1
|
Chirkov S, Sheveleva A, Gasanova T, Kwon D, Sharko F, Osipov G. New Cherry-Adapted Plum Pox Virus Phylogroups Discovered in Russia. PLANT DISEASE 2022; 106:2591-2600. [PMID: 35442710 DOI: 10.1094/pdis-01-22-0006-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plum pox virus (PPV) is the most pathogenic virus of stone fruit crops worldwide. Unusual PPV isolates were discovered on sour cherry (Prunus cerasus L.) and steppe cherry (P. fruticosa Pall.) in the Republic of Tatarstan and the Middle Ural region, Russia. They induced typical sharka symptoms and tested positive for PPV by ELISA and RT-PCR, but were not detected by PCR using known strain-specific primers. Their complete genomes were determined using high-throughput sequencing. Phylogenetic analysis allocated new isolates to four clearly distinguished lineages (SC, TAT, Y, Tat-26) within a cluster of PPV cherry-adapted strains. The phylogroups SC and TAT had 84.5 to 86.9% average nucleotide identity to each other and strain CR, with which they comprised a common subcluster. Isolates from the Middle Ural region (group Y) were closer to strain C, sharing 96.9% identity. The fourth lineage is represented by the isolate Tat-26, which was a recombinant of strain CR and C isolates as major and minor parents, respectively. These results show that the genetic diversity of PPV is higher than thought and may contribute to a better understanding of the origin and evolution of cherry-adapted strains of the virus. P. fruticosa was reported as a new natural PPV host for the first time.
Collapse
Affiliation(s)
- Sergei Chirkov
- Department of Virology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Anna Sheveleva
- Department of Virology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Tatiana Gasanova
- Department of Virology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Dmitry Kwon
- Genomic Sequencing Facility, National Research Center "Kurchatov Institute", Moscow 123182, Russia
| | - Fedor Sharko
- Laboratory of Bioinformatics and Big Data, National Research Center "Kurchatov Institute", Moscow 123182, Russia
| | - Gennady Osipov
- Department of Agricultural Biotechnology, Tatar Research Institute of Agriculture, Kazan 420059, Russia
| |
Collapse
|
2
|
Plum Pox Virus Strain C Isolates Can Reduce Sour Cherry Productivity. PLANTS 2021; 10:plants10112327. [PMID: 34834688 PMCID: PMC8621038 DOI: 10.3390/plants10112327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/16/2023]
Abstract
The impact of plum pox virus (PPV) on sour cherry (Prunus cerasus L.) productivity has been studied by comparing the yield of PPV-infected and PPV-free fruit-bearing trees. A total of 152 16- to 17-year-old trees of nine cultivars and hybrids were surveyed in the production orchards (cultivar collection and hybrid testing plots) in the Republic of Tatarstan, Russia. Sixty trees tested positive for PPV using ELISA and RT-PCR. Among them, 58 PPV isolates belonged to the strain C and the other 2 isolates to the strain CV. For the cultivars Sevastyanovskaya, Shakirovskaya, hybrids 88-2 and 80-8, the average (2012 to 2019) productivity of infected trees was 38% to 45% lower than for PPV-free trees of the same cultivar or hybrid. No ilarviruses (prunus necrotic ringspot virus, prune dwarf virus, apple mosaic virus, American plum line pattern virus) were detected in PPV-infected trees, suggesting that reduced cherry productivity was attributed to the PPV infection. Thus, it was shown for the first time that PPV can reduce the productivity of at least some sour cherry cultivars and hybrids, and strain C isolates are responsible for crop losses.
