1
|
Wagh SG, Bhor SA, Miyao A, Hirochika H, Toriba T, Hirano HY, Kobayashi K, Yaeno T, Nishiguchi M. Synergy between virus and three kingdom pathogens, fungus, bacterium and virus is lost in rice mutant lines of OsRDR1/6. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112244. [PMID: 39244093 DOI: 10.1016/j.plantsci.2024.112244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Co-infection, caused by multiple pathogen attacks on an organism, can lead to disease development or immunity. This complex interaction can be synergetic, co-existing, or antagonistic, ultimately influencing disease severity. The interaction between fungus, bacterium, and virus (three kingdom pathogens) is most prevalent. However, the underlying mechanisms of co-infection need to be explored further. In this study, we investigated the co-infection phenomenon in rice plants exposed to multiple pathogen species, specifically Rice necrosis mosaic virus (RNMV) and rice blast fungus (Magnaporthe oryzae, MO), bacterial leaf blight (Xanthomonas oryzae pv. oryzae, XO) or Cucumber mosaic virus (CMV). Our research showed that RNMV interacts synergistically with MO, XO, or CMV, increasing pathogen growth and lesion size. These findings suggest positive synergy in RNMV co-infections with three kingdom pathogens, increasing accumulation and symptoms. Additionally, to investigate the role of RNAi in pathogen synergism, we analyzed rice mutant lines deficient in RNA-dependent RNA polymerase 1 (OsRDR1) or 6 (OsRDR6). Notably, we observed the loss of synergy in each mutant line, highlighting the crucial role of OsRDR1 and OsRDR6 in maintaining the positive interaction between RNMV and three kingdom pathogens. Hence, our study emphasized the role of the RNA silencing pathway in the intricate landscape of pathogen interactions; the study's outcome could be applied to understand the plant defense response to improve crop yields.
Collapse
Affiliation(s)
- Sopan Ganpatrao Wagh
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; Global Change Research Institute of the Czech Academy of Sciences, Brno 60300, Czech Republic.
| | - Sachin Ashok Bhor
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan
| | - Akio Miyao
- National Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, Japan; National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8642, Japan
| | - Hirohiko Hirochika
- National Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Taiyo Toriba
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan; School of Food Industrial Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai, Miyagi 982-0215, Japan
| | - Hiro-Yuki Hirano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kappei Kobayashi
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan
| | - Takashi Yaeno
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan
| | - Masamichi Nishiguchi
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan.
| |
Collapse
|
2
|
Yu W, He J, Wu J, Xu Z, Lai F, Zhong X, Zhang M, Ji H, Fu Q, Zhou X, Peng Y. Resistance to Planthoppers and Southern Rice Black-Streaked Dwarf Virus in Rice Germplasms. PLANT DISEASE 2024; 108:2321-2329. [PMID: 38127636 DOI: 10.1094/pdis-10-23-2025-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The damage caused by the white-back planthopper (WBPH, Sogatella furcifera) and brown planthopper (BPH, Nilaparvata lugens), as well as southern rice black-streaked dwarf virus (SRBSDV), considerably decreases the grain yield of rice. Identification of rice germplasms with sufficient resistance to planthoppers and SRBSDV is essential to the breeding and deployment of resistant varieties and, hence, the control of the pests and disease. In this study, 318 rice accessions were evaluated for their reactions to the infestation of both BPH and WBPH at the seedling stage using the standard seed-box screening test method; insect quantification was further conducted at the end of the tillering and grain-filling stages in field trials. Accessions HN12-239 and HN12-328 were resistant to both BPH and WBPH at all tested stages. Field trials were conducted to identify resistance in the collection to SRBSDV based on the virus infection rate under artificial inoculation. Rathu Heenati (RHT) and HN12-239 were moderately resistant to SRBSDV. In addition, we found that WBPH did not penetrate stems with stylets but did do more probing bouts and xylem sap ingestion when feeding on HN12-239 than the susceptible control rice Taichung Native 1. The resistance of rice accessions HN12-239, HN12-328, and RHT to BPH, WBPH, and/or SRBSDV should be valuable to the development of resistant rice varieties.
Collapse
Affiliation(s)
- Wenjuan Yu
- Ministry of Agriculture Key Laboratory of Integrated Management of Pests on Crops in Southwest China, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Jiachun He
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhi Xu
- Ministry of Agriculture Key Laboratory of Integrated Management of Pests on Crops in Southwest China, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Fengxiang Lai
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China
| | - Xuelian Zhong
- Ministry of Agriculture Key Laboratory of Integrated Management of Pests on Crops in Southwest China, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Mei Zhang
- Plant Protection Station, Sichuan Provincial Department of Agriculture and Rural Affairs, Chengdu, Sichuan 610041, China
| | - Hongli Ji
- Ministry of Agriculture Key Laboratory of Integrated Management of Pests on Crops in Southwest China, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Qiang Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunliang Peng
- Ministry of Agriculture Key Laboratory of Integrated Management of Pests on Crops in Southwest China, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
3
|
Matsukura K, Matsumura M. The Spread of Southern Rice Black-Streaked Dwarf Virus Was Not Caused by Biological Changes in Vector Sogatella furcifera. Microorganisms 2024; 12:1204. [PMID: 38930586 PMCID: PMC11205324 DOI: 10.3390/microorganisms12061204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The pandemic of Southern rice black-streaked dwarf virus (SRBSDV) in and after the late 2000s caused serious yield losses in rice in Southeast and East Asia. This virus was first recorded in China in 2001, but its exclusive vector insect, Sogatella furcifera, occurred there before then. To clarify the evolutionary origin of SRBSDV as the first plant virus transmitted by S. furcifera, we tested virus transmission using three chronological strains of S. furcifera, two of which were established before the first report of SRBSDV. When the strains fed on SRBSDV-infected rice plants were transferred to healthy rice plants, those established in 1989 and 1999 transmitted the virus to rice similarly to the strain established in 2010. SRBSDV quantification by RT-qPCR confirmed virus accumulation in the salivary glands of all three strains. Therefore, SRBSDV transmission by S. furcifera was not caused by biological changes in the vector, but probably by the genetic change of the virus from a closely related Fijivirus, Rice black-streaked dwarf virus, as suggested by ecological and molecular biological comparisons between the two viruses. This result will help us to better understand the evolutionary relationship between plant viruses and their vector insects and to better manage viral disease in rice cropping in Asia.
Collapse
Affiliation(s)
- Keiichiro Matsukura
- Institute for Plant Protection, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Ibaraki, Japan
| | - Masaya Matsumura
- Koshi Research Station, Institute for Plant Protection, National Agriculture and Food Research Organization (NARO), Koshi 861-1192, Kumamoto, Japan
| |
Collapse
|
4
|
Li H, Chen Y, Lu C, Tian H, Lin S, Wang L, Linghu T, Zheng X, Wei H, Fan X, Chen Y. Chemosensory protein regulates the behavioural response of Frankliniella intonsa and Frankliniella occidentalis to tomato zonate spot virus-Infected pepper (Capsicum annuum). PLoS Pathog 2023; 19:e1011380. [PMID: 37155712 DOI: 10.1371/journal.ppat.1011380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 05/18/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023] Open
Abstract
Many herbivorous insects rely on plant volatiles to locate their host plants. Vector-borne viral infections induce changes in plant volatiles, which render infected plants more attractive to insect vectors. However, the detailed mechanisms underlying the olfactory responses of insect vectors induced by the volatiles produced by virus-infected plants are poorly understood. Here, we show that volatiles emitted by pepper (Capsicum annuum) plants infected with tomato zonate spot virus (TZSV), particularly the volatile cis-3-hexenal, which is recognized by chemosensory protein 1 of the thrips Frankliniella intonsa (FintCSP1), are more attractive to F. intonsa than the volatiles emitted by non-infected pepper plants. FintCSP1 is highly abundant in the antenna of F. intonsa. Silencing of FintCSP1 significantly decreased electroantennogram responses of F. intonsa antennae to cis-3-hexenal and impaired thrips' responses to TZSV-infected pepper plants and cis-3-hexenal, as assessed using a Y-tube olfactometer. Three-dimensional model predictions indicated that FintCSP1 consists of seven α-helixes and two disulfide bridges. Molecular docking analysis suggested that cis-3-hexenal is positioned deep inside the binding pocket of FintCSP1 and binds to residues of the protein. We combined site-directed mutagenesis and fluorescence binding assays and identified three hydrophilic residues, Lys26, Thr28, and Glu67, of FintCSP1 as being critical for cis-3-hexenal binding. Furthermore, CSP of F. occidentalis (FoccCSP) is also a key olfactory protein involved in modulating the behaviour of F. occidentalis to TZSV-infected pepper. This study revealed the specific binding characteristics of CSPs to cis-3-hexenal and confirmed the general hypothesis that virus infections induce changes in host volatiles, which can be recognized by the olfactory proteins of the insect vector to enhance vector attraction and this may facilitate viral spread and transmission.
Collapse
Affiliation(s)
- Heng Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yixin Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Chengcong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Houjun Tian
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture, Fujian Engineering Research Center for Green Pest Management, Fuzhou, China
| | - Shuo Lin
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture, Fujian Engineering Research Center for Green Pest Management, Fuzhou, China
| | - Liang Wang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture, Fujian Engineering Research Center for Green Pest Management, Fuzhou, China
| | - Tingting Linghu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xue Zheng
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Hui Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture, Fujian Engineering Research Center for Green Pest Management, Fuzhou, China
| | - Xiaojing Fan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yong Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture, Fujian Engineering Research Center for Green Pest Management, Fuzhou, China
| |
Collapse
|
5
|
Bergmann S, Bohn MC, Dornbusch S, Becker SC, Stern M. Influence of RVFV Infection on Olfactory Perception and Behavior in Drosophila melanogaster. Pathogens 2023; 12:pathogens12040558. [PMID: 37111444 PMCID: PMC10142484 DOI: 10.3390/pathogens12040558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
In blood-feeding dipterans, olfaction plays a role in finding hosts and, hence, in spreading pathogens. Several pathogens are known to alter olfactory responses and behavior in vectors. As a mosquito-borne pathogen, Rift Valley Fever Virus (RVFV) can affect humans and cause great losses in livestock. We test the influence of RVFV infection on sensory perception, olfactory choice behavior and activity on a non-biting insect, Drosophila melanogaster, using electroantennograms (EAG), Y-maze, and locomotor activity monitor. Flies were injected with RVFV MP12 strain. Replication of RVFV and its persistence for at least seven days was confirmed by quantitative reverse transcription-PCR (RT-qPCR). One day post injection, infected flies showed weaker EAG responses towards 1-hexanol, vinegar, and ethyl acetate. In the Y-maze, infected flies showed a significantly lower response for 1-hexanol compared to uninfected flies. At days six or seven post infection, no significant difference between infected and control flies could be found in EAG or Y-maze anymore. Activity of infected flies was reduced at both time points. We found an upregulation of the immune-response gene, nitric oxide synthase, in infected flies. An infection with RVFV is able to transiently reduce olfactory perception and attraction towards food-related odors in Drosophila, while effects on activity and immune effector gene expression persist. A similar effect in blood-feeding insects could affect vector competence in RVFV transmitting dipterans.
