1
|
Frolova N, Gorbach D, Ihling C, Bilova T, Orlova A, Lukasheva E, Fedoseeva K, Dodueva I, Lutova LA, Frolov A. Proteome and Metabolome Alterations in Radish ( Raphanus sativus L.) Seedlings Induced by Inoculation with Agrobacterium tumefaciens. Biomolecules 2025; 15:290. [PMID: 40001593 PMCID: PMC11852571 DOI: 10.3390/biom15020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Infection of higher plants with agrobacteria (Agrobacterium tumefaciens) represents one of the most comprehensively characterized examples of plant-microbial interactions. Incorporation of the bacterial transfer DNA (T-DNA) in the plant genome results in highly efficient expression of the bacterial auxin, cytokinin and opine biosynthesis genes, as well as the host genes of hormone-mediated signaling. These transcriptional events trigger enhanced proliferation of plant cells and formation of crown gall tumors. Because of this, infection of plant tissues with A. tumefaciens provides a convenient model to address the dynamics of cell metabolism accompanying plant development. To date, both early and late plant responses to agrobacterial infection are well-characterized at the level of the transcriptome, whereas only little information on the accompanying changes in plant metabolism is available. Therefore, here we employ an integrated proteomics and metabolomics approach to address the metabolic shifts and molecular events accompanying plant responses to inoculation with the A. tumefaciens culture. Based on the acquired proteomics dataset complemented with the results of the metabolite profiling experiment, we succeeded in characterizing the metabolic shifts associated with agrobacterial infection. The observed dynamics of the seedling proteome and metabolome clearly indicated rearrangement of the energy metabolism on the 10th day after inoculation (d.a.i.). Specifically, redirection of the energy metabolism from the oxidative to the anaerobic pathway was observed. This might be a part of the plant's adaptation response to tumor-induced hypoxic stress, which most likely involved activation of sugar signaling.
Collapse
Affiliation(s)
- Nadezhda Frolova
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, 127276 Moscow, Russia; (N.F.); (D.G.); (T.B.); (A.O.)
| | - Daria Gorbach
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, 127276 Moscow, Russia; (N.F.); (D.G.); (T.B.); (A.O.)
| | - Christian Ihling
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany;
| | - Tatiana Bilova
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, 127276 Moscow, Russia; (N.F.); (D.G.); (T.B.); (A.O.)
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anastasia Orlova
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, 127276 Moscow, Russia; (N.F.); (D.G.); (T.B.); (A.O.)
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Ksenia Fedoseeva
- Resource Center “Molecular and Cell Technologies”, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Irina Dodueva
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.D.); (L.A.L.)
| | - Lyudmila A. Lutova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.D.); (L.A.L.)
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry and Biotechnology, K.A. Timiryazev Institute of Plant Physiology Russian Academy of Science, 127276 Moscow, Russia; (N.F.); (D.G.); (T.B.); (A.O.)
| |
Collapse
|
2
|
Rüter P, Debener T, Winkelmann T. Unraveling the genetic basis of Rhizobium rhizogenes-mediated transformation and hairy root formation in rose using a genome-wide association study. PLANT CELL REPORTS 2024; 43:300. [PMID: 39627595 PMCID: PMC11615123 DOI: 10.1007/s00299-024-03388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024]
Abstract
KEY MESSAGE Multiple QTLs reveal the polygenic nature of R. rhizogenes-mediated transformation and hairy root formation in roses, with five key regions explaining 12.0-26.9% of trait variability and transformation-related candidate genes identified. Understanding genetic mechanisms of plant transformation remains crucial for biotechnology. This is particularly relevant for roses and other woody ornamentals that exhibit recalcitrant behavior in transformation procedures. Rhizobium rhizogenes-mediated transformation leading to hairy root (HR) formation provides an excellent model system to study transformation processes and host-pathogen interactions. Therefore, this study aimed to identify quantitative trait loci (QTLs) associated with HR formation and explore their relationship with adventitious root (AR) formation in rose as a model for woody ornamentals. A diversity panel of 104 in vitro grown rose genotypes was transformed with R. rhizogenes strain ATCC 15834 carrying a green fluorescent protein reporter gene. Phenotypic data on callus and root formation were collected for laminae and petioles. A genome-wide association study using 23,419 single-nucleotide polymorphism markers revealed significant QTLs on chromosomes one and two for root formation traits. Five key genomic regions explained 12.0-26.9% of trait variability, with some peaks overlapping previously reported QTLs for AR formation. This genetic overlap was supported by weak to moderate correlations between HR and AR formation traits, particularly in petioles. Candidate gene identification through literature review and transcriptomic data analysis revealed ten candidate genes involved in bacterial response, hormone signaling, and stress responses. Our findings provide new insights into the genetic control of HR formation in roses and highlight potential targets for improving transformation efficiency in ornamental crops, thereby facilitating future research and breeding applications.