Collapse
|
3
|
Alinizi HR, Mehrvar M, Zakiaghl M. Analysis of the molecular and biological variability of Zucchini yellow mosaic virus isolates from Iran and Iraq. Gene 2021; 788:145674. [PMID: 33887370 DOI: 10.1016/j.gene.2021.145674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
During the growing season of 2018, several field-grown cucurbit plants in different parts of Iraq and Iran were surveyed for the presence of zucchini yellow mosaic virus (ZYMV), using two degenerate primer pairs (CIF/Rev and NIb2F/3R) targeting the two separated partial regions of the potyvirus genome (CI and NIb respectively). 7 out of 20 samples were confirmed to be infected with ZYMV. Phylogenetic analyses based on the CI gene grouped all Iranian and two Iraqi (ZYMV1 and ZYMV2) isolates together with isolates from the Middle East in the subgroup (AI), whereas the other Iraqi (ZYMV3 and ZYMV4) isolates were clustered in the subgroup (DI), which was only consisted of American isolates. The highest and lowest identity between the studied isolates and the GenBank isolates showed that the two genes (CI, NIb) of each isolate particularly the Iraqi isolates were more similar to a specific and geographically scattered mosaic of worldwide isolates, suggestive of mixed infection might have occurred between different worldwide isolates in Iraq. Furthermore, the first complete nucleotide sequence of an Iraqi ZYMV (ZYMV-Iq) isolate was done, using the Illumina sequencing technique. The complete nucleotide sequence of ZYMV-Iq isolate was 9650 nt, excluding the 3'poly (A) tail. ZYMV-Iq isolate shared the highest nt identity of 98.8% with an American (KC665630) isolate. Phylogenetic analysis based on the full genome sequence placed ZYMV-Iq in subgroup A of group I alongside 18 isolates from the US and two isolates from Australia. In addition, recombination analysis detected lone significant recombination between ZYMV-Iq and South Korean (AY279000) isolate. Moreover, the results showed that symptom intensity was varied across experimental host plants.
Collapse
Affiliation(s)
- Hayder R Alinizi
- Department of Plant Pathology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohsen Mehrvar
- Department of Plant Pathology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammad Zakiaghl
- Department of Plant Pathology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
4
|
Chinnadurai C, Kollam M, Ramsubhag A, Jayaraman J. Genome characterization of zucchini yellow mosaic virus infecting cucurbits reveals the presence of a new genotype in Trinidad and Tobago in the Caribbean region. Arch Virol 2021; 166:1661-1669. [PMID: 33811529 DOI: 10.1007/s00705-021-05048-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/08/2021] [Indexed: 10/21/2022]
Abstract
Zucchini yellow mosaic virus (ZYMV) is a member of the genus Potyvirus that is becoming a serious pathogen of pumpkin and other cucurbits in Trinidad and Tobago and the entire Caribbean region. In this study, four ZYMV isolates infecting pumpkin in Trinidad and Tobago were characterized by complete genome sequencing. Phylogenetic analysis showed 5.9-6.0% nt and 7.7-7.9% aa sequence divergence in comparison to the most closely related isolates NAT and AG from Israel and SE04T from Slovakia. Based on the variations in the complete genome sequence as well as individual gene sequences, a new genotype, designated ZYMV-Trini, is proposed for these isolates. Among the gene sequences of ZYMV-Trini isolates, the greatest variation was observed in the HC-Pro gene, with 20.8% aa sequence divergence from their closest relatives, whereas the least variation was observed in the NIb, P3, and CP genes, with 1.8-2.2% aa sequence divergence. This study also showed that transmission of ZYMV can occur through seeds, but this was less common than transmission via the aphid Aphis gossypii. The progression of ZYMV in pumpkin seedlings was quantified by RT-qPCR, which showed a rapid surge in viral load after 37 days. From recombination analysis, it could be concluded that the isolates SE04T from Slovakia, NAT from Israel, and AG from Israel have made major contributions to the genome architecture of ZYMV-Trini isolates.
Collapse
Affiliation(s)
- Chinnaraja Chinnadurai
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, WI, Trinidad and Tobago
| | - Mounika Kollam
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, WI, Trinidad and Tobago
| | - Adesh Ramsubhag
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, WI, Trinidad and Tobago
| | - Jayaraj Jayaraman
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, WI, Trinidad and Tobago.
| |
Collapse
|
5
|
Tamukong YB, Collum TD, Stone AL, Kappagantu M, Sherman DJ, Rogers EE, Dardick C, Culver JN. Dynamic changes impact the plum pox virus population structure during leaf and bud development. Virology 2020; 548:192-199. [PMID: 32758716 DOI: 10.1016/j.virol.2020.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 10/23/2022]
Abstract
Plum pox virus (PPV) is a worldwide threat to stone fruit production. Its woody perennial hosts provide a dynamic environment for virus evolution over multiple growing seasons. To investigate the impact seasonal host development plays in PPV population structure, next generation sequencing of ribosome associated viral genomes, termed translatome, was used to assess PPV variants derived from phloem or whole leaf tissues over a range of plum leaf and bud developmental stages. Results show that translatome PPV variants occur at proportionately higher levels in bud and newly developing leaf tissues that have low infection levels while more mature tissues with high infection levels display proportionately lower numbers of viral variants. Additional variant analysis identified distinct groups based on population frequency as well as sets of phloem and whole tissue specific variants. Combined, these results indicate PPV population dynamics are impacted by the tissue type and developmental stage of their host.