Collapse
Affiliation(s)
- Stella Bergmann
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Maja C. Bohn
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - Susann Dornbusch
- Institute for Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Stefanie C. Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Michael Stern
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| |
Collapse
|
6
|
Chen L, Liu Y, Wu F, Zhang J, Cui X, Wu S, Deng X, Xu M. Citrus tristeza virus Promotes the Acquisition and Transmission of ‘Candidatus Liberibacter Asiaticus’ by Diaphorina citri. Viruses 2023; 15:v15040918. [PMID: 37112898 PMCID: PMC10143984 DOI: 10.3390/v15040918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
Diaphorina citri Kuwayama (D. citri) is an insect vector of phloem-limited ‘Candidatus Liberibacter asiatus’ (CLas), the presumed pathogen of citrus Huanglongbing (HLB). Recently, our lab has preliminarily found it acquired and transmitted Citrus tristeza virus (CTV), which was previously suggested to be vectored by species of aphids. However, the influences of one of the pathogens on the acquisition and transmission efficiency of the other pathogen remain unknown. In this study, CLas and CTV acquisition and transmission by D. citri at different development stages under field and laboratory conditions were determined. CTV could be detected from the nymphs, adults, and honeydew of D. citri but not from the eggs and exuviates of them. CLas in plants might inhibit CTV acquisition by D. citri as lower CTV–positive rates and CTV titers were detected in D. citri collected from HLB-affected trees compared to those from CLas–free trees. D. citri were more likely to obtain CTV than CLas from host plants co-infected with the two pathogens. Intriguingly, CTV in D. citri facilitated the acquisition and transmission of CLas, but CLas carried by D. citri had no significant effect on the transmission of CTV by the same vector. Molecular detection and microscopy methods confirmed the enrichment of CTV in the midgut after a 72-h acquisition access period. Collectively, these results raise essential scientific questions for further research on the molecular mechanism of pathogen transmission by D. citri and provide new ideas for the comprehensive prevention and control of HLB and CTV.
Collapse
Affiliation(s)
- Longtong Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou 510642, China
| | - Yangyang Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou 510642, China
| | - Fengnian Wu
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Jingtian Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqing Cui
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou 510642, China
| | - Shitong Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoling Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou 510642, China
| | - Meirong Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Khan F, Stanley D, Kim Y. Two Alimentary Canal Proteins, Fo-G N and Fo-Cyp1, Act in Western Flower Thrips, Frankliniella occidentalis TSWV Infection. INSECTS 2023; 14:insects14020154. [PMID: 36835723 PMCID: PMC9965231 DOI: 10.3390/insects14020154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 05/15/2023]
Abstract
Tomato spotted wilt virus (TSWV) is a plant virus that causes massive economic damage to high-valued crops. This virus is transmitted by specific thrips, including the western flower thrips, Frankliniella occidentalis. TSWV is acquired by the young larvae during feeding on infected host plants. TSWV infects the gut epithelium through hypothetical receptor(s) and multiplies within the cells for subsequent horizontal transmission to other plant hosts via the salivary glands during feeding. Two alimentary canal proteins, glycoprotein (Fo-GN) and cyclophilin (Fo-Cyp1), are thought to be associated with the TSWV entry into the gut epithelium of F. occidentalis. Fo-GN possesses a chitin-binding domain, and its transcript was localized on the larval gut epithelium by fluorescence in situ hybridization (FISH) analysis. Phylogenetic analysis indicated that F. occidentalis encodes six cyclophilins, in which Fo-Cyp1 is closely related to a human cyclophilin A, an immune modulator. The Fo-Cyp1 transcript was also detected in the larval gut epithelium. Expression of these two genes was suppressed by feeding their cognate RNA interference (RNAi) to young larvae. The RNAi efficiencies were confirmed by the disappearance of the target gene transcripts from the gut epithelium by FISH analyses. The RNAi treatments directed to Fo-GN or Fo-Cyp1 prevented the typical TSWV titer increase after the virus feeding, compared to control RNAi treatment. Our immunofluorescence assay using a specific antibody to TSWV documented the reduction of TSWV in the larval gut and adult salivary gland after the RNAi treatments. These results support our hypothesis that the candidate proteins Fo-GN and Fo-Cyp1 act in TSWV entry and multiplication in F. occidentalis.
Collapse
Affiliation(s)
- Falguni Khan
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| | - David Stanley
- Biological Control of Insects Research Laboratory, USDA/ARS, 1503 S Providence Road, Columbia, MO 65203, USA
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
- Correspondence: ; Tel.: +82-54-820-5638
| |
Collapse
|
8
|
Virus-Induced Plant Volatiles Promote Virus Acquisition and Transmission by Insect Vectors. Int J Mol Sci 2023; 24:ijms24021777. [PMID: 36675290 PMCID: PMC9860585 DOI: 10.3390/ijms24021777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Rice dwarf virus (RDV) is transmitted by insect vectors Nephotettix virescens and Nephotettix cincticeps (Hemiptera: Cicadellidae) that threatens rice yield and results in substantial economic losses. RDV induces two volatiles ((E)-β-caryophyllene (EBC) and 2-heptanol) to emit from RDV-infected rice plants. However, the effects of the two volatiles on the olfactory behavior of both non-viruliferous and viruliferous N. virescens are unknown, and whether the two volatiles could facilitate the spread and dispersal of RDV remains elusive. Combining the methods of insect behavior, chemical ecology, and molecular biology, we found that EBC and 2-heptanol influenced the olfactory behavior of non-viruliferous and viruliferous N. virescens, independently. EBC attracted non-viruliferous N. virescens towards RDV-infected rice plants, promoting virus acquisition by non-viruliferous vectors. The effect was confirmed by using oscas1 mutant rice plants (repressed EBC synthesis), but EBC had no effects on viruliferous N. virescens. 2-heptanol did not attract or repel non-viruliferous N. virescens. However, spraying experiments showed that 2-heptanol repelled viruliferous N. virescens to prefer RDV-free rice plants, which would be conducive to the transmission of the virus. These novel results reveal that rice plant volatiles modify the behavior of N. virescens vectors to promote RDV acquisition and transmission. They will provide new insights into virus-vector-plant interactions, and promote the development of new prevention and control strategies for disease management.
Collapse
|
9
|
Ai S, Zhang Y, Chen Y, Zhang T, Zhong G, Yi X. Insect-Microorganism Interaction Has Implicates on Insect Olfactory Systems. INSECTS 2022; 13:1094. [PMID: 36555004 PMCID: PMC9787996 DOI: 10.3390/insects13121094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Olfaction plays an essential role in various insect behaviors, including habitat selection, access to food, avoidance of predators, inter-species communication, aggregation, and reproduction. The olfactory process involves integrating multiple signals from external conditions and internal physiological states, including living environments, age, physiological conditions, and circadian rhythms. As microorganisms and insects form tight interactions, the behaviors of insects are constantly challenged by versatile microorganisms via olfactory cues. To better understand the microbial influences on insect behaviors via olfactory cues, this paper summarizes three different ways in which microorganisms modulate insect behaviors. Here, we deciphered three interesting aspects of microorganisms-contributed olfaction: (1) How do volatiles emitted by microorganisms affect the behaviors of insects? (2) How do microorganisms reshape the behaviors of insects by inducing changes in the synthesis of host volatiles? (3) How do symbiotic microorganisms act on insects by modulating behaviors?
Collapse
Affiliation(s)
- Shupei Ai
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yuhua Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yaoyao Chen
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Guo W, Du L, Li C, Ma S, Wang Z, Lan Y, Lin F, Zhou Y, Wang Y, Zhou T. Rice Stripe Virus Modulates the Feeding Preference of Small Brown Planthopper from the Stems to Leaves of Rice Plants to Promote Virus Infection. PHYTOPATHOLOGY 2022; 112:2022-2027. [PMID: 35297646 DOI: 10.1094/phyto-01-22-0040-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Research on plant-virus-vector interactions has revealed that viruses can enhance their spread to new host plants by attracting nonviruliferous vectors to infected plants or driving viruliferous vectors to noninfected plants. However, whether viruses can also modulate the feeding preference of viruliferous vectors for different plant parts remains largely unknown. Here, by using rice stripe virus (RSV) and its vector, the small brown planthopper (SBPH), as a model, the effect of the virus on the feeding preference of its vector was studied by calculating the number of nonviruliferous and viruliferous SBPHs settling on different parts of rice plants. The results showed that the RSV-free SBPHs significantly preferred feeding on the stems of rice plants, whereas RSV-carrying SBPHs fed more on rice leaves. Moreover, the rice plants inoculated with RSV on the leaves showed more severe symptoms, with enhanced disease incidence and virus accumulation compared with rice plants inoculated at the top and bottom of stems, suggesting that the leaves are more susceptible to RSV than the stems of rice plants. These results demonstrate that RSV modulates the feeding preference of its transmitting vector SBPH from the stems to leaves of rice plants to promote virus infection. Interestingly, we also found that the leaves were more susceptible than the stems to rice black-streaked dwarf virus. This study proves that the feeding preference of insect vectors can be modulated by plant viruses to facilitate virus transmission.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Linlin Du
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Chenyang Li
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shuhui Ma
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoyun Wang
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ying Lan
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Feng Lin
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yijun Zhou
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yunyue Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Tong Zhou
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- International Rice Research Institute and Jiangsu Academy of Agricultural Sciences Joint Laboratory, Nanjing 210014, China
| |
Collapse
|
11
|
Manipulation of Insect Vectors’ Host Selection Behavior by Barley Yellow Dwarf Virus Is Dependent on the Host Plant Species and Viral Co-Infection. Life (Basel) 2022; 12:life12050644. [PMID: 35629312 PMCID: PMC9142937 DOI: 10.3390/life12050644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
Previous studies have shown that vector-borne viruses can manipulate the host selection behavior of insect vectors, yet the tripartite interactions of pathogens, host plants and insect vectors have been documented only in a limited number of pathosystems. Here, we report that the host selection behavior of the insect vector of barley yellow dwarf virus-PAV (BYDV-PAV) and cereal yellow dwarf virus-RPS (CYDV-RPS) is dependent on the host plant species and viral co-infection. This study shows that a model cereal plant, Brachypodium distachyon, is a suitable host plant for examining tripartite interactions with BYDV-PAV and CYDV-RPS. We reveal that BYDV-PAV has a different effect on the host selection behavior of its insect vector depending on the host plant species. Viruliferous aphids significantly prefer non-infected plants to virus-infected wheat plants, whereas viral infection on a novel host plant, B. distachyon, is not implicated in the attraction of either viruliferous or nonviruliferous aphids. Furthermore, our findings show that multiple virus infections of wheat with BYDV-PAV and CYDV-RPS alter the preference of their vector aphid. This result indicates that BYDV-PAV acquisition alters the insect vector’s host selection, thereby varying the spread of multiple viruses.
Collapse
|
12
|
Zhao Y, Cao X, Zhong W, Zhou S, Li Z, An H, Liu X, Wu R, Bohora S, Wu Y, Liang Z, Chen J, Yang X, Zhou G, Zhang T. A viral protein orchestrates rice ethylene signaling to coordinate viral infection and insect vector-mediated transmission. MOLECULAR PLANT 2022; 15:689-705. [PMID: 35032687 DOI: 10.1016/j.molp.2022.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/19/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Arthropod-borne viruses cause serious threats to human health and global agriculture by rapidly spreading via insect vectors. Southern rice black-streaked dwarf virus (SRBSDV) is the most damaging rice-infecting virus that is frequently transmitted by planthoppers. However, the molecular mechanisms underlying its propagation in the host plants and epidemics in the field are largely unknown. Here, we showed that the SRBSDV-encoded P6 protein is a key effector that regulates rice ethylene signaling to coordinate viral infection and transmission. In early SRBSDV infection, P6 interacts with OsRTH2 in the cytoplasm to activate ethylene signaling and enhance SRBSDV proliferation; this also repels the insect vector to reduce infestation. In late infection, P6 enters the nucleus, where it interacts with OsEIL2, a key transcription factor of ethylene signaling. The P6-OsEIL2 interaction suppresses ethylene signaling by preventing the dimerization of OsEIL2, thereby facilitating viral transmission by attracting the insect vector. Collectively, these findings reveal a novel molecular mechanism by which an arbovirus modulates the host defense system to promote viral infection and transmission.
