were measured. The location and function of genes controlling exserted stigma sterility were analyzed using super SLAF-BSA-seq, parental resequencing, comparative genomics and the overexpression of SlLst in tomato. The results showed that an increase in cell number mainly caused stigma exsertion. IAA played a major role, while ABA had an opposite effect on stigma exertion. Moreover, 26 candidate genes related to the exserted stigma were found, located on chromosome 12. The Solyc12g027610.1 (SlLst) gene was identified as the key candidate gene by functional analysis. A subcellular localization assay revealed that SlLst is targeted to the nucleus and cell membrane. Phenotypic analysis of SlLst-overexpressing tomato showed that SlLst plays a crucial role during stigma exsertion.
Collapse
Affiliation(s)
- Mo-Zhen Cheng
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Chao Gong
- College of Life Sciences, Northeast Agricultural University, Harbin, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Bo Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Wei Qu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Hao-Nan Qi
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Xiu-Ling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Xing-Yuan Wang
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Yao Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Jia-Yin Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Xiao-Dong Ding
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - You-Wen Qiu
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Ao-Xue Wang
- College of Life Sciences, Northeast Agricultural University, Harbin, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China.
| |
Collapse
|