Collapse
Affiliation(s)
- Yvette B Tamukong
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Tamara D Collum
- Institute for Bioscience and Biotechnology Research, College Park, MD, USA; USDA, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Frederick, MD, USA
| | - Andrew L Stone
- USDA, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Frederick, MD, USA
| | - Madhu Kappagantu
- Institute for Bioscience and Biotechnology Research, College Park, MD, USA
| | - Diana J Sherman
- USDA, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Frederick, MD, USA
| | - Elizabeth E Rogers
- USDA, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Frederick, MD, USA
| | - Christopher Dardick
- USDA, Agricultural Research Service, Appalachian Fruit Research Station, Kearneysville, WV, USA
| | - James N Culver
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, College Park, MD, USA.
| |
Collapse
|
6
|
Rodamilans B, Valli A, García JA. Molecular Plant-Plum Pox Virus Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:6-17. [PMID: 31454296 DOI: 10.1094/mpmi-07-19-0189-fi] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plum pox virus, the agent that causes sharka disease, is among the most important plant viral pathogens, affecting Prunus trees across the globe. The fabric of interactions that the virus is able to establish with the plant regulates its life cycle, including RNA uncoating, translation, replication, virion assembly, and movement. In addition, plant-virus interactions are strongly conditioned by host specificities, which determine infection outcomes, including resistance. This review attempts to summarize the latest knowledge regarding Plum pox virus-host interactions, giving a comprehensive overview of their relevance for viral infection and plant survival, including the latest advances in genetic engineering of resistant species.
Collapse
Affiliation(s)
- Bernardo Rodamilans
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Adrián Valli
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Antonio García
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
7
|
Maina S, Barbetti MJ, Edwards OR, Minemba D, Areke MW, Jones RAC. Zucchini yellow mosaic virus Genomic Sequences from Papua New Guinea: Lack of Genetic Connectivity with Northern Australian or East Timorese Genomes, and New Recombination Findings. PLANT DISEASE 2019; 103:1326-1336. [PMID: 30995424 DOI: 10.1094/pdis-09-18-1666-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Zucchini yellow mosaic virus (ZYMV) isolates were obtained in Papua New Guinea (PNG) from cucumber (Cucumis sativus) or pumpkin (Cucurbita spp.) plants showing mosaic symptoms growing at Kongop in the Mount Hagen District, Western Highlands Province, or Zage in the Goroka District, Eastern Highlands Province. The samples were blotted onto FTA cards, which were sent to Australia, where they were subjected to high-throughput sequencing. When the coding regions of the nine new ZYMV genomic sequences found were compared with those of 64 other ZYMV sequences from elsewhere, they grouped together, forming new minor phylogroup VII within ZYMV's major phylogroup A. Genetic connectivity was lacking between ZYMV genomic sequences from PNG and its neighboring countries, Australia and East Timor; the closest match between a PNG and any other genomic sequence was a 92.8% nucleotide identity with a sequence in major phylogroup A's minor phylogroup VI from Japan. When the RDP5.2 recombination analysis program was used to compare 66 ZYMV sequences, evidence was obtained of 30 firm recombination events involving 41 sequences, and all isolates from PNG were recombinants. There were 21 sequences without recombination events in major phylogroup A, whereas there were only 4 such sequences within major phylogroup B. ZYMV's P1, Cl, N1a-Pro, P3, CP, and NIb regions contained the highest evidence of recombination breakpoints. Following removal of recombinant sequences, seven minor phylogroups were absent (I, III, IV, V, VI, VII, and VIII), leaving only minor phylogroups II and IX. By contrast, when a phylogenetic tree was constructed using recombinant sequences with their recombinationally derived tracts removed before analysis, five previous minor phylogroups remained unchanged within major phylogroup A (II, III, IV, V, and VII) while four formed two new merged phylogroups (I/VI and VIII/IX). Absence of genetic connectivity between PNG, Australian, and East Timorese ZYMV sequences, and the 92.8% nucleotide identity between a PNG sequence and the closest sequence from elsewhere, suggest that a single introduction may have occurred followed by subsequent evolution to adapt to the PNG environment. The need for enhanced biosecurity measures to protect against potentially damaging virus movements crossing the seas separating neighboring countries in this region of the world is discussed.
