1
|
Peng JM, Zhang DD, Huang ZY, Fu MJ. The Stress of Fungicides Changes the Expression of Clock Protein CmFRQ and the Morphology of Fruiting Bodies of Cordyceps militaris. J Fungi (Basel) 2024; 10:150. [PMID: 38392822 PMCID: PMC10890350 DOI: 10.3390/jof10020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
The physiological, biochemical, and morphological changes brought about by fungi in response to fungicides can undoubtedly bring diversity to fungi. Cordyceps militaris strains TN (mating type genes MAT1-1-1, MAT1-1-2, and MAT1-2-1) and CmFRQ-454 (mating type genes MAT1-1-1 and MAT1-1-2) were treated with non-lethal doses of fungicides amphotericin B, L-cysteine, terbinafine, and 5-fluorocytosine. The results showed that the treatment with amphotericin B, terbinafine, and 5-fluorocytosine promoted an increase in the relative content of clock protein CmFRQ (C. militaris FREQUENCY) in the mycelium of strain TN, while the high concentration of L-cysteine inhibited the expression of CmFRQ in strain TN. These four fungicides could reduce the relative contents of CmFRQ in the mycelium of strain CmFRQ454. The relative contents of CmFRQ in the mycelium of strain TN were increased after removing the four fungicides, but the relative contents of CmFRQ in the mycelium of strain CmFRQ454 were decreased after removing the four fungicides. This indicates that the effect of fungicides on CmFRQ on mycelium was still sustained after removing the stress of fungicides, and the operation of the circadian clock was changed. The fruiting bodies of C. militaris strain TN and CmFRQ-454 were still degenerated to varying degrees after removing amphotericin B, L-cysteine, and terbinafine. However, the fruiting bodies of strain TN after removing 5-fluorocytosine did not show significant degeneration; the fruiting bodies of strain CmFRQ-454 after removing 5-fluorocytosine obtained rejuvenation. These results indicate that the stress of fungicides could lead to the degeneration of fruiting bodies as well as the rejuvenation of fruiting bodies, resulting in the morphological diversity of C. militaris. The increase or decrease of the CmFRQ-454, the main component of the circadian clock, caused by the stress of fungicants, might lead to the differential degeneration of different mating-type strains of C. militaris.
Collapse
Affiliation(s)
- Jing-Mei Peng
- College of Life Science, Jiangxi Normal University, No. 99, Ziyang Avenue, Nanchang 330022, China
| | - Dan-Dan Zhang
- College of Life Science, Jiangxi Normal University, No. 99, Ziyang Avenue, Nanchang 330022, China
| | - Zi-Yan Huang
- College of Life Science, Jiangxi Normal University, No. 99, Ziyang Avenue, Nanchang 330022, China
| | - Ming-Jia Fu
- College of Life Science, Jiangxi Normal University, No. 99, Ziyang Avenue, Nanchang 330022, China
| |
Collapse
|
2
|
Djami-Tchatchou AT, Tetorya M, Godwin J, Codjoe JM, Li H, Shah DM. Small Cationic Cysteine-Rich Defensin-Derived Antifungal Peptide Controls White Mold in Soybean. J Fungi (Basel) 2023; 9:873. [PMID: 37754982 PMCID: PMC10532163 DOI: 10.3390/jof9090873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
White mold disease caused by a necrotrophic ascomycete pathogen Sclerotinia sclerotiorum results in serious economic losses of soybean yield in the USA. Lack of effective genetic resistance to this disease in soybean germplasm and increasing pathogen resistance to fungicides makes white mold difficult to manage. Small cysteine-rich antifungal peptides with multi-faceted modes of action possess potential for development as sustainable spray-on bio-fungicides. We have previously reported that GMA4CG_V6 peptide, a 17-amino acid variant of the MtDef4 defensin-derived peptide GMA4CG containing the active γ-core motif, exhibits potent antifungal activity against the gray mold fungal pathogen Botrytis cinerea in vitro and in planta. GMA4CG_V6 exhibited antifungal activity against an aggressive field isolate of S. sclerotiorum 555 in vitro with an MIC value of 24 µM. At this concentration, internalization of this peptide into fungal cells occurred prior to discernible membrane permeabilization. GMA4CG_V6 markedly reduced white mold disease symptoms when applied to detached soybean leaves, pods, and stems. Its spray application on soybean plants provided robust control of this disease. GMA4CG_V6 at sub-lethal concentrations reduced sclerotia production. It was also non-phytotoxic to soybean plants. Our results demonstrate that GMA4CG_V6 peptide has potential for development as a bio-fungicide for white mold control in soybean.