Collapse
Affiliation(s)
- Yaling Zhao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xue Cao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Weihua Zhong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shunkang Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhanbiao Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hong An
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Xiahua Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ruifeng Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Surakshya Bohora
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhenyi Liang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Jiahao Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
13
|
Wang Z, Zhou L, Lan Y, Li X, Wang J, Dong J, Guo W, Jing D, Liu Q, Zhang S, Liu Z, Shi W, Yang W, Yang T, Sun F, Du L, Fu H, Ma Y, Shao Y, Chen L, Li J, Li S, Fan Y, Wang Y, Leung H, Liu B, Zhou Y, Zhao J, Zhou T. An aspartic protease 47 causes quantitative recessive resistance to rice black-streaked dwarf virus disease and southern rice black-streaked dwarf virus disease. THE NEW PHYTOLOGIST 2022; 233:2520-2533. [PMID: 35015901 DOI: 10.1111/nph.17961] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/23/2021] [Indexed: 05/26/2023]
Abstract
Rice black-streaked dwarf virus disease (RBSDVD) and southern rice black-streaked dwarf virus disease (SRBSDVD) are the most destructive viral diseases in rice. Progress is limited in breeding due to lack of resistance resource and inadequate knowledge on the underlying functional gene. Using genome-wide association study (GWAS), linkage disequilibrium (LD) decay analyses, RNA-sequencing, and genome editing, we identified a highly RBSDVD-resistant variety and its first functional gene. A highly RBSDVD-resistant variety W44 was identified through extensive evaluation of a diverse international rice panel. Seventeen quantitative trait loci (QTLs) were identified among which qRBSDV6-1 had the largest phenotypic effect. It was finely mapped to a 0.8-1.2 Mb region on chromosome 6, with 62 annotated genes. Analysis of the candidate genes underlying qRBSDV6-1 showed high expression of aspartic proteinase 47 (OsAP47) in a susceptible variety, W122, and a low resistance variety, W44. OsAP47 overexpressing lines exhibited significantly reduced resistance, while the knockout mutants exhibited significantly reduced SRBSDVD and RBSDVD severity. Furthermore, the resistant allele Hap1 of OsAP47 is almost exclusive to Indica, but rare in Japonica. Results suggest that OsAP47 knockout by editing is effective for improving RBSDVD and SRBSDVD resistance. This study provides genetic information for breeding resistant cultivars.
Collapse
Affiliation(s)
- Zhaoyun Wang
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Lian Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, Guangdong Province, China
| | - Ying Lan
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Xuejuan Li
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, Guangdong Province, China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, Guangdong Province, China
| | - Wei Guo
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
- Key Laboratory of Agricultural Biodiversity and Disease Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, China
| | - Dedao Jing
- Zhenjiang Institute of Agricultural Sciences of the Ning-Zhen Hilly District, Jurong, 212400, Jiangsu Province, China
| | - Qing Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, Guangdong Province, China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, Guangdong Province, China
| | - Zhiyang Liu
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Wenjuan Shi
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Wu Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, Guangdong Province, China
| | - Tifeng Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, Guangdong Province, China
| | - Feng Sun
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Linlin Du
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Hua Fu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, Guangdong Province, China
| | - Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, Guangdong Province, China
| | - Yudong Shao
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Luo Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, Guangdong Province, China
| | - Jitong Li
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Shuo Li
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Yongjian Fan
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Yunyue Wang
- Key Laboratory of Agricultural Biodiversity and Disease Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, China
| | - Hei Leung
- International Rice Research Institute, Metro Manila, 1301, Philippines
| | - Bin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, Guangdong Province, China
| | - Yijun Zhou
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong Province, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, Guangdong Province, China
| | - Tong Zhou
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
- International Rice Research Institute and Jiangsu Academy of Agricultural Sciences Joint Laboratory, Nanjing, 210014, Jiangsu Province, China
| |
Collapse
|
14
|
Li H, Xu X, Han K, Wang Z, Ma W, Lin Y, Hua H. Isolation and functional analysis of OsAOS1 promoter for resistance to Nilaparvata lugens Stål infestation in rice. J Cell Physiol 2022; 237:1833-1844. [PMID: 34908164 DOI: 10.1002/jcp.30653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/30/2021] [Accepted: 11/18/2021] [Indexed: 11/07/2022]
Abstract
Insect pests have a great impact on the yield and quality of crops. Insecticide applications are an effective method of pest control, however, they also have adverse effects on the environment. Using insect-inducible promoters to drive insect-resistant genes in transgenic crops is a potential sustainable pest management strategy, but insect-inducible promoters have been rarely reported. In this study, we found rice allene oxide synthase gene (AOS, LOC_Os03g12500) can be highly upregulated following brown planthopper (Nilaparvata lugens Stål, BPH) infestation. Then, we amplified the promoter of OsAOS1 and the β- glucuronidase reporter gene was used to analyze the expression pattern of the promoter. Through a series of 5' truncated assays, three positive regulatory regions in response to BPH infestation in the promoter were identified. The transgenic plants, P1R123-min 35S and P1TR1-min 35S promoter-driven snowdrop lectin (Galanthus nivalis agglutinin, GNA) gene, demonstrated the highest expression levels of GNA and lowest BPH survival. Our work identified a BPH-inducible promoter and three positive regions within it. Transgenic rice with GNA driven by OsAOS1 promoter and positive regions exhibited an expected lethal effect on BPH. This study proved the application potential of BPH-inducible promoter and provided a novel path for the selection of insect-resistant tools in the future.
Collapse
Affiliation(s)
- Hanpeng Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xueliang Xu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Kehong Han
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhengjie Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hongxia Hua
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
15
|
Ghosh D, M M, Chakraborty S. Impact of viral silencing suppressors on plant viral synergism: a global agro-economic concern. Appl Microbiol Biotechnol 2021; 105:6301-6313. [PMID: 34423406 DOI: 10.1007/s00253-021-11483-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022]
Abstract
Plant viruses are known for their devastating impact on global agriculture. These intracellular biotrophic pathogens can infect a wide variety of plant hosts all over the world. The synergistic association of plant viruses makes the situation more alarming. It usually promotes the replication, movement, and transmission of either or both the coexisting synergistic viral partners. Although plants elicit a robust antiviral immune reaction, including gene silencing, to limit these infamous invaders, viruses counter it by encoding viral suppressors of RNA silencing (VSRs). Growing evidence also suggests that VSRs play a driving role in mediating the plant viral synergism. This review briefly discusses the evil impacts of mixed infections, especially synergism, and then comprehensively describes the emerging roles of VSRs in mediating the synergistic association of plant viruses. KEY POINTS: • Synergistic associations of plant viruses have devastating impacts on global agriculture. • Viral suppressors of RNA silencing (VSRs) play key roles in driving plant viral synergism.
Collapse
Affiliation(s)
- Dibyendu Ghosh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Malavika M
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
16
|
Chang X, Wang F, Fang Q, Chen F, Yao H, Gatehouse AMR, Ye G. Virus-induced plant volatiles mediate the olfactory behaviour of its insect vectors. PLANT, CELL & ENVIRONMENT 2021; 44:2700-2715. [PMID: 33866575 DOI: 10.1111/pce.14069] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 05/19/2023]
Abstract
Plant viruses can manipulate their hosts to release odours that are attractive or repellent to their insect vectors. However, the volatile organic compounds (VOCs), either individually or as mixtures, which play a key role in the olfactory behaviour of insect vectors remains largely unknown. Our study focused on green rice leafhoppers (GRLHs) vectoring rice dwarf virus (RDV) revealed that RDV infection significantly induced the emission of (E)-β-caryophyllene and 2-heptanol by rice plants, which influenced the olfactory behaviour of both non-viruliferous and viruliferous GRLHs. (E)-β-caryophyllene attracted non-viruliferous GRLHs to settle on RDV-infected plants, but neither attracted nor repelled viruliferous GRLHs. In contrast, 2-heptanol repelled viruliferous GRLHs to settle on RDV-infected plants, but neither repelled nor attracted non-viruliferous GRLHs. Suppression of (E)-β-caryophyllene synthase OsCAS via CRISPR-Cas9 to generate oscas-1 plants enabled us to confirm the important role played by (E)-β-caryophyllene in modulating the virus-vector-host plant interaction. These novel results reveal the role of these virus-induced VOCs in modulating the behaviour of its GRLH insect vector and may facilitate the design of new strategies for disease control through manipulation of plant volatile emissions.
Collapse
Affiliation(s)
- Xuefei Chang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hongwei Yao
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Angharad M R Gatehouse
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Wang Z, Chen B, Zhang T, Zhou G, Yang X. Rice Stripe Mosaic Disease: Characteristics and Control Strategies. Front Microbiol 2021; 12:715223. [PMID: 34394065 PMCID: PMC8358444 DOI: 10.3389/fmicb.2021.715223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/13/2021] [Indexed: 02/04/2023] Open
Abstract
Rice stripe mosaic disease (RSMD) is caused by the rice stripe mosaic virus (RSMV; genus Cytorhabdovirus, family Rhabdoviridae). In recent years, significant progress has been made in understanding several aspects of the disease, especially its geographical distribution, symptoms, vectors, gene functions, and control measures. Since RSMD was first detected in southern China in 2015, it has been found in more and more rice growing areas and has become one of the most important rice diseases in southern China. RSMV is transmitted by the leafhopper Recilia dorsalis in a persistent-propagative manner, inducing yellow stripes, a slight distortion of leaves, increased tillers, and empty grains in rice plants. The virus has a negative-sense single-strand RNA genome of about 12.7 kb that encodes seven proteins: N, P, P3, M, G, P6, and L. Several molecular and serological tests have been developed to detect RSMV in plants and insects. The disease cycle can be described as follows: RSMV and its vector overwinter in infected plants; viruliferous R. dorsalis adults transmit the virus to spring rice and lay eggs on the infected seedlings; the next generation of R. dorsalis propagate on infected seedlings, become viruliferous, disperse, and cause new disease outbreaks. Control measures include monitoring and accurate forecasting, selecting disease-resistant varieties, improving cultivation systems, covering rice seedling nurseries with insect-proof nets, and using pesticides rationally. Inappropriate cultivation systems, pesticide overuse, and climatic conditions contribute to epidemics by affecting the development of vector insects and their population dynamics.
Collapse
Affiliation(s)
- Zhiyi Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Biao Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xin Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Yu X, Jia D, Wang Z, Li G, Chen M, Liang Q, Zhou Y, Liu H, Xiao M, Li S, Chen Q, Chen H, Wei T. A plant reovirus hijacks endoplasmic reticulum-associated degradation machinery to promote efficient viral transmission by its planthopper vector under high temperature conditions. PLoS Pathog 2021; 17:e1009347. [PMID: 33647067 PMCID: PMC7951979 DOI: 10.1371/journal.ppat.1009347] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/11/2021] [Accepted: 01/29/2021] [Indexed: 01/10/2023] Open
Abstract
In the field, many insect-borne crop viral diseases are more suitable for maintenance and spread in hot-temperature areas, but the mechanism remains poorly understood. The epidemic of a planthopper (Sogatella furcifera)-transmitted rice reovirus (southern rice black-streaked dwarf virus, SRBSDV) is geographically restricted to southern China and northern Vietnam with year-round hot temperatures. Here, we reported that two factors of endoplasmic reticulum-associated degradation (ERAD) machinery, the heat shock protein DnaJB11 and ER membrane protein BAP31, were activated by viral infection to mediate the adaptation of S. furcifera to high temperatures. Infection and transmission efficiencies of SRBSDV by S. furcifera increased with the elevated temperatures. We observed that high temperature (35°C) was beneficial for the assembly of virus-containing tubular structures formed by nonstructural protein P7-1 of SRBSDV, which facilitates efficient viral transmission by S. furcifera. Both DnaJB11 and BAP31 competed to directly bind to the tubule protein P7-1 of SRBSDV; however, DnaJB11 promoted whereas BAP31 inhibited P7-1 tubule assembly at the ER membrane. Furthermore, the binding affinity of DnaJB11 with P7-1 was stronger than that of BAP31 with P7-1. We also revealed that BAP31 negatively regulated DnaJB11 expression through their direct interaction. High temperatures could significantly upregulate DnaJB11 expression but inhibit BAP31 expression, thereby strongly facilitating the assembly of abundant P7-1 tubules. Taken together, we showed that a new temperature-dependent protein quality control pathway in the ERAD machinery has evolved for strong activation of DnaJB11 for benefiting P7-1 tubules assembly to support efficient transmission of SRBSDV in high temperatures. We thus deduced that ERAD machinery has been hitchhiked by insect-borne crop viruses to enhance their transmission in tropical climates.