Collapse
Affiliation(s)
- Solomon Maina
- 1 School of Agriculture and Environment, Faculty of Science, and
- 2 UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, Australian Capital Territory, Australia
| | - Martin J Barbetti
- 1 School of Agriculture and Environment, Faculty of Science, and
- 2 UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, Australian Capital Territory, Australia
| | - Owain R Edwards
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, Australian Capital Territory, Australia
- 4 Commonwealth Scientific and Industrial Research Organisation Land and Water, Floreat Park, WA 6014, Australia
| | - David Minemba
- 1 School of Agriculture and Environment, Faculty of Science, and
- 5 The National Agricultural Research Institute, PO Box 4415, Lae, Morobe Province, Papua New Guinea
| | - Michael W Areke
- 6 National Agriculture Quarantine and Inspection Authority, PO Box 741, Port Moresby, National Capital District, Papua New Guinea; and
| | - Roger A C Jones
- 2 UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, Australian Capital Territory, Australia
- 7 Department of Primary Industries and Regional Development, South Perth, WA, Australia
| |
Collapse
|
8
|
Maina S, Barbetti MJ, Edwards OR, Minemba D, Areke MW, Jones RAC. Genetic Connectivity Between Papaya Ringspot Virus Genomes from Papua New Guinea and Northern Australia, and New Recombination Insights. PLANT DISEASE 2019; 103:737-747. [PMID: 30856073 DOI: 10.1094/pdis-07-18-1136-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Isolates of papaya ringspot virus (PRSV) were obtained from plants of pumpkin (Cucurbita spp.) or cucumber (Cucumis sativus) showing mosaic symptoms growing at Zage in Goroka District in the Eastern Highland Province of Papua New Guinea (PNG) or Bagl in the Mount Hagen District, Western Highlands Province. The samples were sent to Australia on FTA cards where they were subjected to High Throughput Sequencing (HTS). When the coding regions of the six new PRSV genomic sequences obtained via HTS were compared with those of 54 other complete PRSV sequences from other parts of the world, all six grouped together with the 12 northern Australian sequences within major phylogroup B minor phylogroup I, the Australian sequences coming from three widely dispersed locations spanning the north of the continent. Notably, none of the PNG isolates grouped with genomic sequences from the nearby country of East Timor in phylogroup A. The closest genetic match between Australian and PNG sequences was a nucleotide (nt) sequence identity of 96.9%, whereas between PNG and East Timorese isolates it was only 83.1%. These phylogenetic and nt identity findings demonstrate genetic connectivity between PRSV populations from PNG and Australia. Recombination analysis of the 60 PRSV sequences available revealed evidence of 26 recombination events within 18 isolates, only four of which were within major phylogroup B and none of which were from PNG or Australia. Within the recombinant genomes, the P1, Cl, NIa-Pro, NIb, 6K2, and 5'UTR regions contained the highest numbers of recombination breakpoints. After removal of nonrecombinant sequences, four minor phylogroups were lost (IV, VII, VIII, XV), only one of which was in phylogroup B. When genome regions from which recombinationally derived tracts of sequence were removed from recombinants prior to alignment with nonrecombinant genomes, seven previous minor phylogroups within major phylogroup A, and two within major phylogroup B, merged either partially or entirely forming four merged minor phylogroups. The genetic connectivity between PNG and northern Australian isolates and absence of detectable recombination within either group suggests that PRSV isolates from East Timor, rather than PNG, might pose a biosecurity threat to northern Australian agriculture should they prove more virulent than those already present.