Collapse
Affiliation(s)
- Philipp Rüter
- Institute of Horticultural Production Systems, Section Woody Plant and Propagation Physiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
| | - Thomas Debener
- Institute of Plant Genetics, Section Molecular Plant Breeding, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Traud Winkelmann
- Institute of Horticultural Production Systems, Section Woody Plant and Propagation Physiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
3
|
Stindt KR, McClean MN. Tuning interdomain conjugation to enable in situ population modification in yeasts. mSystems 2024; 9:e0005024. [PMID: 38747597 PMCID: PMC11326116 DOI: 10.1128/msystems.00050-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/15/2024] [Indexed: 05/28/2024] Open
Abstract
The ability to modify and control natural and engineered microbiomes is essential for biotechnology and biomedicine. Fungi are critical members of most microbiomes, yet technology for modifying the fungal members of a microbiome has lagged far behind that for bacteria. Interdomain conjugation (IDC) is a promising approach, as DNA transfer from bacterial cells to yeast enables in situ modification. While such genetic transfers have been known to naturally occur in a wide range of eukaryotes and are thought to contribute to their evolution, IDC has been understudied as a technique to control fungal or fungal-bacterial consortia. One major obstacle to the widespread use of IDC is its limited efficiency. In this work, we manipulated metabolic and physical interactions between genetically tractable Escherichia coli and Saccharomyces cerevisiae to control the incidence of IDC. We test the landscape of population interactions between the bacterial donors and yeast recipients to find that bacterial commensalism leads to maximized IDC, both in culture and in mixed colonies. We demonstrate the capacity of cell-to-cell binding via mannoproteins to assist both IDC incidence and bacterial commensalism in culture and model how these tunable controls can predictably yield a range of IDC outcomes. Furthermore, we demonstrate that these controls can be utilized to irreversibly alter a recipient yeast population, by both "rescuing" a poor-growing recipient population and collapsing a stable population via a novel IDC-mediated CRISPR/Cas9 system.IMPORTANCEFungi are important but often unaddressed members of most natural and synthetic microbial communities. This work highlights opportunities for modifying yeast microbiome populations through bacterial conjugation. While conjugation has been recognized for its capacity to deliver engineerable DNA to a range of cells, its dependence on cell contact has limited its efficiency. Here, we find "knobs" to control DNA transfer, by engineering the metabolic dependence between bacterial donors and yeast recipients and by changing their ability to physically adhere to each other. Importantly, we functionally validate these "knobs" by irreversibly altering yeast populations. We use these controls to "rescue" a failing yeast population, demonstrate the capacity of conjugated CRISPR/Cas9 to depress or collapse populations, and show that conjugation can be easily interrupted by disrupting cell-to-cell binding. These results offer building blocks toward in situ mycobiome editing, with significant implications for clinical treatments of fungal pathogens and other fungal system engineering.