Collapse
Affiliation(s)
| | | | | | | | | | - Dilip M. Shah
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; (A.T.D.-T.); (M.T.); (J.G.); (J.M.C.); (H.L.)
| |
Collapse
|
3
|
Nieto-Lopez EH, Miorini TJJ, Wulkop-Gil CA, I Chilvers M, Giesler LJ, Jackson-Ziems TA, Kabbage M, Mueller DS, Smith DL, Tovar-Pedraza JM, Willbur JF, Everhart SE. Fungicide Sensitivity of Sclerotinia sclerotiorum from U.S. Soybean and Dry Bean, Compared to Different Regions and Climates. PLANT DISEASE 2023; 107:2395-2406. [PMID: 36691269 DOI: 10.1094/pdis-07-22-1707-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fungicide use is integral to reduce yield loss from Sclerotinia sclerotiorum on dry bean and soybean. Increasing fungicide use against this fungus may lead to resistance to the most common fungicides. Resistance has been reported in Brazil (Glycine max) and China (Brassica napus subsp. napus), however, few studies have investigated fungicide sensitivity of S. sclerotiorum in the United States. This work was conducted to determine if there was a difference in fungicide sensitivity of S. sclerotiorum isolates in the United States from: (i) dry bean versus soybean and (ii) fields with different frequencies of fungicide application. We further hypothesized that isolates with fungicide applications of a single active ingredient from tropical Brazil and subtropical Mexico were less sensitive than temperate U.S. isolates due to different management practices and climates. The EC50(D) fungicide sensitivity of 512 S. sclerotiorum isolates from the United States (443), Brazil (36), and Mexico (33) was determined using a discriminatory concentration (DC) previously identified for tetraconazole (2.0 ppm; EC50(D) range of 0.197 to 2.27 ppm), boscalid (0.2; 0.042 to 0.222), picoxystrobin (0.01; 0.006 to 0.027), and thiophanate-methyl, which had a qualitative DC of 10 ppm. Among the 10 least sensitive isolates to boscalid and picoxystrobin, 2 presented mutations known to confer resistance in the SdhB (qualitative) and SdhC (quantitative) genes; however, no strong resistance was found. This study established novel DCs that can be used for further resistance monitoring and baseline sensitivity of S. sclerotiorum to tetraconazole worldwide plus baseline sensitivity to boscalid in the United States.
Collapse
Affiliation(s)
- Edgar H Nieto-Lopez
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583, U.S.A
| | | | - Cristian A Wulkop-Gil
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583, U.S.A
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, U.S.A
| | - Martin I Chilvers
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Loren J Giesler
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583, U.S.A
| | | | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Daren S Mueller
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Damon L Smith
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Juan Manuel Tovar-Pedraza
- Coordinación Regional Culiacán, Centro de Investigación en Alimentación y Desarrollo, Culiacán, Sinaloa 80110, Mexico
| | - Jaime F Willbur
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Sydney E Everhart
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583, U.S.A
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269-4067, U.S.A
| |
Collapse
|
4
|
Miranda-Calixto A, Loera-Corral O, López-Pérez M, Figueroa-Martínez F. Improvement of Akanthomyces lecanii resistance to tebuconazole through UV-C radiation and selective pressure on microbial evolution and growth arenas. J Invertebr Pathol 2023; 198:107914. [PMID: 36958641 DOI: 10.1016/j.jip.2023.107914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Tebuconazole (TEB) is a fungicide widely used in agriculture; however, its constant application has increased the emergence of resistant plant pathogenic fungal strains and reduced the effectiveness of fungi as biological control agents; for instance, the entomopathogenic and hyperparasitic fungus Akanthomyces lecanii, suitable for simultaneous biological control of insect pest and plant pathogenic fungi, is highly sensitive to fungicides. We carried out the induction of resistance to TEB in two wild type strains of A. lecanii by UV radiation and selective pressure in increasing fungicide gradients using a modified Microbial Evolution and Growth Arena (MEGA), to produce A. lecanii strains that can be used as biological control agent in the presence of tebuconazole. Nine UV-induced and three naturally adapted A. lecanii strains were resistant to TEB at the agriculturally recommended dose, and three irradiated strains were resistant to TEB concentration ten times higher; moreover, growth, sporulation rates, production of hydrolytic enzymes, and virulence against the hemipteran Coccus viridis, a major pest of coffee crops, were not affected in the TEB-resistant strains. These A. lecanii TEB-resistant strains would have a greater opportunity to develop and to establish themselves in fields where the fungicide is present and can be used in a combined biological-chemical strategy to improve insect and plant pathogenic fungal control in agriculture. Also, the selective pressure through modified MEGA plate methodology can be used for the adaptation of entomopathogenic filamentous fungi to withstand other chemical or abiotic stresses that limits its effectiveness for pest control.