Collapse
Affiliation(s)
- Solomon Maina
- 1 School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 2 UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, ACT, Australia
| | - Martin J Barbetti
- 1 School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 2 UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, ACT, Australia
| | - Owain R Edwards
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, ACT, Australia
- 4 CSIRO Land and Water, Floreat Park, WA6014, Australia
| | - David Minemba
- 1 School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 5 The National Agriculture Research Institute, P.O. Box 4415, Lae, Morobe Province, Papua New Guinea
| | - Michael W Areke
- 6 National Agriculture Quarantine and Inspection Authority, P.O. Box 741, Port Moresby, National Capital District, Papua New Guinea; and
| | - Roger A C Jones
- 2 UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- 3 Cooperative Research Centre for Plant Biosecurity, Canberra, ACT, Australia
- 7 Department of Primary Industries and Rural Development Food Western Australia, South Perth, WA, Australia
| |
Collapse
|
9
|
Maina S, Barbetti MJ, Martin DP, Edwards OR, Jones RAC. New Isolates of Sweet potato feathery mottle virus and Sweet potato virus C: Biological and Molecular Properties, and Recombination Analysis Based on Complete Genomes. PLANT DISEASE 2018; 102:1899-1914. [PMID: 30136885 DOI: 10.1094/pdis-12-17-1972-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sweet potato feathery mottle virus (SPFMV) and Sweet potato virus C (SPVC) isolates were obtained from sweetpotato shoot or tuberous root samples from three widely separated locations in Australia's tropical north (Cairns, Darwin, and Kununurra). The samples were planted in the glasshouse and scions obtained from the plants were graft inoculated to Ipomoea setosa plants. Virus symptoms were recorded in the field in Kununurra and in glasshouse-grown sweetpotato and I. setosa plants. RNA extracts from I. setosa leaf samples were subjected to high-throughput sequencing. New complete SPFMV (n = 17) and SPVC (n = 6) genomic sequences were obtained and compared with 47 sequences from GenBank. Phylogenetic analysis revealed that the 17 new SPFMV genomes all fitted within either major phylogroup A, minor phylogroup II, formerly O; or major phylogroup B, formerly RC. Major phylogroup A's minor phylogroup I, formerly EA, only appeared when recombinants were included. Numbers of SPVC genomes were insufficient to subdivide it into phylogroups. Within phylogroup A's minor phylogroup II, the closest genetic match between an Australian and a Southeast Asian SPFMV sequence was the 97.4% nucleotide identity with an East Timorese sequence. Recombination analysis of the 43 SPFMV and 27 SPVC sequences revealed evidence of 44 recombination events, 16 of which involved interspecies sequence transfers between SPFMV and SPVC and 28 intraspecies transfers, 17 in SPFMV and 11 in SPVC. Within SPFMV, 11 intraspecies recombination events were between different major phylogroups and 6 were between members of the same major phylogroup. Phylogenetic analysis accounting for the detected recombination events within SPFMV sequences yielded evidence of minor phylogroup II and phylogroup B but the five sequences from minor phylogroup I were distributed in two separate groups among the sequences of minor phylogroup II. For the SPVC sequences, phylogenetic analysis accounting for the detected recombination events revealed three major phylogroups (A, B, and C), with major phylogroup A being further subdivided into two minor phylogroups. Within the recombinant genomes of both viruses, their PI, NIa-Pro, NIb, and CP genes contained the highest numbers of recombination breakpoints. The high frequency of interspecies and interphylogroup recombination events reflects the widespread occurrence of mixed SPVC and SPFMV infections within sweetpotato plants. The prevalence of infection in northern Australian sweetpotato samples reinforces the need for improved virus testing in healthy sweetpotato stock programs. Furthermore, evidence of genetic connectivity between Australian and East Timorese SPFMV genomes emphasizes the need for improved biosecurity measures to protect against potentially damaging international virus movements.
Collapse
Affiliation(s)
- Solomon Maina
- School of Agriculture and Environment and the University of Western Australia (UWA) Institute of Agriculture, Faculty of Science, UWA, Crawley, WA 6009, Australia; and Cooperative Research Centre for Plant Biosecurity, Canberra, ACT 2617, Australia
| | - Martin J Barbetti
- School of Agriculture and Environment and UWA Institute of Agriculture, Faculty of Science, UWA
| | - Darren P Martin
- Institute of Infectious Diseases and Molecular Medicine, Computational Biology Group, University of Cape Town, Cape Town 7549, South Africa
| | - Owain R Edwards
- CSIRO Land and Water, Floreat Park, WA 6014, Australia; and Cooperative Research Centre for Plant Biosecurity, Canberra, ACT 2617, Australia
| | - Roger A C Jones
- Department of Primary Industries and Rural Development, South Perth, WA 6151, Australia; UWA Institute of Agriculture, Faculty of Science, UWA
| |
Collapse
|
10
|
Sheveleva A, Ivanov P, Gasanova T, Osipov G, Chirkov S. Sequence Analysis of Plum pox virus Strain C Isolates from Russia Revealed Prevalence of the D96E Mutation in the Universal Epitope and Interstrain Recombination Events. Viruses 2018; 10:E450. [PMID: 30142962 PMCID: PMC6164383 DOI: 10.3390/v10090450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/13/2018] [Accepted: 08/22/2018] [Indexed: 12/01/2022] Open
Abstract
The understanding of genetic diversity, geographic distribution, and antigenic properties of Plum pox virus (PPV) is a prerequisite to improve control of sharka, the most detrimental viral disease of stone fruit crops worldwide. Forty new PPV strain C isolates were detected in sour cherry (Prunus cerasus) from three geographically distant (700⁻1100 km) regions of European Russia. Analysis of their 3'-terminal genomic sequences showed that nineteen isolates (47.5%) bear the D96E mutation in the universal epitope of the coat protein. Almost all of them cannot be detected by the monoclonal antibody 5B in triple antibody sandwich enzyme-linked immunosorbent assayand Western blot analysis that may potentially compromise serological PPV detection in cherries. Full-length genomes of seven PPV-C isolates were determined employing next-generation sequencing. Using the Recombination Detection Program (RDP4), the recombination event covering the region from (Cter)P1 to the middle of the HcPro gene was predicted in all the available PPV-C complete genomes. The isolates Tat-4, belonging to the strain CV, and RU-17sc (PPV-CR) were inferred as major and minor parents, respectively, suggesting possible pathways of evolution of the cherry-adapted strains. Downy cherry (P. tomentosa) was identified as the natural PPV-C host for the first time.