Collapse
Affiliation(s)
- Xiangzhen Yu
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Zhen Wang
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Guangjun Li
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Manni Chen
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Qifu Liang
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Yanyan Zhou
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Huan Liu
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Mi Xiao
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Siting Li
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Hongyan Chen
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- * E-mail: (HC); (TW)
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
- * E-mail: (HC); (TW)
| |
Collapse
|
19
|
Zhang L, Wu N, Ren Y, Wang X. Insights Into Insect Vector Transmission and Epidemiology of Plant-Infecting Fijiviruses. Front Microbiol 2021; 12:628262. [PMID: 33717017 PMCID: PMC7943461 DOI: 10.3389/fmicb.2021.628262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
Viruses in genus Fijivirus (family Reoviridae) have caused serious damage to rice, maize and sugarcane in American, Asian, European and Oceanian countries, where seven plant-infecting and two insect-specific viruses have been reported. Because the planthopper vectors are the only means of virus spread in nature, their migration and efficient transmission of these viruses among different crops or gramineous weeds in a persistent propagative manner are obligatory for virus epidemics. Understanding the mechanisms of virus transmission by these insect vectors is thus key for managing the spread of virus. This review describes current understandings of main fijiviruses and their insect vectors, transmission characteristics, effects of viruses on the behavior and physiology of vector insects, molecular transmission mechanisms. The relationships among transmission, virus epidemics and management are also discussed. To better understand fijivirus-plant disease system, research needs to focus on the complex interactions among the virus, insect vector, insect microbes, and plants.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingdang Ren
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Jeger MJ. The Epidemiology of Plant Virus Disease: Towards a New Synthesis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1768. [PMID: 33327457 PMCID: PMC7764944 DOI: 10.3390/plants9121768] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Epidemiology is the science of how disease develops in populations, with applications in human, animal and plant diseases. For plant diseases, epidemiology has developed as a quantitative science with the aims of describing, understanding and predicting epidemics, and intervening to mitigate their consequences in plant populations. Although the central focus of epidemiology is at the population level, it is often necessary to recognise the system hierarchies present by scaling down to the individual plant/cellular level and scaling up to the community/landscape level. This is particularly important for diseases caused by plant viruses, which in most cases are transmitted by arthropod vectors. This leads to range of virus-plant, virus-vector and vector-plant interactions giving a distinctive character to plant virus epidemiology (whilst recognising that some fungal, oomycete and bacterial pathogens are also vector-borne). These interactions have epidemiological, ecological and evolutionary consequences with implications for agronomic practices, pest and disease management, host resistance deployment, and the health of wild plant communities. Over the last two decades, there have been attempts to bring together these differing standpoints into a new synthesis, although this is more apparent for evolutionary and ecological approaches, perhaps reflecting the greater emphasis on shorter often annual time scales in epidemiological studies. It is argued here that incorporating an epidemiological perspective, specifically quantitative, into this developing synthesis will lead to new directions in plant virus research and disease management. This synthesis can serve to further consolidate and transform epidemiology as a key element in plant virus research.
Collapse
Affiliation(s)
- Michael J Jeger
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, UK
| |
Collapse
|
21
|
Li H, Zhou Z, Hua H, Ma W. Comparative transcriptome analysis of defense response of rice to Nilaparvata lugens and Chilo suppressalis infestation. Int J Biol Macromol 2020; 163:2270-2285. [PMID: 32971164 DOI: 10.1016/j.ijbiomac.2020.09.105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
The brown planthopper (BPH, Nilaparvata lugens) and striped stem borer (SSB, Chilo suppressalis) are two of the most devastating insect pests in rice, causing significant losses of rice yield. Plants evolve multiple defense responses in the process of coexisting with pests. According to different pest infestation, the plants selectively activate related pathways and downstream gene expression. However, there are very few reports of differences in defense signaling pathways after rice was attacked by BPH or SSB. We determined the transcriptional responses of rice infested with BPH and SSB for 3 and 6 h using Illumina sequencing. By comparing the difference in gene changes caused by BPH and SSB infestation in rice, multiple signal pathways and gene expression patterns, including phytohormones, secondary metabolites, plant-pathogen interaction, reactive oxygen species, defense response, transcription factors, protease inhibitor and chitinase were found significantly different. Our results provide a basis for further exploring the molecular mechanism of rice defense response caused by BPH and SSB infestation, which will add to further understanding the interactions between plants and insects, and could provide valuable resources that could be applied in insect-resistant crop breeding.
Collapse
Affiliation(s)
- Hanpeng Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zaihui Zhou
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hongxia Hua
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
22
|
Specific and Spillover Effects on Vectors Following Infection of Two RNA Viruses in Pepper Plants. INSECTS 2020; 11:insects11090602. [PMID: 32899551 PMCID: PMC7564562 DOI: 10.3390/insects11090602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023]
Abstract
Mixed infection of plant viruses is ubiquitous in nature and can affect virus-plant-vector interactions differently than single virus infection. While several studies have examined virus-virus interactions involving mixed virus infection, relatively few have examined effects of mixed virus infection on vector preference and fitness, especially when multiple vectors are involved. This study explored how single and mixed viral infection of a non-persistently transmitted cucumber mosaic virus (CMV) and propagative and persistently-transmitted tomato spotted wilt orthotospovirus (TSWV) in pepper, Capsicum annum L., influenced the preference and fitness of their vectors, the green peach aphid, Myzus persicae (Sulzer), and the tobacco thrips, Frankliniella fusca (Hinds), respectively. In general, mixed infected plants exhibited severe symptoms compared with individually infected plants. An antagonistic interaction between the two viruses was observed when CMV titer was reduced following mixed infection with TSWV in comparison with the single infection. TSWV titer did not differ between single and mixed infection. Myzus persicae settling preference and median developmental were not significantly different between CMV and/or TSWV-infected and non-infected plants. Moreover, M. persicae fecundity did not differ between CMV-infected and non-infected pepper plants. However, M. persicae fecundity was substantially greater on TSWV-infected plants than non-infected plants. Myzus persicae fecundity on mixed-infected plants was significantly lower than on singly-infected and non-infected plants. Frankliniella fusca fecundity was higher on CMV and/or TSWV-infected pepper plants than non-infected pepper plants. Furthermore, F. fusca-induced feeding damage was higher on TSWV-infected than on CMV-infected, mixed-infected, or non-infected pepper plants. Overall, our results indicate that the effects of mixed virus infection on vectors were not different from those observed following single virus infection. Virus-induced host phenotype-modulated effects were realized on both specific and non-specific vectors, suggesting crosstalk involving all vectors and viruses in this pathosystem. The driving forces of these interactions need to be further examined. The effects of interactions between two viruses and two vectors towards epidemics of one or both viruses also need to be examined.
Collapse
|
23
|
Li H, Wang Z, Han K, Guo M, Zou Y, Zhang W, Ma W, Hua H. Cloning and functional identification of a Chilo suppressalis-inducible promoter of rice gene, OsHPL2. PEST MANAGEMENT SCIENCE 2020; 76:3177-3187. [PMID: 32336018 DOI: 10.1002/ps.5872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/11/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Promoters play a key role in driving insect-resistant genes during breeding of transgenic plants. In current transgenic procedures for breeding rice resistance to striped stem borer (Chilo suppressalis Walker, SSB), the constitutive promoter is used to drive the insect-resistant gene. To reduce the burden of constitutive promoters on plant growth, isolation and identification of insect-inducible promoters are particularly important. However, few promoters are induced specifically by insect feeding. RESULTS We found rice hydroperoxide lyase gene (OsHPL2) (LOC_Os02g12680) was upregulated after feeding by SSB. We subsequently cloned the promoter of OsHPL2 and analysed its expression pattern using the β-glucuronidase (GUS) reporter gene. Histochemical assays and quantitative analyses of GUS activity confirmed that P HPL2 :GUS was activated by SSB, but did not respond to brown planthopper (Nilaparvata lugens Stål, BPH) infestation, mechanical wounding or phytohormone treatments. A series of 5' truncated assays were conducted and three positive regulatory regions (-1452 to -1213, -903 to -624, and -376 to -176) induced by SSB infestation were identified. P2R123-min 35S and P2TR2-min 35S promoters linked with cry1C of transgenic plants showed the highest levels of Cry1C protein expression and SSB larval mortality. CONCLUSION We identified an SSB-inducible promoter and three positive internal regions. Transgenic rice plants with the OsHPL2 promoter and its positive regions driving cry1C exhibited the expected larvicidal effect on SSB. Our study is the first report of an SSB-inducible promoter that could be used as a potential resource for breeding insect-resistant transgenic crops. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hanpeng Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhengjie Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kehong Han
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mengjian Guo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yulan Zou
- College of Life Science, Huazhong Agricultural University, Wuhan, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongxia Hua
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Abstract
The pathological importance of mixed viral infections in plants might be underestimated except for a few well-characterized synergistic combinations in certain crops. Considering that the host ranges of many viruses often overlap and that most plant species can be infected by several unrelated viruses, it is not surprising to find more than one virus simultaneously in the same plant. Furthermore, dispersal of the majority of plant viruses relies on efficient transmission mechanisms mediated by vector organisms, mainly but not exclusively insects, which can contribute to the occurrence of multiple infections in the same plant. Recent work using different experimental approaches has shown that mixed viral infections can be remarkably frequent, up to the point that they could be considered the rule more than the exception. The purpose of this review is to describe the impact of multiple infections not only on the participating viruses themselves but also on their vectors and on the common host. From this standpoint, mixed infections arise as complex events that involve several cross-interacting players, and they consequently require a more general perspective than the analysis of single-virus/single-host approaches for a full understanding of their relevance.
Collapse
Affiliation(s)
- Ana Beatriz Moreno
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
25
|
Hu K, Qiu L, Zhang Y, Du Y, He H, Ding W, Li Y. A Microinjection Method for Infecting the Planthopper Sogatella furcifera (Hemiptera: Delphacidae) with the Southern Rice Black-Streaked Dwarf Virus. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1541-1545. [PMID: 31329916 DOI: 10.1093/jee/toz106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Indexed: 06/10/2023]
Abstract
The southern rice black-streaked dwarf virus (SRBSDV) causes significant economic damage to rice crops. This virus is transmitted to rice plants by the planthopper Sogatella furcifera (Horváth) in a persistent, circular, and propagative manner. Researchers currently lack suitable methods for assaying the activity of SRBSDV in vitro and preserving the virus all year. We used a microinjection method to directly inject SRBSDV extracts into the hemocoel of S. furcifera nymphs. SRBSDV was subsequently detected by Reverse Transcription-Polymerase Chain Reaction in more than 56.7% of the insects after 5 d and 60% of healthy rice plants fed by these insects also became SRBSDV infected. Moreover, injecting planthopper with an extract of SRBSDV-infected rice plant that had been frozen at -80°C for 220 d caused 63.3% to become viruliferous. These results indicate that SRBSDV can be successfully transmitted to S. furcifera by microinjection, and that extracts of SRBSDV-infected rice plants frozen at -80°C for 220 d still contain sufficient active SRBSDV to infect S. furcifera. We provide a novel way to preserve SRBSDV all year by injecting S. furcifera with the SRBSDV extract.
