1
|
Biocontrol arsenals of bacterial endophyte: An imminent triumph against clubroot disease. Microbiol Res 2020; 241:126565. [DOI: 10.1016/j.micres.2020.126565] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 11/18/2022]
|
2
|
Zhang J, Mavrodi DV, Yang M, Thomashow LS, Mavrodi OV, Kelton J, Weller DM. Pseudomonas synxantha 2-79 Transformed with Pyrrolnitrin Biosynthesis Genes Has Improved Biocontrol Activity Against Soilborne Pathogens of Wheat and Canola. PHYTOPATHOLOGY 2020; 110:1010-1017. [PMID: 32065038 PMCID: PMC7238759 DOI: 10.1094/phyto-09-19-0367-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A four-gene operon (prnABCD) from Pseudomonas protegens Pf-5 encoding the biosynthesis of the antibiotic pyrronitrin was introduced into P. synxantha (formerly P. fluorescens) 2-79, an aggressive root colonizer of both dryland and irrigated wheat roots that naturally produces the antibiotic phenazine-1-carboxylic acid and suppresses both take-all and Rhizoctonia root rot of wheat. Recombinant strains ZHW15 and ZHW25 produced both antibiotics and maintained population sizes in the rhizosphere of wheat that were comparable to those of strain 2-79. The recombinant strains inhibited in vitro the wheat pathogens Rhizoctonia solani anastomosis group 8 (AG-8) and AG-2-1, Gaeumannomyces graminis var. tritici, Sclerotinia sclerotiorum, Fusarium culmorum, and F. pseudograminearum significantly more than did strain 2-79. Both the wild-type and recombinant strains were equally inhibitory of Pythium ultimum. When applied as a seed treatment, the recombinant strains suppressed take-all, Rhizoctonia root rot of wheat, and Rhizoctonia root and stem rot of canola significantly better than did wild-type strain 2-79.
Collapse
Affiliation(s)
- Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
- Department of Plant Pathology, Washington State University, Pullman 99164-6430, U.S.A
| | - Dmitri V. Mavrodi
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, U.S.A
- Department of Plant Pathology, Washington State University, Pullman 99164-6430, U.S.A
| | - Mingming Yang
- Department of Plant Pathology, Washington State University, Pullman 99164-6430, U.S.A
- Department of Agronomy, Northwest A&F University, Yangling, P. R. China
| | - Linda S. Thomashow
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164-6430, U.S.A
| | - Olga V. Mavrodi
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, U.S.A
- Department of Plant Pathology, Washington State University, Pullman 99164-6430, U.S.A
| | - Jason Kelton
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164-6430, U.S.A
| | - David M. Weller
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164-6430, U.S.A
| |
Collapse
|
3
|
Yang M, Mavrodi DV, Mavrodi OV, Thomashow LS, Weller DM. Exploring the Pathogenicity of Pseudomonas brassicacearum Q8r1-96 and Other Strains of the Pseudomonas fluorescens Complex on Tomato. PLANT DISEASE 2020; 104:1026-1031. [PMID: 31994984 PMCID: PMC7163159 DOI: 10.1094/pdis-09-19-1989-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Pseudomonas brassicacearum and related species of the P. fluorescens complex have long been studied as biocontrol and growth-promoting rhizobacteria involved in suppression of soilborne pathogens. We report here that P. brassicacearum Q8r1-96 and other 2,4-diacetylphloroglucinol (DAPG)-producing fluorescent pseudomonads involved in take-all decline of wheat in the Pacific Northwest of the United States can also be pathogenic to other plant hosts. Strain Q8r1-96 caused necrosis when injected into tomato stems and immature tomato fruits, either attached or removed from the plant, but lesion development was dose dependent, with a minimum of 106 CFU ml-1 required to cause visible tissue damage. We explored the relative contribution of several known plant-microbe interaction traits to the pathogenicity of strain Q8r1-96. Type III secretion system (T3SS) mutants of Q8r1-96, injected at a concentration of 108 CFU ml-1, were significantly less virulent, but not consistently, as compared with the wild-type strain. However, a DAPG-deficient phlD mutant of Q8r1-96 was significantly and consistently less virulent as compared with the wild type. Strain Q8r1-96acc, engineered to over express ACC deaminase, caused a similar amount of necrosis as the wild type. Cell-free culture filtrates of strain Q8r1-96 and pure DAPG also cause necrosis in tomato fruits. Our results suggest that DAPG plays a significant role in the ability of Q8r1-96 to cause necrosis of tomato tissue, but other factors also contribute to the pathogenic properties of this organism.