Collapse
Affiliation(s)
- Kevin R Stindt
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Doctoral Program in Biophysics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Megan N McClean
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Fernandes AS, Campos KF, de Assis JCS, Gonçalves OS, Queiroz MVD, Bazzolli DMS, Santana MF. Investigating the impact of insertion sequences and transposons in the genomes of the most significant phytopathogenic bacteria. Microb Genom 2024; 10. [PMID: 38568199 DOI: 10.1099/mgen.0.001219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Genetic variability in phytopathogens is one of the main problems encountered for effective plant disease control. This fact may be related to the presence of transposable elements (TEs), but little is known about their role in host genomes. Here, we performed the most comprehensive analysis of insertion sequences (ISs) and transposons (Tns) in the genomes of the most important bacterial plant pathogens. A total of 35 692 ISs and 71 transposons were identified in 270 complete genomes. The level of pathogen-host specialization was found to be a significant determinant of the element distribution among the species. Some Tns were identified as carrying virulence factors, such as genes encoding effector proteins of the type III secretion system and resistance genes for the antimicrobial streptomycin. Evidence for IS-mediated ectopic recombination was identified in Xanthomonas genomes. Moreover, we found that IS elements tend to be inserted in regions near virulence and fitness genes, such ISs disrupting avirulence genes in X. oryzae genomes. In addition, transcriptome analysis under different stress conditions revealed differences in the expression of genes encoding transposases in the Ralstonia solanacearum, X. oryzae, and P. syringae species. Lastly, we also investigated the role of Tns in regulation via small noncoding regulatory RNAs and found these elements may target plant-cell transcriptional activators. Taken together, the results indicate that TEs may have a fundamental role in variability and virulence in plant pathogenic bacteria.
Collapse
|
5
|
Huang Z, Zou J, Guo M, Zhang G, Gao J, Zhao H, Yan F, Niu Y, Wang GL. An aerotaxis receptor influences invasion of Agrobacterium tumefaciens into its host. PeerJ 2024; 12:e16898. [PMID: 38332807 PMCID: PMC10851874 DOI: 10.7717/peerj.16898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
Agrobacterium tumefaciens is a soil-borne pathogenic bacterium that causes crown gall disease in many plants. Chemotaxis offers A. tumefaciens the ability to find its host and establish infection. Being an aerobic bacterium, A. tumefaciens possesses one chemotaxis system with multiple potential chemoreceptors. Chemoreceptors play an important role in perceiving and responding to environmental signals. However, the studies of chemoreceptors in A. tumefaciens remain relatively restricted. Here, we characterized a cytoplasmic chemoreceptor of A. tumefaciens C58 that contains an N-terminal globin domain. The chemoreceptor was designated as Atu1027. The deletion of Atu1027 not only eliminated the aerotactic response of A. tumefaciens to atmospheric air but also resulted in a weakened chemotactic response to multiple carbon sources. Subsequent site-directed mutagenesis and phenotypic analysis showed that the conserved residue His100 in Atu1027 is essential for the globin domain's function in both chemotaxis and aerotaxis. Furthermore, deleting Atu1027 impaired the biofilm formation and pathogenicity of A. tumefaciens. Collectively, our findings demonstrated that Atu1027 functions as an aerotaxis receptor that affects agrobacterial chemotaxis and the invasion of A. tumefaciens into its host.
Collapse
Affiliation(s)
- Zhiwei Huang
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Junnan Zou
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Minliang Guo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Guoliang Zhang
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Jun Gao
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Hongliang Zhao
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Feiyu Yan
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Yuan Niu
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Guang-Long Wang
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| |
Collapse
|
6
|
Stindt KR, McClean MN. Tuning Interdomain Conjugation Toward in situ Population Modification in Yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557379. [PMID: 37745509 PMCID: PMC10515866 DOI: 10.1101/2023.09.12.557379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The ability to modify and control natural and engineered microbiomes is essential for biotechnology and biomedicine. Fungi are critical members of most microbiomes, yet technology for modifying the fungal members of a microbiome has lagged far behind that for bacteria. Interdomain conjugation (IDC) is a promising approach, as DNA transfer from bacterial cells to yeast enables in situ modification. While such genetic transfers have been known to naturally occur in a wide range of eukaryotes, and are thought to contribute to their evolution, IDC has been understudied as a technique to control fungal or fungal-bacterial consortia. One major obstacle to widespread use of IDC is its limited efficiency. In this work, we utilize interactions between genetically tractable Escherichia coli and Saccharomyces cerevisiae to control the incidence of IDC. We test the landscape of population interactions between the bacterial donors and yeast recipients to find that bacterial commensalism leads to maximized IDC, both in culture and in mixed colonies. We demonstrate the capacity of cell-to-cell binding via mannoproteins to assist both IDC incidence and bacterial commensalism in culture, and model how these tunable controls can predictably yield a range of IDC outcomes. Further, we demonstrate that these lessons can be utilized to lastingly alter a recipient yeast population, by both "rescuing" a poor-growing recipient population and collapsing a stable population via a novel IDC-mediated CRISPR/Cas9 system.