Collapse
Affiliation(s)
- Kui Hu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yurong Zhang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yu Du
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Hualiang He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Wenbing Ding
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Hunan Agricultural University, Changsha, China
| | - Youzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Hunan Agricultural University, Changsha, China
| |
Collapse
|
26
|
Evaluation of reference genes and expression of key genes involved in the isoprenoid metabolic pathway of rice leaves after infection by the Southern rice black-streaked dwarf virus. Mol Biol Rep 2019; 46:3945-3953. [DOI: 10.1007/s11033-019-04841-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/25/2019] [Indexed: 01/12/2023]
|
27
|
Wang RL, Zhu-Salzman K, Elzaki MEA, Huang QQ, Chen S, Ma ZH, Liu SW, Zhang JE. Mikania Micrantha Wilt Virus Alters Insect Vector's Host Preference to Enhance Its Own Spread. Viruses 2019; 11:E336. [PMID: 30970658 PMCID: PMC6521231 DOI: 10.3390/v11040336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 01/29/2023] Open
Abstract
As an invasive weed, Mikaniamicrantha Kunth has caused serious damage to natural forest ecosystems in South China in recent years. Mikania micrantha wilt virus (MMWV), an isolate of the Gentian mosaic virus (GeMV), is transmitted by Myzuspersicae (Sulzer) in a non-persistent manner and can effectively inhibit the growth of M. micrantha. To explore the MMWV-M. micrantha-M. persicae interaction and its impact on the invasion of M. micrantha, volatile compounds (VOCs) emitted from healthy, mock-inoculated, and MMWV-infected plants were collected, and effects on host preference of the apterous and alate aphids were assessed with Y-shaped olfactometers. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that MMWV infection changed the VOC profiles, rendering plants more attractive to aphids. Clip-cages were used to document the population growth rate of M.persicae fed on healthy, mock-inoculated, or MMWV-infected plants. Compared to those reared on healthy plants, the population growth of M. persicae drastically decreased on the MMWV-infected plants. Plant host choice tests based on visual and contact cues were also conducted using alate M.persicae. Interestingly, the initial attractiveness of MMWV-infected plants diminished, and more alate M. persicae moved to healthy plants. Taken together, MMWV appeared to be able to manipulate its plant host to first attract insect vectors to infected plants but then repel viruliferous vectors to promote its own dispersal. Its potential application for invasive weed management is discussed.
Collapse
Affiliation(s)
- Rui-Long Wang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Keyan Zhu-Salzman
- Departments of Entomology, Texas A&M University, College Station, TX 77843, USA.
| | | | - Qiao-Qiao Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Shi Chen
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Zhi-Hui Ma
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Shi-Wei Liu
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Jia-En Zhang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
28
|
de Haro LA, Arellano SM, Novák O, Feil R, Dumón AD, Mattio MF, Tarkowská D, Llauger G, Strnad M, Lunn JE, Pearce S, Figueroa CM, del Vas M. Mal de Río Cuarto virus infection causes hormone imbalance and sugar accumulation in wheat leaves. BMC PLANT BIOLOGY 2019; 19:112. [PMID: 30902042 PMCID: PMC6431059 DOI: 10.1186/s12870-019-1709-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/11/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Mal de Río Cuarto virus (MRCV) infects several monocotyledonous species including maize and wheat. Infected plants show shortened internodes, partial sterility, increased tillering and reduced root length. To better understand the molecular basis of the plant-virus interactions leading to these symptoms, we combined RNA sequencing with metabolite and hormone measurements. RESULTS More than 3000 differentially accumulated transcripts (DATs) were detected in MRCV-infected wheat plants at 21 days post inoculation compared to mock-inoculated plants. Infected plants exhibited decreased levels of TaSWEET13 transcripts, which are involved in sucrose phloem loading. Soluble sugars, starch, trehalose 6-phosphate (Tre6P), and organic and amino acids were all higher in MRCV-infected plants. In addition, several transcripts related to plant hormone metabolism, transport and signalling were increased upon MRCV infection. Transcripts coding for GA20ox, D14, MAX2 and SMAX1-like proteins involved in gibberellin biosynthesis and strigolactone signalling, were reduced. Transcripts involved in jasmonic acid, ethylene and brassinosteroid biosynthesis, perception and signalling and in auxin transport were also altered. Hormone measurements showed that jasmonic acid, brassinosteroids, abscisic acid and indole-3-acetic acid were significantly higher in infected leaves. CONCLUSIONS Our results indicate that MRCV causes a profound hormonal imbalance that, together with alterations in sugar partitioning, could account for the symptoms observed in MRCV-infected plants.
Collapse
Affiliation(s)
| | - Sofía Maité Arellano
- Instituto de Biotecnología, CICVyA, INTA, CONICET, Hurlingham, Buenos Aires Argentina
| | - Ondrej Novák
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany Czech Academy of Sciences, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | | | - Danuše Tarkowská
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany Czech Academy of Sciences, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Gabriela Llauger
- Instituto de Biotecnología, CICVyA, INTA, CONICET, Hurlingham, Buenos Aires Argentina
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany Czech Academy of Sciences, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Stephen Pearce
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO USA
| | | | - Mariana del Vas
- Instituto de Biotecnología, CICVyA, INTA, CONICET, Hurlingham, Buenos Aires Argentina
| |
Collapse
|
29
|
Hu K, Liu S, Qiu L, Li Y. Three odorant-binding proteins are involved in the behavioral response of Sogatella furcifera to rice plant volatiles. PeerJ 2019; 7:e6576. [PMID: 30867994 PMCID: PMC6409085 DOI: 10.7717/peerj.6576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/06/2019] [Indexed: 12/24/2022] Open
Abstract
Plant volatiles play an important role in regulating insect behavior. Odorant binding proteins (OBPs) are involved in the first step of the olfactory signal transduction pathway and plant volatiles recognition. Sogatella furcifera is one of the most destructive pests of rice crops. Understanding the functions of S. furcifera OBPs (SfurOBPs) in the host plant location and the behavioral responses of S. furcifera to rice plant volatiles could lead to improved, more environmentally-friendly, methods for controlling this pest. We found that SfurOBP1 displayed only weak binding with all the tested volatiles. SfurOBP2, SfurOBP3 and SfurOBP11 had different binding affinities to β-ionone. SfurOBP2 and SfurOBP11 had strong binding affinities to β-caryophyllene (Ki = 2.23 µM) and plant alcohol (Ki = 2.98 µM), respectively. The results of Y-olfactometer experiments indicate that S. furcifera was significantly repelled by octanal and n-octane but strongly attracted by (+)-limonene, acetophenone, 2-heptanone, n-hendecane, α-farnesene and β-ionone. Furthermore, the dsRNA-mediated gene silencing of SfurOBP2, SfurOBP3 and SfurOBP11 shifted the olfactory behavior of S. furcifera for β-ionone, α-farnesene and plant alcohol, respectively. These results suggest that the SfurOBPs are involved in the recognition of rice plant volatiles, and several potential repellants and lures for controlling this pest.
Collapse
Affiliation(s)
- Kui Hu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Sheng Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Youzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, Hunan Province, China.,National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan Province, China
| |
Collapse
|
30
|
Wu W, Huang L, Mao Q, Wei J, Li J, Zhao Y, Zhang Q, Jia D, Wei T. Interaction of viral pathogen with porin channels on the outer membrane of insect bacterial symbionts mediates their joint transovarial transmission. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180320. [PMID: 30967020 PMCID: PMC6367154 DOI: 10.1098/rstb.2018.0320] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2018] [Indexed: 12/11/2022] Open
Abstract
Many hemipteran insects that can transmit plant viruses in a persistent and transovarial manner are generally associated with a common obligate bacterial symbiont Sulcia and its β-proteobacterial partner. Rice dwarf virus (RDV), a plant reovirus, can bind to the envelope of Sulcia through direct interaction of the viral minor outer capsid protein P2 with the bacterial outer membrane protein, allowing the virus to exploit the ancient oocyte entry path of Sulcia in rice leafhopper vectors. Here, we show that RDV can hitchhike with both Sulcia and its β-proteobacterial partner Nasuia to ensure their simultaneous transovarial transmission. Interestingly, RDV can move through the outer envelope of Nasuia and reside in the periplasmic space, which is mediated by the specific interaction of the viral major outer capsid protein P8 and the porin channel on the bacterial outer envelope. Nasuia porin-specific antibody efficiently interferes with the binding between RDV and the Nasuia envelope, thus strongly preventing viral transmission to insect offspring. Thus, RDV has evolved different strategies to exploit the ancient oocyte entry paths used by two obligate bacterial symbionts in rice leafhoppers. Our results thus reveal that RDV has formed complex, cooperative interactions with both Sulcia and Nasuia during their joint transovarial transmission. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Wei Wu
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Lingzhi Huang
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Qianzhuo Mao
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Jing Wei
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Jiajia Li
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Yu Zhao
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Qian Zhang
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Dongsheng Jia
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Taiyun Wei
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| |
Collapse
|
31
|
Li S, Zhou C, Zhou Y. Olfactory co-receptor Orco stimulated by Rice stripe virus is essential for host seeking behavior in small brown planthopper. PEST MANAGEMENT SCIENCE 2019; 75:187-194. [PMID: 29797766 DOI: 10.1002/ps.5086] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/23/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Laodelphax striatellus, the small brown planthopper (SBPH), is an economically important pest, besides sucking damage, which transmits rice viruses to cause severe damages to rice. In the process of virus transmission, the host orientation behavior of insect is mainly driven by olfaction. In this context, the molecular basis of olfaction in SBPH is of particular interest. RESULTS Here, we identified the gene that encodes olfactory receptor co-receptor (Orco) and analyzed its expression profiles in Rice stripe virus (RSV)-infected and RSV-free SBPH. It was found that LstrOrco shared high identity with other Orcos from different order insects. LstrOrco was mainly expressed in the head of SBPH, and its expression was significantly stimulated by RSV-infection. The behavioral bioassay revealed that viruliferous SBPH might have a stronger olfactory and seeking ability for rice than RSV-free insect. After silencing of LstrOrco expression, the olfaction and seeking behavior of nymphs for rice seedlings was significantly inhibited, mainly in the increase of the 'no response' percent and the prolongation of the response time. CONCLUSION These results suggested that Orco played an important role in olfactory signaling and seeking behavior of SBPH, which provided a basic for future development of olfactory-based agriculture pest management strategies. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuo Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Changwei Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
32
|
Wang Q, Li J, Dang C, Chang X, Fang Q, Stanley D, Ye G. Rice dwarf virus infection alters green rice leafhopper host preference and feeding behavior. PLoS One 2018; 13:e0203364. [PMID: 30192810 PMCID: PMC6128522 DOI: 10.1371/journal.pone.0203364] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 08/20/2018] [Indexed: 11/18/2022] Open
Abstract
Host plants, pathogens and their herbivore vectors systems have complex relationships via direct and indirect interactions. Although there are substantial gaps in understanding these systems, the dynamics of the relationships may influence the processes of virus transmission and plant disease epidemics. Rice dwarf virus (RDV) is mainly vectored by green rice leafhoppers (GRLHs), Nephotettix cincticeps (Uhler) (Hemiptera: Cicadellidae) in a persistently circulative manner. In this study, host plant selection preferences of non-viruliferous and viruliferous (carrying RDV) GRLHs between RDV-free and RDV-infected plants were tested. Non-viruliferous GRLHs preferred RDV-infected rice plants over RDV-free rice plants, and viruliferous GRLHs preferred RDV-free rice plants over RDV-infected rice plants. In odor selection preference bioassay using a four-field olfactometer, non-viruliferous GRLHs preferred odors of RDV-infected rice plants over healthy rice and viruliferous GRLHs preferred odors of RDV-free rice plants over RDV-infected ones. In 6 h plant penetration behavior bioassay using electrical penetration graphs, non-viruliferous GRLHs spent shorter time in non-penetration and much longer time in xylem feeding on RDV-infected, compared to RDV-free rice plants. Viruliferous GRLHs exhibited more salivation and stylet movement on RDV-free rice plants than on RDV-infected rice plants. We infer from these findings that RDV influences these vector behaviors by altering host plant physiology to promote viral transmission.