Collapse
Affiliation(s)
- Anna Sheveleva
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia.
| | - Peter Ivanov
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia.
| | - Tatiana Gasanova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia.
| | - Gennady Osipov
- Tatar Research Institute of Agriculture, Kazan 420059, Russia.
| | - Sergei Chirkov
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia.
| |
Collapse
|
11
|
Abstract
Phylogenetic relationships between species in the genus Photobacterium have been poorly studied despite pathogenic and ecological relevance of some of its members. This is the first phylogenetic study that includes new species of Photobacterium (validated or not) that have not been included in any of the previously described clades, using 16S rRNA sequences and multilocus sequence analysis (MLSA) in concatenated sequences of gyrB, gapA, topA, ftsZ and mreB housekeeping genes. Sequence analysis has been implemented using Maximum-parsimony (MP), Neighbour-joining (NJ) and Maximum likelihood (ML) treeing methods and the predicted evolutionary relationship between the Photobacterium clades was established on the basis of bootstrap values of >75% for 16S rRNA sequences and MLSA. We have grouped 22 species of the genus Photobacterium into the following 5 clades: Phosphoreum (comprises P. aquimaris, “P. carnosum,” P. iliopiscarium, P. kishitanii, P. phosphoreum, “P. piscicola” and “P. toruni”); clade Profundum (composed of P. aestuarii, P. alginatilyticum, P. frigidiphilum, P. indicum, P. jeanii, P. lipolyticum, “P. marinum,” and P. profundum); clade Damselae (two subspecies of P. damselae, damselae and piscicida); and two new clades: clade Ganghwense (includes P. aphoticum, P. aquae, P. galatheae, P. ganghwense, P. halotolerans, P. panuliri and P. proteolyticum); and clade Leiognathi (composed by P. angustum, P. leiognathi subsp. leiognathi and “P. leiognathi subsp. mandapamensis”). Two additional clades, Rosenbergii and Swingsii, were formed using a phylogenetic method based on 16S rRNA gene, although they are not confirmed by any MLSA methods. Only P. aplysiae could not be included in none of the established clade, constituting an orphan clade.
Collapse
Affiliation(s)
- Alejandro M Labella
- Department of Microbiology, Faculty of Sciences, Universidad de Malaga, 29071 Malaga, Spain.
| | - M Dolores Castro
- Department of Microbiology, Faculty of Sciences, Universidad de Malaga, 29071 Malaga, Spain.
| | - Manuel Manchado
- Puerto de Santa María, Junta de Andalucía, IFAPA Centro El Toruño, 11500 Cadiz, Spain.
| | - Juan J Borrego
- Department of Microbiology, Faculty of Sciences, Universidad de Malaga, 29071 Malaga, Spain.