Collapse
|
7
|
Üstüner S, Schäfer P, Eichmann R. Development specifies, diversifies and empowers root immunity. EMBO Rep 2022; 23:e55631. [PMID: 36330761 PMCID: PMC9724680 DOI: 10.15252/embr.202255631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 08/04/2023] Open
Abstract
Roots are a highly organised plant tissue consisting of different cell types with distinct developmental functions defined by cell identity networks. Roots are the target of some of the most devastating diseases and possess a highly effective immune system. The recognition of microbe- or plant-derived molecules released in response to microbial attack is highly important in the activation of complex immunity gene networks. Development and immunity are intertwined, and immunity activation can result in growth inhibition. In turn, by connecting immunity and cell identity regulators, cell types are able to launch a cell type-specific immunity based on the developmental function of each cell type. By this strategy, fundamental developmental processes of each cell type contribute their most basic functions to drive cost-effective but highly diverse and, thus, efficient immune responses. This review highlights the interdependence of root development and immunity and how the developmental age of root cells contributes to positive and negative outcomes of development-immunity cross-talk.
Collapse
Affiliation(s)
- Sim Üstüner
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Patrick Schäfer
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Ruth Eichmann
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| |
Collapse
|
8
|
Pan H, Xiao Y, Xie A, Li Z, Ding H, Yuan X, Sun R, Peng Q. The antibacterial mechanism of phenylacetic acid isolated from Bacillus megaterium L2 against Agrobacterium tumefaciens. PeerJ 2022; 10:e14304. [PMID: 36389424 PMCID: PMC9651047 DOI: 10.7717/peerj.14304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Agrobacterium tumefaciens T-37 can infect grapes and other fruit trees and cause root cancer. Given the pollution and damage of chemical agents to the environment, the use of biological control has become an important area of focus. Bacillus megaterium L2 is a beneficial biocontrol strain isolated and identified in the laboratory, which has a good antibacterial effect on a variety of plant pathogens. The antibacterial metabolites of L2 were separated and purified to obtain a bioactive compound phenylacetic acid (PAA). Methods The potential antibacterial mechanism of PAA against A. tumefaciens T-37 strain was determined by relative conductivity, leakage of nucleic acids, proteins, and soluble total sugars, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and reactive oxygen species (ROS). Results PAA showed good antibacterial activity against strain A. tumefaciens T-37 with IC50 of 0.8038 mg/mL. Our data suggested that after treatment with PAA, the relative conductivity, nucleic acid, protein, and total soluble sugar of T-37 were increased significantly compared with the chloramphenicol treatment group and the negative treatment group. The total protein synthesis of T-37 cells was inhibited, the consumption of phosphorus decreased with the increase of incubation time, and the content of ROS was significantly higher than that in the negative treatment group. Meanwhile, the activity of two key enzymes (MDH and SDH) involved in the tricarboxylic acid cycle (TCA cycle) decreased. In addition, T-37 cells were found to be damaged by scanning electron microscopy observation. Our results showed that PAA can destroy cell membrane integrity, damage cell structures, affect cell metabolism, and inhibit protein synthesis to exert an antibacterial effect. Conclusions We concluded that the mechanism of action of the PAA against strain T-37 might be described as PAA exerting antibacterial activity by affecting cell metabolism, inhibiting protein synthesis, and destroying cell membrane integrity and cell ultrastructure. Therefore, PAA has a promising application prospect in the prevention and treatment of root cancer disease caused by A. tumefaciens.