Collapse
Affiliation(s)
- Qianjin Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jingjing Li
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Cong Dang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xuefei Chang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - David Stanley
- USDA/Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia MO, United States of America
| | - Gongyin Ye
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
33
|
Wei J, Jia D, Mao Q, Zhang X, Chen Q, Wu W, Chen H, Wei T. Complex interactions between insect-borne rice viruses and their vectors. Curr Opin Virol 2018; 33:18-23. [PMID: 30031984 DOI: 10.1016/j.coviro.2018.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 06/28/2018] [Accepted: 07/05/2018] [Indexed: 01/12/2023]
Abstract
Insect-borne rice viral diseases are widespread and economically important in many rice-growing countries. Long-term associations between rice viruses and their insect vectors result in evolutionary trade-offs that maintain a balance between the fitness cost of the viral infection of insects and the persistent transmission of the virus by the insect. To promote optimal replication, rice viruses activate innate immune responses, such as autophagy, apoptosis, and stress-regulated signaling pathways in the vector; meanwhile, a conserved insect small interfering RNA antiviral pathway is activated to control excessive viral replication, guaranteeing persistent virus transmission. Furthermore, growing evidence has shown that rice viruses can manipulate their vectors either directly or by inducing changes in host plants to promote the spread of viral pathogens. Thus, understanding the plant-virus-insect relationships offers important insights into how disease epidemics occur and facilitates the design of powerful new strategies for disease control.
Collapse
Affiliation(s)
- Jing Wei
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Dongsheng Jia
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qianzhuo Mao
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaofeng Zhang
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qian Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Wu
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongyan Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Taiyun Wei
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
34
|
Zhang T, Feng W, Ye J, Li Z, Zhou G. Metabolomic Changes in Sogatella furcifera under Southern rice black-streaked dwarf virus Infection and Temperature Stress. Viruses 2018; 10:v10070344. [PMID: 29949918 PMCID: PMC6071123 DOI: 10.3390/v10070344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 01/20/2023] Open
Abstract
Southern rice black-streaked dwarf virus (SRBSDV) is a devastating newly emerged rice reovirus in Eastern and Southeastern Asia transmitted by a long-distance migratory pest, the white-backed planthopper (WBPH). We previously showed that SRBSDV infection decreased the cold tolerance but improved the heat tolerance of its vector, WBPH. Comparative metabolomic analysis was used to explore the potential mechanisms underlying these changes in temperature stress response. Fourth-generation WBPH nymphs were treated with SRBSDV and/or extreme temperature stress and were analyzed using gas chromatography-time of flight-mass spectrometry. A total of 605 distinguishable peaks were identified and 165, 207, and 202 differentially accumulated metabolites were identified in WBPH after virus infection, cold, or heat stress, respectively. The nucleic acids and fatty acids were the major categories of metabolites regulated by SRBSDV infection, whereas temperature stress regulated tricarboxylic acid cycle compounds, sugars, and polyols. For the WBPH samples infected with SRBSDV and subjected to temperature stress, amino acids, sugars, and polyols were the most significant regulated metabolites. The metabolomics study suggests that SRBSDV may influence the extreme temperature tolerance of WBPH by regulating the accumulation of amino acids, sugars, and polyols in the insect body.
Collapse
Affiliation(s)
- Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Wendi Feng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Jiajie Ye
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Zhanbiao Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
35
|
Harth JE, Ferrari MJ, Helms AM, Tooker JF, Stephenson AG. Zucchini Yellow Mosaic Virus Infection Limits Establishment and Severity of Powdery Mildew in Wild Populations of Cucurbita pepo. FRONTIERS IN PLANT SCIENCE 2018; 9:792. [PMID: 29951077 PMCID: PMC6008421 DOI: 10.3389/fpls.2018.00792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/24/2018] [Indexed: 06/01/2023]
Abstract
Few studies have examined the combined effect of multiple parasites on host fitness. Previous work in the Cucurbita pepo pathosystem indicates that infection with Zucchini yellow mosaic virus (ZYMV) reduces exposure to a second insect-vectored parasite (Erwinia tracheiphila). In this study, we performed two large-scale field experiments employing wild gourds (Cucurbita pepo ssp. texana), including plants with a highly introgressed transgene conferring resistance to ZYMV, to examine the interaction of ZYMV and powdery mildew, a common fungal disease. We found that ZYMV-infected plants are more resistant to powdery mildew (i.e., less likely to experience powdery mildew infection and when infected with powdery mildew, have reduced severity of powdery mildew symptoms). As a consequence, during widespread viral epidemics, proportionally more transgenic plants get powdery mildew than non-transgenic plants, potentially mitigating the benefits of the transgene. A greenhouse study using ZYMV-inoculated and non-inoculated controls (non-transgenic plants) revealed that ZYMV-infected plants were more resistant to powdery mildew than controls, suggesting that the transgene itself had no direct effect on the powdery mildew resistance in our field study. Additionally, we found evidence of elevated levels of salicylic acid, a phytohormone that mediates anti-pathogen defenses, in ZYMV-infected plants, suggesting that viral infection induces a plant immune response (systemic acquired resistance), thereby reducing plant susceptibility to powdery mildew infection.
Collapse
Affiliation(s)
- Jacquelyn E. Harth
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Matthew J. Ferrari
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, United States
| | - Anjel M. Helms
- Department of Entomology, The Pennsylvania State University, University Park, PA, United States
| | - John F. Tooker
- Department of Entomology, The Pennsylvania State University, University Park, PA, United States
| | - Andrew G. Stephenson
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
36
|
Mauck KE, Chesnais Q, Shapiro LR. Evolutionary Determinants of Host and Vector Manipulation by Plant Viruses. Adv Virus Res 2018; 101:189-250. [PMID: 29908590 DOI: 10.1016/bs.aivir.2018.02.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Plant viruses possess adaptations for facilitating acquisition, retention, and inoculation by vectors. Until recently, it was hypothesized that these adaptations are limited to virus proteins that enable virions to bind to vector mouthparts or invade their internal tissues. However, increasing evidence suggests that viruses can also manipulate host plant phenotypes and vector behaviors in ways that enhance their own transmission. Manipulation of vector-host interactions occurs through virus effects on host cues that mediate vector orientation, feeding, and dispersal behaviors, and thereby, the probability of virus transmission. Effects on host phenotypes vary by pathosystem but show a remarkable degree of convergence among unrelated viruses whose transmission is favored by the same vector behaviors. Convergence based on transmission mechanism, rather than phylogeny, supports the hypothesis that virus effects are adaptive and not just by-products of infection. Based on this, it has been proposed that viruses manipulate hosts through multifunctional proteins that facilitate exploitation of host resources and elicitation of specific changes in host phenotypes. But this proposition is rarely discussed in the context of the numerous constraints on virus evolution imposed by molecular and environmental factors, which figure prominently in research on virus-host interactions not dealing with host manipulation. To explore the implications of this oversight, we synthesized available literature to identify patterns in virus effects among pathogens with shared transmission mechanisms and discussed the results of this synthesis in the context of molecular and environmental constraints on virus evolution, limitations of existing studies, and prospects for future research.
Collapse
Affiliation(s)
- Kerry E Mauck
- Department of Entomology, University of California, Riverside, Riverside, CA, United States.
| | - Quentin Chesnais
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Lori R Shapiro
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
37
|
Yang X, Zhang T, Chen B, Zhou G. Transmission Biology of Rice Stripe Mosaic Virus by an Efficient Insect Vector Recilia dorsalis (Hemiptera: Cicadellidae). Front Microbiol 2017; 8:2457. [PMID: 29312171 PMCID: PMC5732235 DOI: 10.3389/fmicb.2017.02457] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/27/2017] [Indexed: 11/13/2022] Open
Abstract
Rice stripe mosaic virus (RSMV) is a newly discovered species of cytorhabdovirus infecting rice plants that is transmitted by the leafhopper Recilia dorsalis. In this study, the transmission characteristics of RSMV by R. dorsalis were investigated. Under suitable growth conditions for R. dorsalis, the RSMV acquisition rate reached 71.9% in the second-generation population raised on RSMV-infected rice plants. The minimum acquisition and inoculation access periods of R. dorsalis were 3 and 30 min, respectively. The minimum and maximum latent transmission periods of RSMV in R. dorsalis were 6 and 18 d, respectively, and some R. dorsalis intermittently transmitted RSMV at 2-6 d intervals. Our findings revealed that the virus can replicate in the leafhopper body, but is likely not transovarially transmitted to offspring. These transmission characteristics will help guide the formulation of RSMV prevention and control strategies.
Collapse
Affiliation(s)
| | | | | | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
38
|
Co-infection of two reoviruses increases both viruses accumulation in rice by up-regulating of viroplasm components and movement proteins bilaterally and RNA silencing suppressor unilaterally. Virol J 2017; 14:150. [PMID: 28789694 PMCID: PMC5549333 DOI: 10.1186/s12985-017-0819-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/04/2017] [Indexed: 11/26/2022] Open
Abstract
Background Synergism between southern rice black-streaked dwarf virus (SRBSDV) and rice ragged stunt virus (RRSV) not only aggravates disease symptoms but also enhances their vector acquisition efficiencies by increasing both viruses’ titers in co-infected rice plants, which may exacerbate the epidemic of both viruses and cause significant damage to rice production. The molecular mechanism of viral synergism of these two viruses remains unexplored. Methods Single and double infection of SRBSDV and RRSV were obtained with the viruliferous white-backed planthopper and brown planthopper inoculation on four-leaf stage rice seedlings, respectively, under experimental condition. The second upper leaf from each inoculated rice plants were collected at 9, 15, and 20 days post inoculation (dpi) and used for relative quantification of 13 SRBSDV genes and 11 RRSV genes by the reverse-transcription quantitative PCR. Viral gene expression levels were compared between singly and doubly infected samples at the same stage. Results The movement protein and viroplasm matrix-related genes as well as the structural (capsid) protein genes of both viruses were remarkably up-regulated at different time points in the co-infected rice plants compared with the samples singly infected with SRBSDV or RRSV, however, the RNA silencing suppressor (P6) of only RRSV, but not of both the viruses, was up-regulated. Conclusions The SRBSDV-RRSV synergism promoted replication and movement of both viruses and inhibited the host immunity by enhancing the gene suppressing effect exerted by one of them (RRSV). Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0819-0) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
Effects of Transgenic Rice Infected with SRBSDV on Bt expression and the Ecological Fitness of Non-vector Brown Planthopper Nilaparvata lugens. Sci Rep 2017; 7:6328. [PMID: 28740253 PMCID: PMC5524900 DOI: 10.1038/s41598-017-02218-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/07/2017] [Indexed: 12/02/2022] Open
Abstract
The susceptibility of rice lines, T1C-19, T2A-1, and MH63 to SRBSDV infection are similar and the contents of cry protein in T2A-1 and T1C-19 do not change significantly. The survival rates of BPH nymphs feeding on SRBSDV-infected T1C-19, Bt T2A-1, or MH63 rice plants were not significantly different. The developmental stages of female BPH fed on T1C-19 plants infected with SRBSDV were significantly shorter than those fed on uninfected rice, while the males showed no significant difference. The duration of BPH feeding on SRBSDV-infected T2A-1 and MH63 also showed no significant difference in comparison with the respective control groups. Longevities of BPH adults feeding on SRBSDV-infected T1C-19, T2A-1 or MH63 were also not significant. However, the longevity of male adult BPH feeding on un-infected MH63 was significantly reduced in comparison with that of adult males feeding on un-infected T1C-19 and T2A-1 rice. In addition, the different rice lines and the rice plants infected and uninfected with SRBSDV did not significantly affect the sex ratio, female body weight, longevity, fecundity, or egg hatchability of BPH. In general, transgenic Bt rice infected with SRBSDV had little effect on the ecological adaptability of BPH.