| |
Collapse
|
12
|
Chirkov S, Ivanov P, Sheveleva A, Kudryavtseva A, Mitrofanova I. Molecular characterization of Plum pox virus Rec isolates from Russia suggests a new insight into evolution of the strain. Virus Genes 2018; 54:328-332. [PMID: 29460128 DOI: 10.1007/s11262-018-1541-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/11/2018] [Indexed: 11/29/2022]
Abstract
Field isolates of Plum pox virus (PPV), belonging to the strain Rec, have been found for the first time in Russia. Full-size genomes of the isolates K28 and Kisl-1pl from myrobalan and plum, respectively, were sequenced on the 454 platform. Analysis of all known PPV-Rec complete genomes using the Recombination Detection Program (RDP4) revealed yet another recombination event in the 5'-terminal region. This event was detected by seven algorithms, implemented in the RDP4, with statistically significant P values and supported by a phylogenetic analysis with the bootstrap value of 87%. A putative PPV-M-derived segment, encompassing the C-terminus of the P1 gene and approximately two-thirds of the HcPro gene, is bordered by breakpoints at positions 760-940 and 1838-1964, depending on the recombinant isolate. The predicted 5'-distal breakpoint for the isolate Valjevka is located at position 2804. The Dideron (strain D) and SK68 (strain M) isolates were inferred as major and minor parents, respectively. Finding of another recombination event suggests more complex evolutionary history of PPV-Rec than previously assumed. Perhaps the first recombination event led to the formation of a PPV-D variant harboring the PPV-M-derived fragment within the 5'-proximal part of the genome. Subsequent recombination of its descendant with PPV-M in the 3'-proximal genomic region resulted in the emergence of the evolutionary successful strain Rec.
Collapse
Affiliation(s)
- Sergei Chirkov
- Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Peter Ivanov
- Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anna Sheveleva
- Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Irina Mitrofanova
- Nikita Botanical Gardens - National Scientific Center, Yalta, 298648, Russia
| |
Collapse
|
13
|
Maina S, Coutts BA, Edwards OR, de Almeida L, Kehoe MA, Ximenes A, Jones RAC. Zucchini yellow mosaic virus Populations from East Timorese and Northern Australian Cucurbit Crops: Molecular Properties, Genetic Connectivity, and Biosecurity Implications. PLANT DISEASE 2017; 101:1236-1245. [PMID: 30682959 DOI: 10.1094/pdis-11-16-1672-re] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Zucchini yellow mosaic virus (ZYMV) isolates from cucurbit crops growing in northern Australia and East Timor were investigated to establish possible genetic connectivity between crop viruses in Australia and Southeast Asia. Leaves from symptomatic plants of pumpkin (Cucurbita moschata and C. maxima), melon (Cucumis melo), and zucchini (C. pepo) were sampled near Broome, Darwin, and Kununurra in northern Australia. Leaves from symptomatic plants of cucumber (C. sativus) and pumpkin sampled in East Timor were sent to Australia on FTA cards. These samples were subjected to high-throughput sequencing and 15 complete new ZYMV genomic sequences obtained. When their nucleotide sequences were compared with those of 48 others from GenBank, the East Timorese and Kununurra sequences (three per location) and single earlier sequences from Singapore and Reunion Island were all in major phylogroup B. The seven Broome and two Darwin sequences were in minor phylogroups I and II, respectively, within larger major phylogroup A. When coat protein (CP) nucleotide sequences from the 15 new genomes and 47 Australian isolates sequenced previously were compared with 331 other CP sequences, the closest genetic match for a sequence from Kununurra was with an East Timorese sequence (95.5% nucleotide identity). Analysis of the 63 complete genomes found firm recombination events in 12 (75%) and 2 (4%) sequences from northern Australia or Southeast Asia versus the rest of the world, respectively; therefore, the formers' high recombination frequency might reflect adaptation to tropical conditions. Both parents of the recombinant Kununurra sequence were East Timorese. Phylogenetic analysis, nucleotide sequence identities, and recombination analysis provided clear evidence of genetic connectivity between sequences from Kununurra and East Timor. Inoculation of a Broome isolate to zucchini and watermelon plants reproduced field symptoms observed in northern Australia. This research has important biosecurity implications over entry of damaging viral crop pathogens not only into northern Australia but also moving between Australia's different agricultural regions.