Collapse
Affiliation(s)
- Hang Pan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Yang Xiao
- Institution of Supervision and Inspection Product Quality of Guizhou Province, Guiyang, China
| | - Ailin Xie
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Zhu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China,Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Haixia Ding
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - XiaoJu Yuan
- Development Center of Planting, Huishui County of Qiannan Prefecture, Guizhou Province, China
| | - Ran Sun
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Qiuju Peng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| |
Collapse
|
9
|
Zhan Z, Liu H, Yang Y, Liu S, Li X, Piao Z. Identification and characterization of putative effectors from Plasmodiophora brassicae that suppress or induce cell death in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2022; 13:881992. [PMID: 36204052 PMCID: PMC9530463 DOI: 10.3389/fpls.2022.881992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Clubroot, caused by Plasmodiophora brassicae, is a major disease of crucifers. Effector proteins are important virulence factors in host recognition of pathogens and the interactions between pathogens and hosts. Secretory proteins, as effector candidates, have been studied in the interaction between Plasmodiophora brassicae and its hosts. In this study, 518 secretary proteins were screened from the Plasmodiophora brassicae genome. A total of 63 candidate effectors that induce or suppress cell death were identified using agroinfiltration-mediated transient expression in Nicothiana benthamiana. The candidate effectors, Pb4_102097 and Pb4_108104 showed high expressing level in the stage of rest spore maturity, could induce cell death and were associated with H2O2 accumulation in N. benthamiana leaves. In addition, 55 candidate effectors that could suppress BAX (Bcl-2-associated X protein) induced cell death, and 21 out of which could suppress the immunity caused by bacterial pathogen Pseudomonas syringae pv. tomato strain DC3000 expressing avrRps4 in Arabidopsis. Based on the expression pattern in different stages, 28 candidate effectors showed high expression levels during the primary and secondary infection stage. Five candidate effectors containing the RXLR motif functioned in the cytoplasm and cell membrane.
Collapse
|
10
|
Tiwari M, Mishra AK, Chakrabarty D. Agrobacterium-mediated gene transfer: recent advancements and layered immunity in plants. PLANTA 2022; 256:37. [PMID: 35819629 PMCID: PMC9274631 DOI: 10.1007/s00425-022-03951-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/19/2022] [Indexed: 05/15/2023]
Abstract
Plant responds to Agrobacterium via three-layered immunity that determines its susceptibility or resistance to Agrobacterium infection. Agrobacterium tumefaciens is a soil-borne Gram-negative bacterium that causes crown gall disease in plants. The remarkable feat of interkingdom gene transfer has been extensively utilised in plant biotechnology to transform plant as well as non-host systems. In the past two decades, the molecular mode of the pathogenesis of A. tumefaciens has been extensively studied. Agrobacterium has also been utilised as a premier model to understand the defence response of plants during plant-Agrobacterium interaction. Nonetheless, the threat of Agrobacterium-mediated crown gall disease persists and is associated with a huge loss of plant vigour in agriculture. Understanding the molecular dialogues between these two interkingdom species might provide a cure for crown gall disease. Plants respond to A. tumefaciens by mounting a three-layered immune response, which is manipulated by Agrobacterium via its virulence effector proteins. Comparative studies on plant defence proteins versus the counter-defence of Agrobacterium have shed light on plant susceptibility and tolerance. It is possible to manipulate a plant's immune system to overcome the crown gall disease and increase its competence via A. tumefaciens-mediated transformation. This review summarises the recent advances in the molecular mode of Agrobacterium pathogenesis as well as the three-layered immune response of plants against Agrobacterium infection.