Collapse
|
40
|
Xu D, Zhou G. Characteristics of siRNAs derived from Southern rice black-streaked dwarf virus in infected rice and their potential role in host gene regulation. Virol J 2017. [PMID: 28183327 DOI: 10.1186/s12985-017-0699-314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Virus-derived siRNAs (vsiRNAs)-mediated RNA silencing plays important roles in interaction between plant viruses and their hosts. Southern rice black-streaked dwarf virus (SRBSDV) is a newly emerged devastating rice reovirus with ten dsRNA genomic segments. The characteristics of SRBSDV-derived siRNAs and their biological implications in SRBSDV-rice interaction remain unexplored. METHODS VsiRNAs profiling from SRBSDV-infected rice samples was done via small RNA deep sequencing. The putative rice targets of abundantly expressed vsiRNAs were bioinformatically predicted and subjected to functional annotation. Differential expression analysis of rice targets and RNA silencing components between infected and healthy samples was done using RT-qPCR. RESULTS The vsiRNA was barely detectable at 14 days post infection (dpi) but abundantly present along with elevated expression level of the viral genome at 28 dpi. From the 28-dpi sample, 70,878 reads of 18 ~ 30-nt vsiRNAs were recognized (which mostly were 21-nt and 22-nt), covering 75 ~ 91% of the length of the ten genomic segments respectively. 86% of the vsiRNAs had a <50% GC content and 79% of them were 5'-uridylated or adenylated. The production of vsiRNAs had no strand polarity but varied among segment origins. Each segment had a few hotspot regions where vsiRNAs of high abundance were produced. 151 most abundant vsiRNAs were predicted to target 844 rice genes, including several types of host resistance or pathogenesis related genes encoding F-box/LRR proteins, receptor-like protein kinases, universal stress proteins, tobamovirus multiplication proteins, and RNA silencing components OsDCL2a and OsAGO17 respectively, some of which showed down regulation in infected plants in RT-qPCR. GO and KEGG classification showed that a majority of the predicted targets were related to cell parts and cellular processes and involved in carbohydrate metabolism, translation, and signal transduction. The silencing component genes OsDCL2a, OsDCL2b, OsDCL4, and OsAGO18 were down regulated, while OsAGO1d, OsAGO2, OsRDR1 and OsRDR6 were up regulated, significantly, upon SRBSDV infection. CONCLUSIONS SRBSDV can regulate the expression of rice RNA silencing pathway components and the virus might compromise host defense and influence host pathogenesis via siRNA pathways.
Collapse
Affiliation(s)
- Donglin Xu
- Key Laboratory of Microbial Signals and Disease Control of Guangdong Province, College of Agriculture, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Guohui Zhou
- Key Laboratory of Microbial Signals and Disease Control of Guangdong Province, College of Agriculture, South China Agricultural University, 510642, Guangzhou, Guangdong, China.
| |
Collapse
|
41
|
Xu D, Zhou G. Characteristics of siRNAs derived from Southern rice black-streaked dwarf virus in infected rice and their potential role in host gene regulation. Virol J 2017; 14:27. [PMID: 28183327 PMCID: PMC5301327 DOI: 10.1186/s12985-017-0699-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/07/2017] [Indexed: 11/10/2022] Open
Abstract
Background Virus-derived siRNAs (vsiRNAs)-mediated RNA silencing plays important roles in interaction between plant viruses and their hosts. Southern rice black-streaked dwarf virus (SRBSDV) is a newly emerged devastating rice reovirus with ten dsRNA genomic segments. The characteristics of SRBSDV-derived siRNAs and their biological implications in SRBSDV-rice interaction remain unexplored. Methods VsiRNAs profiling from SRBSDV-infected rice samples was done via small RNA deep sequencing. The putative rice targets of abundantly expressed vsiRNAs were bioinformatically predicted and subjected to functional annotation. Differential expression analysis of rice targets and RNA silencing components between infected and healthy samples was done using RT-qPCR. Results The vsiRNA was barely detectable at 14 days post infection (dpi) but abundantly present along with elevated expression level of the viral genome at 28 dpi. From the 28-dpi sample, 70,878 reads of 18 ~ 30-nt vsiRNAs were recognized (which mostly were 21-nt and 22-nt), covering 75 ~ 91% of the length of the ten genomic segments respectively. 86% of the vsiRNAs had a <50% GC content and 79% of them were 5’-uridylated or adenylated. The production of vsiRNAs had no strand polarity but varied among segment origins. Each segment had a few hotspot regions where vsiRNAs of high abundance were produced. 151 most abundant vsiRNAs were predicted to target 844 rice genes, including several types of host resistance or pathogenesis related genes encoding F-box/LRR proteins, receptor-like protein kinases, universal stress proteins, tobamovirus multiplication proteins, and RNA silencing components OsDCL2a and OsAGO17 respectively, some of which showed down regulation in infected plants in RT-qPCR. GO and KEGG classification showed that a majority of the predicted targets were related to cell parts and cellular processes and involved in carbohydrate metabolism, translation, and signal transduction. The silencing component genes OsDCL2a, OsDCL2b, OsDCL4, and OsAGO18 were down regulated, while OsAGO1d, OsAGO2, OsRDR1 and OsRDR6 were up regulated, significantly, upon SRBSDV infection. Conclusions SRBSDV can regulate the expression of rice RNA silencing pathway components and the virus might compromise host defense and influence host pathogenesis via siRNA pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0699-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Donglin Xu
- Key Laboratory of Microbial Signals and Disease Control of Guangdong Province, College of Agriculture, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Guohui Zhou
- Key Laboratory of Microbial Signals and Disease Control of Guangdong Province, College of Agriculture, South China Agricultural University, 510642, Guangzhou, Guangdong, China.
| |
Collapse
|
42
|
Lu G, Zhang T, He Y, Zhou G. Virus altered rice attractiveness to planthoppers is mediated by volatiles and related to virus titre and expression of defence and volatile-biosynthesis genes. Sci Rep 2016; 6:38581. [PMID: 27924841 PMCID: PMC5141440 DOI: 10.1038/srep38581] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/09/2016] [Indexed: 11/08/2022] Open
Abstract
Viruses may induce changes in plant hosts and vectors to enhance their transmission. The white-backed planthopper (WBPH) and brown planthopper (BPH) are vectors of Southern rice black-streaked dwarf virus (SRBSDV) and Rice ragged stunt virus (RRSV), respectively, which cause serious rice diseases. We herein describe the effects of SRBSDV and RRSV infections on host-selection behaviour of vector and non-vector planthoppers at different disease stages. The Y-tube olfactometer choice and free-choice tests indicated that SRBSDV and RRSV infections altered the attractiveness of rice plants to vector and non-vector planthoppers. The attractiveness was mainly mediated by rice volatiles, and varied with disease progression. The attractiveness of the SRBSDV- or RRSV-infected rice plants to the virus-free WBPHs or BPHs initially decreased, then increased, and finally decreased again. For the viruliferous WBPHs and BPHs, SRBSDV or RRSV infection increased the attractiveness of plants more for the non-vector than for the vector planthoppers. Furthermore, we observed that the attractiveness of infected plants to planthoppers was positively correlated with the virus titres. The titre effects were greater for virus-free than for viruliferous planthoppers. Down-regulated defence genes OsAOS1, OsICS, and OsACS2 and up-regulated volatile-biosynthesis genes OsLIS, OsCAS, and OsHPL3 expression in infected plants may influence their attractiveness.
Collapse
Affiliation(s)
- Guanghua Lu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yuange He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
43
|
Dietzgen RG, Mann KS, Johnson KN. Plant Virus-Insect Vector Interactions: Current and Potential Future Research Directions. Viruses 2016; 8:E303. [PMID: 27834855 PMCID: PMC5127017 DOI: 10.3390/v8110303] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 12/13/2022] Open
Abstract
Acquisition and transmission by an insect vector is central to the infection cycle of the majority of plant pathogenic viruses. Plant viruses can interact with their insect host in a variety of ways including both non-persistent and circulative transmission; in some cases, the latter involves virus replication in cells of the insect host. Replicating viruses can also elicit both innate and specific defense responses in the insect host. A consistent feature is that the interaction of the virus with its insect host/vector requires specific molecular interactions between virus and host, commonly via proteins. Understanding the interactions between plant viruses and their insect host can underpin approaches to protect plants from infection by interfering with virus uptake and transmission. Here, we provide a perspective focused on identifying novel approaches and research directions to facilitate control of plant viruses by better understanding and targeting virus-insect molecular interactions. We also draw parallels with molecular interactions in insect vectors of animal viruses, and consider technical advances for their control that may be more broadly applicable to plant virus vectors.
Collapse
Affiliation(s)
- Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia QLD 4072, Australia.
| | - Krin S Mann
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC V0H 1Z0, Canada.
| | - Karyn N Johnson
- School of Biological Sciences, The University of Queensland, St. Lucia QLD 4072, Australia.
| |
Collapse
|
44
|
Zhang C, Ding Z, Wu K, Yang L, Li Y, Yang Z, Shi S, Liu X, Zhao S, Yang Z, Wang Y, Zheng L, Wei J, Du Z, Zhang A, Miao H, Li Y, Wu Z, Wu J. Suppression of Jasmonic Acid-Mediated Defense by Viral-Inducible MicroRNA319 Facilitates Virus Infection in Rice. MOLECULAR PLANT 2016; 9:1302-1314. [PMID: 27381440 DOI: 10.1016/j.molp.2016.06.014] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/16/2016] [Accepted: 06/25/2016] [Indexed: 05/20/2023]
Abstract
MicroRNAs (miRNAs) are pivotal modulators of plant development and host-virus interactions. However, the roles and action modes of specific miRNAs involved in viral infection and host susceptibility remain largely unclear. In this study, we show that Rice ragged stunt virus (RRSV) infection caused increased accumulation of miR319 but decreased expression of miR319-regulated TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) genes, especially TCP21, in rice plants. Transgenic rice plants overexpressing miR319 or downregulating TCP21 exhibited disease-like phenotypes and showed significantly higher susceptibility to RRSV in comparison with the wild-type plants. In contrast, only mild disease symptoms were observed in RRSV-infected lines overexpressing TCP21 and especially in the transgenic plants overexpressing miR319-resistant TCP21. Both RRSV infection and overexpression of miR319 caused the decreased endogenous jasmonic acid (JA) levels along with downregulated expression of JA biosynthesis and signaling-related genes in rice. However, treatment of rice plants with methyl jasmonate alleviated disease symptoms caused by RRSV and reduced virus accumulation. Taken together, our results suggest that the induction of miR319 by RRSV infection in rice suppresses JA-mediated defense to facilitate virus infection and symptom development.