Collapse
Affiliation(s)
- Arturo Miranda-Calixto
- Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Biotecnología, San Rafael Atlixco 186, Col. Vicentina, C. P. 09340 CDMX, Mexico
| | - Octavio Loera-Corral
- Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Biotecnología, San Rafael Atlixco 186, Col. Vicentina, C. P. 09340 CDMX, Mexico
| | - Marcos López-Pérez
- Universidad Autónoma Metropolitana-Lerma Departamento de Ciencias Ambientales, Av. de las Garzas 10, El panteón, C. P. 52005 Lerma de Villada, Mexico
| | - Francisco Figueroa-Martínez
- CONACyT Research Fellow - Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, C. P. 09340 CDMX, Mexico.
| |
Collapse
|
5
|
Ballu A, Despréaux P, Duplaix C, Dérédec A, Carpentier F, Walker AS. Antifungal alternation can be beneficial for durability but at the cost of generalist resistance. Commun Biol 2023; 6:180. [PMID: 36797413 PMCID: PMC9935548 DOI: 10.1038/s42003-023-04550-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
The evolution of resistance to pesticides is a major burden in agriculture. Resistance management involves maximizing selection pressure heterogeneity, particularly by combining active ingredients with different modes of action. We tested the hypothesis that alternation may delay the build-up of resistance not only by spreading selection pressure over longer periods, but also by decreasing the rate of evolution of resistance to alternated fungicides, by applying an experimental evolution approach to the economically important crop pathogen Zymoseptoria tritici. Our results show that alternation is either neutral or slows the overall resistance evolution rate, relative to continuous fungicide use, but results in higher levels of generalism in evolved lines. We demonstrate that the nature of the fungicides, and therefore their relative intrinsic risk of resistance may underly this trade-off, more so than the number of fungicides and the rhythm of alternation. This trade-off is also dynamic over the course of resistance evolution. These findings open up new possibilities for tailoring resistance management effectively while optimizing interplay between alternation components.
Collapse
Affiliation(s)
- Agathe Ballu
- grid.507621.7Université Paris-Saclay, INRAE, UR BIOGER, 91120 Palaiseau, France
| | - Philomène Despréaux
- grid.507621.7Université Paris-Saclay, INRAE, UR BIOGER, 91120 Palaiseau, France
| | - Clémentine Duplaix
- grid.507621.7Université Paris-Saclay, INRAE, UR BIOGER, 91120 Palaiseau, France
| | - Anne Dérédec
- grid.507621.7Université Paris-Saclay, INRAE, UR BIOGER, 91120 Palaiseau, France
| | - Florence Carpentier
- grid.507621.7Université Paris-Saclay, INRAE, UR MaIAGE, 78350 Jouy-en-Josas, France ,grid.417885.70000 0001 2185 8223AgroParisTech, 91120 Palaiseau, France
| | | |
Collapse
|
6
|
Zhao X, Li K, Zheng S, Yang J, Chen C, Zheng X, Wang Y, Ye W. Diaporthe Diversity and Pathogenicity Revealed from a Broad Survey of Soybean Stem Blight in China. PLANT DISEASE 2022; 106:2892-2903. [PMID: 35412334 DOI: 10.1094/pdis-12-21-2785-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Many species in the fungal Diaporthe (anamorph Phomopsis) genus have become a group of the most important pathogens that cause seed decay, stem and pot blight, and stem canker in soybean production worldwide, resulting in significant yield loss. Due to increased disease prevalence but a lack of research, we performed an extensive field survey to isolate and identify the Diaporthe species associated with soybean stem blight in six provinces of China between 2019 and 2020. A total of 92 Diaporthe isolates were identified based on morphological and multilocus phylogenetic analysis and classified into six species: D. longicolla, D. unshiuensis, D. sojae, D. caulivora, D. tectonigena, and an unknown Diaporthe sp. The most frequently identified species was D. longicolla with 57 isolates. High genetic diversity was observed for the D. longicolla isolates, and haplotype network analysis revealed a mixed structure among the population in the six provinces. In comparative pathogenicity assays, different virulence levels were observed among the 92 Diaporthe isolates. The results of this study provide new insights into the Diaporthe spp. associated with soybean stem blight in China and can help in the development of effective management strategies.