Collapse
Affiliation(s)
- Solomon Maina
- School of Agriculture and Environment and the UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; and Cooperative Research Centre for Plant Biosecurity, Canberra, ACT 2617, Australia
| | - Brenda A Coutts
- Department of Agriculture and Food Western Australia, 3 Baron-Hay Court, South Perth, WA 6151, Australia
| | - Owain R Edwards
- Commonwealth Scientific and Industrial Research Organisation, Land and Water, Floreat Park, WA 6014, Australia, and Cooperative Research Centre for Plant Biosecurity, Canberra
| | - Luis de Almeida
- Seeds of Life Project, Ministry Agriculture and Fisheries, PO Box 221, Dili, East Timor
| | - Monica A Kehoe
- Department of Agriculture and Food Western Australia, South Perth
| | - Abel Ximenes
- DNQB-Plant Quarantine International Airport Nicolau Lobato Comoro, Dili, East Timor
| | - Roger A C Jones
- Department of Agriculture and Food Western Australia, South Perth; UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley; and Australia and Cooperative Research Centre for Plant Biosecurity, Canberra
| |
Collapse
|
14
|
Maina S, Coutts BA, Edwards OR, de Almeida L, Ximenes A, Jones RAC. Papaya ringspot virus Populations From East Timorese and Northern Australian Cucurbit Crops: Biological and Molecular Properties, and Absence of Genetic Connectivity. PLANT DISEASE 2017; 101:985-993. [PMID: 30682933 DOI: 10.1094/pdis-10-16-1499-re] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To examine possible genetic connectivity between crop viruses found in Southeast Asia and Australia, Papaya ringspot virus biotype W (PRSV-W) isolates from cucurbits growing in East Timor and northern Australia were studied. East Timorese samples from cucumber (Cucumis sativus) or pumpkin (Cucurbita moschata and C. maxima) were sent to Australia on FTA cards. These samples and others of pumpkin, rockmelon, honeydew melon (Cucumis melo), or watermelon (Citrullus lanatus) growing in one location each in northwest, north, or northeast Australia were subjected to high throughput sequencing (HTS). When the 17 complete PRSV genomic sequences obtained by HTS were compared with 32 others from GenBank, the five from East Timor were in a different major phylogroup from the 12 Australian sequences. Moreover, the East Timorese and Australian sequences each formed their own minor phylogroups named VI and I, respectively. A Taiwanese sequence was closest to the East Timorese (89.6% nt dentity), and Mexican and Brazilian sequences were the closest to the Australian (92.3% nt identity). When coat protein gene (CP) sequences from the 17 new genomic sequences were compared with 126 others from GenBank, three Australian isolates sequenced more than 20 years ago grouped with the new Australian sequences, while the closest sequence to the East Timorese was from Thailand (93.1% nt identity). Recombination analysis revealed 13 recombination events among the 49 complete genomes. Two isolates from East Timor (TM50, TM32) and eight from GenBank were recombinants, but all 12 Australian isolates were non-recombinants. No evidence of genome connectivity between Australian and Southeast Asian PRSV populations was obtained. The strand-specific RNA library approach used optimized data collection for virus genome assembly. When an Australian PRSV isolate was inoculated to plants of zucchini (Cucurbita pepo), watermelon, rockmelon, and honeydew melon, they all developed systemic foliage symptoms characteristic of PRSV-W, but symptom severity varied among melon cultivars.
Collapse
Affiliation(s)
- Solomon Maina
- School of Agriculture and Environment and Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA 6009, Australia; and Cooperative Research Centre for Plant Biosecurity, Canberra, ACT 2617, Australia
| | - Brenda A Coutts
- Department of Agriculture and Food Western Australia, South Perth, WA 6151, Australia
| | - Owain R Edwards
- CSIRO Land and Water, Floreat Park, WA 6014, Australia; and Cooperative Research Centre for Plant Biosecurity, Canberra, ACT 2617, Australia
| | - Luis de Almeida
- Seeds of Life Project, Ministry Agriculture and Fisheries, Dili, East Timor
| | - Abel Ximenes
- DNQB-Plant Quarantine International Airport Nicolau Lobato Comoro, Dili, East Timor
| | - Roger A C Jones
- Department of Agriculture and Food Western Australia, South Perth, WA 6151, Australia; Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA 6009, Australia; and Cooperative Research Centre for Plant Biosecurity, Canberra, ACT 2617, Australia
| |
Collapse
|
15
|
New highly divergent Plum pox virus isolates infecting sour cherry in Russia. Virology 2016; 502:56-62. [PMID: 28006670 DOI: 10.1016/j.virol.2016.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 11/21/2022]
Abstract
Unusual Plum pox virus (PPV) isolates (named Tat isolates) were discovered on sour cherry (Prunus cerasus) in Russia. They failed to be recognized by RT-PCR using commonly employed primers specific to the strains C or CR (the only ones that proved able to infect sour cherry) as well as to the strains M and W. Some of them can be detected by RT-PCR using the PPV-D-specific primers P1/PD or by TAS-ELISA with the PPV-C-specific monoclonal antibody AC. Phylogenetic analysis of the 3'-terminal genomic region assigned the Tat isolates into the cluster of cherry-adapted strains. However, they grouped separately from the C and CR strains and from each other as well. The sequence divergence of the Tat isolates is comparable to the differences between the known PPV strains. They may represent new group(s) of cherry-adapted isolates which do not seem to belong to any known strain of the virus.
Collapse
|