Collapse
Affiliation(s)
- Chao Zhang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zuomei Ding
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kangcheng Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Liang Yang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yang Li
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhen Yang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shan Shi
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaojuan Liu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shanshan Zhao
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zhirui Yang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yu Wang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Luping Zheng
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Juan Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhenguo Du
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Aihong Zhang
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Baoding 071000, China
| | - Hongqin Miao
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Baoding 071000, China
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zujian Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Jianguo Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
45
|
Tolerance and responsive gene expression of Sogatella furcifera under extreme temperature stresses are altered by its vectored plant virus. Sci Rep 2016; 6:31521. [PMID: 27531640 PMCID: PMC4987581 DOI: 10.1038/srep31521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/21/2016] [Indexed: 01/03/2023] Open
Abstract
Southern rice black-streaked dwarf virus (SRBSDV), a newly emerged fijivirus causing great loss to rice production in eastern and southeastern Asian countries in recent years, is efficiently transmitted by a rice pest, white-backed planthopper (WBPH, Sogatella furcifera) in a persistent, circulative propagative manner and can be considered as an insect virus. In this study, SRBSDV infection in WBPH was found to increase the vector’s death rate under extreme cold stress but improve its survival rate under extreme heat stress. Digital gene expression profiling based on RNA-Seq revealed different gene regulation patterns in WBPH under viral and/or temperature stress. Under cold stress, the virus infection upregulated 1540 genes and downregulated 131 genes in the insect, most of which were related to membrane properties and biological processes of actin and cytoskeleton; whereas under heat stress, it upregulated 363 genes and downregulated 548 genes, most of which were associated to metabolism and intracellular organelles. Several types of stress-responsive genes involving intestinal mucin, cuticle protein, ubiquitin protease, immune response, RNA interference and heat shock response, were largely upregulated under cold stress, but largely downregulated under heat stress, by SRBSDV infection. Our results suggest two distinct mechanisms of virus-altered vector insect tolerance to temperature stress.
Collapse
|
46
|
Lei W, Li P, Han Y, Gong S, Yang L, Hou M. EPG Recordings Reveal Differential Feeding Behaviors in Sogatella furcifera in Response to Plant Virus Infection and Transmission Success. Sci Rep 2016; 6:30240. [PMID: 27492995 PMCID: PMC4974502 DOI: 10.1038/srep30240] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 07/01/2016] [Indexed: 12/01/2022] Open
Abstract
Plant viruses are primarily transmitted by insect vectors and virus infection may influence on the vectors' feeding behaviors. Using an electrical penetration graph, we detected that infection with the Southern rice black-streaked dwarf virus (SRBSDV) in the white-backed planthopper (WBPH) and in rice plants both altered the vector's feeding behavior. When viruliferous WBPH (carrying SRBSDV) were fed on uninfected plants, they spent more time in salivation and phloem sap ingestion than non-viruliferous insects. In comparison with uninfected plants, infected plants showed an arrestant effect on non-viruliferous WBPH for phloem sap ingestion. Differential feeding behaviors were also detected between the WBPH that inoculated or acquired SRBSDV and those that failed to. The WBPH that inoculated SRBSDV exhibited more probing bouts, salivation events and phloem sap ingestion events and longer salivation than those that failed to. The WBPH that acquired SRBSDV were quicker to reach phloem and spent more time in phloem sap ingestion than those that failed to. These behavior alterations in the vector may have adaptive advantages for SRBSDV transmission and spread success because greater salivation by viruliferous vectors on uninfected hosts will promote virus inoculation, whereas more sap ingestion by non-viruliferous vectors on infected hosts will promote virus acquisition.
Collapse
Affiliation(s)
- Wenbin Lei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China
| | - Pei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China
| | - Yongqiang Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China
| | - Shaolong Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China
| | - Lang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China
| | - Maolin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, China
| |
Collapse
|
47
|
Abstract
Rice reoviruses, transmitted by leafhopper or planthopper vectors in a persistent propagative manner, seriously threaten the stability of rice production in Asia. Understanding the mechanisms that enable viral transmission by insect vectors is a key to controlling these viral diseases. This review describes current understanding of replication cycles of rice reoviruses in vector cell lines, transmission barriers, and molecular determinants of vector competence and persistent infection. Despite recent breakthroughs, such as the discoveries of actin-based tubule motility exploited by viruses to overcome transmission barriers and mutually beneficial relationships between viruses and bacterial symbionts, there are still many gaps in our knowledge of transmission mechanisms. Advances in genome sequencing, reverse genetics systems, and molecular technologies will help to address these problems. Investigating the multiple interaction systems among the virus, insect vector, insect symbiont, and plant during natural infection in the field is a central topic for future research on rice reoviruses.
Collapse
Affiliation(s)
- Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, People's Republic of China;
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China;
| |
Collapse
|
48
|
Shrestha D, McAuslane HJ, Adkins ST, Smith HA, Dufault N, Webb SE. Transmission of Squash vein yellowing virus to and From Cucurbit Weeds and Effects on Sweetpotato Whitefly (Hemiptera: Aleyrodidae) Behavior. ENVIRONMENTAL ENTOMOLOGY 2016; 45:967-973. [PMID: 27400705 DOI: 10.1093/ee/nvw086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Since 2003, growers of Florida watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] have periodically suffered large losses from a disease caused by Squash vein yellowing virus (SqVYV), which is transmitted by the whitefly Middle East-Asia Minor 1 (MEAM1), formerly Bemisia tabaci (Gennadius) biotype B. Common cucurbit weeds like balsam apple (Momordica charantia L.) and smellmelon [Cucumis melo var. dudaim (L.) Naud.] are natural hosts of SqVYV, and creeping cucumber (Melothria pendula L.) is an experimental host. Study objectives were to compare these weeds and 'Mickylee' watermelon as sources of inoculum for SqVYV via MEAM1 transmission, to determine weed susceptibility to SqVYV, and to evaluate whitefly settling and oviposition behaviors on infected vs. mock-inoculated (inoculated with buffer only) creeping cucumber leaves. We found that the lowest percentage of watermelon recipient plants was infected when balsam apple was used as a source of inoculum. Watermelon was more susceptible to infection than balsam apple or smellmelon. However, all weed species were equally susceptible to SqVYV when inoculated by whitefly. For the first 5 h after release, whiteflies had no preference to settle on infected vs. mock-inoculated creeping cucumber leaves. After 24 h, whiteflies preferred to settle on mock-inoculated leaves, and more eggs were laid on mock-inoculated creeping cucumber leaves than on SqVYV-infected leaves. The transmission experiments (source of inoculum and susceptibility) show these weed species as potential inoculum sources of the virus. The changing settling preference of whiteflies from infected to mock-inoculated plants could lead to rapid spread of virus in the agroecosystem.
Collapse
Affiliation(s)
- D Shrestha
- Department of Entomology and Nematology, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611 (; ; )
| | - H J McAuslane
- Department of Entomology and Nematology, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611 (; ; )
| | - S T Adkins
- USDA, Agricultural Research Service, U. S. Horticultural Research Laboratory, 2001 South Rock Rd., Fort Pierce, FL 34945
| | - H A Smith
- UF/IFAS, Gulf Coast Research and Education Center, 14625 County Rd. 672, Wimauma, FL 33598
| | - N Dufault
- Plant Pathology Department, University of Florida, 2550 Hull Rd., Gainesville, FL 32611
| | - S E Webb
- Department of Entomology and Nematology, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611 (; ; )
| |
Collapse
|
49
|
Yang S, Li X, Chen C, Kyveryga P, Yang XB. Assessing Field-Specific Risk of Soybean Sudden Death Syndrome Using Satellite Imagery in Iowa. PHYTOPATHOLOGY 2016; 106:842-53. [PMID: 27070424 DOI: 10.1094/phyto-11-15-0303-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Moderate resolution imaging spectroradiometer (MODIS) satellite imagery from 2004 to 2013 were used to assess the field-specific risks of soybean sudden death syndrome (SDS) caused by Fusarium virguliforme in Iowa. Fields with a high frequency of significant decrease (>10%) of the normalized difference vegetation index (NDVI) observed in late July to middle August on historical imagery were hypothetically considered as high SDS risk. These high-risk fields had higher slopes and shorter distances to flowlines, e.g., creeks and drainages, particularly in the Des Moines lobe. Field data in 2014 showed a significantly higher SDS level in the high-risk fields than fields selected without considering NDVI information. On average, low-risk fields had 10 times lower F. virguliforme soil density, determined by quantitative polymerase chain reaction, compared with other surveyed fields. Ordinal logistic regression identified positive correlations between SDS and slope, June NDVI, and May maximum temperature, but high June maximum temperature hindered SDS. A modeled SDS risk map showed a clear trend of potential disease occurrences across Iowa. Landsat imagery was analyzed similarly, to discuss the ability to utilize higher spatial resolution data. The results demonstrated the great potential of both MODIS and Landsat imagery for SDS field-specific risk assessment.
Collapse
Affiliation(s)
- S Yang
- First author: School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China; first, second, third, and fifth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011; and fourth author: Iowa Soybean Association, Ankeny, IA 50023
| | - X Li
- First author: School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China; first, second, third, and fifth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011; and fourth author: Iowa Soybean Association, Ankeny, IA 50023
| | - C Chen
- First author: School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China; first, second, third, and fifth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011; and fourth author: Iowa Soybean Association, Ankeny, IA 50023
| | - P Kyveryga
- First author: School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China; first, second, third, and fifth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011; and fourth author: Iowa Soybean Association, Ankeny, IA 50023
| | - X B Yang
- First author: School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China; first, second, third, and fifth authors: Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011; and fourth author: Iowa Soybean Association, Ankeny, IA 50023
| |
Collapse
|
50
|
Chen Y, Lu C, Li M, Wu W, Zhou G, Wei T. Adverse Effects of Rice gall dwarf virus upon its Insect Vector Recilia dorsalis (Hemiptera: Cicadellidae). PLANT DISEASE 2016; 100:784-790. [PMID: 30688603 DOI: 10.1094/pdis-06-15-0713-re] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rice gall dwarf virus (RGDV), a plant reovirus that threatens rice production in Southeast Asia and Southern China, is transmitted by the leafhopper vector Recilia dorsalis in a persistent-propagative manner. To assess the direct effects of RGDV on R. dorsalis, we established an infected leafhopper population from eggs laid by viruliferous females using the water-soaked filter paper culture method. Life history parameters indicated that the virus was harmful to its vector in terms of all biotic indices, including reduced survival rate, emergence rate, fecundity, and longevity of adults, compared with a nonviruliferous control population. Those findings were supported by systematic monitoring of viruliferous rates of R. dorsalis in different overwintering generations. To better elucidate the adverse effects of RGDV on its vector, we measured fecundity at the molecular level using quantitative reverse-transcription polymerase chain reaction and Western blot assays, which revealed differential expression of vitellogenin (Vg) in viruliferous versus nonviruliferous adult females. We infer that RGDV reduced levels of Vg transcript and protein product, resulting in the lower fecundity of its vector. Overall, this study demonstrates how RGDV exerts an adverse effect on R. dorsalis, which hinders the expansion of viruliferous populations of the insect.
Collapse
Affiliation(s)
- Yong Chen
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Chengcong Lu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Manman Li
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Wei Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Guohui Zhou
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University
| |
Collapse
|