Collapse
Affiliation(s)
- Xiaolin Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kainan Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Sujiao Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jin Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Changjun Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
7
|
Evolutionary Significance of Fungal Hypermutators: Lessons Learned from Clinical Strains and Implications for Fungal Plant Pathogens. mSphere 2022; 7:e0008722. [PMID: 35638358 PMCID: PMC9241500 DOI: 10.1128/msphere.00087-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid evolution of fungal pathogens poses a serious threat to medicine and agriculture. The mutation rate determines the pace of evolution of a fungal pathogen. Hypermutator fungal strains have an elevated mutation rate owing to certain defects such as those in the DNA mismatch repair system. Studies in Saccharomyces cerevisiae show that hypermutators expedite evolution by generating beneficial alleles at a faster pace than the wild-type strains. However, an accumulation of deleterious alleles in a hypermutator may reduce its fitness. The balance between fitness cost and mutation benefit determines the prevalence of hypermutators in a population. This balance is affected by a complex interaction of ploidy, mode of reproduction, population size, and recent population history. Studies in human fungal pathogens like Aspergillus fumigatus, Candida albicans, Candida glabrata, Cryptococcus deuterogattii, and Cryptococcus neoformans have highlighted the importance of hypermutators in host adaptation and development of antifungal resistance. However, a critical examination of hypermutator biology, experimental evolution studies, and epidemiological studies suggests that hypermutators may impact evolutionary investigations. This review aims to integrate the knowledge about biology, experimental evolution, and dynamics of fungal hypermutators to critically examine the evolutionary role of hypermutators in fungal pathogen populations and project implications of hypermutators in the evolution of fungal plant pathogen populations. Understanding the factors determining the emergence and evolution of fungal hypermutators can open a novel avenue of managing rapidly evolving fungal pathogens in medicine and agriculture.
Collapse
|
8
|
Stam R, Gladieux P, Vinatzer BA, Goss EM, Potnis N, Candresse T, Brewer MT. Population Genomic- and Phylogenomic-Enabled Advances to Increase Insight Into Pathogen Biology and Epidemiology. PHYTOPATHOLOGY 2021; 111:8-11. [PMID: 33513042 DOI: 10.1094/phyto-11-20-0528-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Population genetics has been a key discipline in phytopathology for many years. The recent rise in cost-effective, high-throughput DNA sequencing technologies, allows sequencing of dozens, if not hundreds of specimens, turning population genetics into population genomics and opening up new, exciting opportunities as described in this Focus Issue. Without the limitations of genetic markers and the availability of whole or near whole-genome data, population genomics can give new insights into the biology, evolution and adaptation, and dissemination patterns of plant-associated microbes.
Collapse
Affiliation(s)
- Remco Stam
- Phytopathology, Technical University Munich, 85354 Freising, Germany
| | - Pierre Gladieux
- UMR BGPI, University of Montpellier, INRA, CIRAD, Montpellier SupAgro, 34398 Montpellier, France
| | - Boris A Vinatzer
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, U.S.A
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, U.S.A
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Rouse Life Science Building, Auburn University, Auburn, AL 36849, U.S.A
| | | | - Marin Talbot Brewer
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, U.S.A
| |
Collapse
|
9
|
Everhart S, Gambhir N, Stam R. Population Genomics of Filamentous Plant Pathogens-A Brief Overview of Research Questions, Approaches, and Pitfalls. PHYTOPATHOLOGY 2021; 111:12-22. [PMID: 33337245 DOI: 10.1094/phyto-11-20-0527-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With ever-decreasing sequencing costs, research on the population biology of plant pathogens is transitioning from population genetics-using dozens of genetic markers or polymorphism data of several genes-to population genomics-using several hundred to tens of thousands of markers or whole-genome sequence data. The field of population genomics is characterized by rapid theoretical and methodological advances and by numerous steps and pitfalls in its technical and analytical workflow. In this article, we aim to provide a brief overview of topics relevant to the study of population genomics of filamentous plant pathogens and direct readers to more extensive reviews for in-depth understanding. We briefly discuss different types of population genomics-inspired research questions and give insights into the sampling strategies that can be used to answer such questions. We then consider different sequencing strategies, the various options available for data processing, and some of the currently available tools for population genomic data analysis. We conclude by highlighting some of the hurdles along the population genomic workflow, providing cautionary warnings relative to assumptions and technical challenges, and presenting our own future perspectives of the field of population genomics for filamentous plant pathogens.
Collapse
Affiliation(s)
- Sydney Everhart
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583, U.S.A
| | - Nikita Gambhir
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583, U.S.A
| | - Remco Stam
- Phytopathology, School of Life Sciences Weihenstephan, Technical University Munich, Germany
| |
Collapse
|