Collapse
Affiliation(s)
- Mingming Yang
- Corresponding authors: Mingming Yang: ; David M. Weller:
| | - Dmitri V. Mavrodi
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Olga V. Mavrodi
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Linda S. Thomashow
- U. S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164-6430, USA
| | | |
Collapse
|
4
|
Gutiérrez-García K, Neira-González A, Pérez-Gutiérrez RM, Granados-Ramírez G, Zarraga R, Wrobel K, Barona-Gómez F, Flores-Cotera LB. Phylogenomics of 2,4-Diacetylphloroglucinol-Producing Pseudomonas and Novel Antiglycation Endophytes from Piper auritum. JOURNAL OF NATURAL PRODUCTS 2017; 80:1955-1963. [PMID: 28704049 DOI: 10.1021/acs.jnatprod.6b00823] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
2,4-Diacetylphloroglucinol (DAPG) (1) is a phenolic polyketide produced by some plant-associated Pseudomonas species, with many biological activities and ecological functions. Here, we aimed at reconstructing the natural history of DAPG using phylogenomics focused at its biosynthetic gene cluster or phl genes. In addition to around 1500 publically available genomes, we obtained and analyzed the sequences of nine novel Pseudomonas endophytes isolated from the antidiabetic medicinal plant Piper auritum. We found that 29 organisms belonging to six Pseudomonas species contain the phl genes at different frequencies depending on the species. The evolution of the phl genes was then reconstructed, leading to at least two clades postulated to correlate with the known chemical diversity surrounding DAPG biosynthesis. Moreover, two of the newly obtained Pseudomonas endophytes with high antiglycation activity were shown to exert their inhibitory activity against the formation of advanced glycation end-products via DAPG and related congeners. Its isomer, 5-hydroxyferulic acid (2), detected during bioactivity-guided fractionation, together with other DAPG congeners, were found to enhance the detected inhibitory activity. This report provides evidence of a link between the evolution and chemical diversity of DAPG and congeners.
Collapse
Affiliation(s)
- Karina Gutiérrez-García
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN , Irapuato 36821, Guanajuato, Mexico
- Laboratory of Microbial Secondary Metabolism, Department of Biotechnology, Cinvestav-IPN Mexico City 07360, Mexico
| | - Adriana Neira-González
- Laboratory of Microbial Secondary Metabolism, Department of Biotechnology, Cinvestav-IPN Mexico City 07360, Mexico
| | - Rosa Martha Pérez-Gutiérrez
- Laboratory of Natural Products Research, ESIQUIE-IPN , Unidad Profesional Adolfo López Mateos, Avenida Instituto Politécnico Nacional, Mexico City 07708, Mexico
| | | | - Ramon Zarraga
- Chemistry Department, Division of Natural and Exact Sciences, University of Guanajuato , Guanajuato 36000, Guanajuato, Mexico
| | - Kazimierz Wrobel
- Chemistry Department, Division of Natural and Exact Sciences, University of Guanajuato , Guanajuato 36000, Guanajuato, Mexico
| | - Francisco Barona-Gómez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN , Irapuato 36821, Guanajuato, Mexico
| | - Luis B Flores-Cotera
- Laboratory of Microbial Secondary Metabolism, Department of Biotechnology, Cinvestav-IPN Mexico City 07360, Mexico
| |
Collapse
|
5
|
Vida C, Cazorla FM, de Vicente A. Characterization of biocontrol bacterial strains isolated from a suppressiveness-induced soil after amendment with composted almond shells. Res Microbiol 2017; 168:583-593. [PMID: 28373145 DOI: 10.1016/j.resmic.2017.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022]
Abstract
The improvement in soil quality of avocado crops through organic amendments with composted almond shells has a positive effect on crop yield and plant health, and enhances soil suppressiveness against the phytopathogenic fungus Rosellinia necatrix. In previous studies, induced soil suppressiveness against this pathogen was related to stimulation of Gammaproteobacteria, especially some members of Pseudomonas spp. with biocontrol-related activities. In this work, we isolated bacteria from this suppressiveness-induced amended soil using a selective medium for Pseudomonas-like microorganisms. We characterized the obtained bacterial collection to aid in identification, including metabolic profiles, antagonistic responses, hybridization to biosynthetic genes of antifungal compounds, production of lytic exoenzymatic activities and plant growth-promotion-related traits, and sequenced and compared amplified 16S rDNA genes from representative bacteria. The final selection of representative strains mainly belonged to the genus Pseudomonas, but also included the genera Serratia and Stenotrophomonas. Their biocontrol-related activities were assayed using the experimental avocado model, and results showed that all selected strains protected the avocado roots against R. necatrix. This work confirmed the biocontrol activity of these Gammaproteobacteria-related members against R. necatrix following specific stimulation in a suppressiveness-induced soil after a composted almond shell application.
Collapse
Affiliation(s)
- Carmen Vida
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain; Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, 29071 Málaga, Spain.
| | - Francisco M Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain; Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, 29071 Málaga, Spain.
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain; Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Bulevar Louis Pasteur, 31, 29071 Málaga, Spain.
| |
Collapse
|