Collapse
Affiliation(s)
- Madhu Tiwari
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Debasis Chakrabarty
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Jin K, Tian N, da Silva Ferreira JF, Sandhu D, Xiao L, Gu M, Luo Y, Zhang X, Liu G, Liu Z, Huang J, Liu S. Comparative Transcriptome Analysis of Agrobacterium tumefaciens Reveals the Molecular Basis for the Recalcitrant Genetic Transformation of Camellia sinensis L. Biomolecules 2022; 12:688. [PMID: 35625616 PMCID: PMC9138961 DOI: 10.3390/biom12050688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Tea (Camellia sinensis L.), an important economic crop, is recalcitrant to Agrobacterium-mediated transformation (AMT), which has seriously hindered the progress of molecular research on this species. The mechanisms leading to low efficiency of AMT in tea plants, related to the morphology, growth, and gene expression of Agrobacterium tumefaciens during tea-leaf explant infection, were compared to AMT of Nicotiana benthamiana leaves in the present work. Scanning electron microscopy (SEM) images showed that tea leaves induced significant morphological aberrations on bacterial cells and affected pathogen-plant attachment, the initial step of a successful AMT. RNA sequencing and transcriptomic analysis on Agrobacterium at 0, 3 and 4 days after leaf post-inoculation resulted in 762, 1923 and 1656 differentially expressed genes (DEGs) between the tea group and the tobacco group, respectively. The expressions of genes involved in bacterial fundamental metabolic processes, ATP-binding cassette (ABC) transporters, two-component systems (TCSs), secretion systems, and quorum sensing (QS) systems were severely affected in response to the tea-leaf phylloplane. Collectively, these results suggest that compounds in tea leaves, especially gamma-aminobutyrate (GABA) and catechins, interfered with plant-pathogen attachment, essential minerals (iron and potassium) acquisition, and quorum quenching (QQ) induction, which may have been major contributing factors to hinder AMT efficiency of the tea plant.
Collapse
Affiliation(s)
- Ke Jin
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Na Tian
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Jorge Freire da Silva Ferreira
- United States Salinity Laboratory, United States Department of Agriculture, Agricultural Research Service, Riverside, CA 92507, USA; (J.F.d.S.F.); (D.S.)
| | - Devinder Sandhu
- United States Salinity Laboratory, United States Department of Agriculture, Agricultural Research Service, Riverside, CA 92507, USA; (J.F.d.S.F.); (D.S.)
| | - Lizheng Xiao
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
| | - Meiyi Gu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
| | - Yiping Luo
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Xiangqin Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Guizhi Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Zhonghua Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Jianan Huang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Shuoqian Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| |
Collapse
|
12
|
Spiegel H, Schillberg S, Nölke G. Production of Recombinant Proteins by Agrobacterium-Mediated Transient Expression. Methods Mol Biol 2022; 2480:89-102. [PMID: 35616859 DOI: 10.1007/978-1-0716-2241-4_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The agroinfiltration of plant tissue is a robust method that allows the rapid and transient expression of recombinant proteins. Using wild-type plants as biomass, agroinfiltration exploits the ability of plants to synthesize even complex multimeric proteins that require oxidative folding and/or post-translational modifications, while avoiding the expensive and time-consuming creation of stably transformed plant lines. Here we describe a generic method for the transient expression of recombinant proteins in Nicotiana benthamiana at the small to medium laboratory scale, including appropriate binary vectors, the design and cloning of expression constructs, the transformation, selection, and cultivation of recombinant Agrobacterium tumefaciens, the infiltration of plants using a syringe or vacuum device, and finally the extraction of recombinant proteins from plant tissues.
Collapse
Affiliation(s)
- Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Department of Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | - Greta Nölke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| |
Collapse
|
13
|
Xia Y, Zhou X, Liang L, Liu X, Li H, Xiong Z, Wang G, Song X, Ai L. Genetic evidence for the requirements of antroquinonol biosynthesis by Antrodia camphorata during liquid-state fermentation. J Ind Microbiol Biotechnol 2021; 49:6428402. [PMID: 34791342 PMCID: PMC9113095 DOI: 10.1093/jimb/kuab086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022]
Abstract
The solid-state fermentation of Antrodia camphorata could produce a variety of ubiquinone compounds, such as antroquinonol (AQ). However, AQ is hardly synthesized during liquid-state fermentation (LSF). To investigates the mechanism of AQ synthesis, three precursors (ubiquinone 0 UQ0, farnesol and farnesyl diphosphate FPP) were added in LSF. The results showed that UQ0 successfully induced AQ production; however, farnesol and FPP could not induce AQ synthesis. The precursor that restricts the synthesis of AQ is the quinone ring, not the isoprene side chain. Then, the Agrobacterium-mediated transformation system of A. camphorata was established and the genes for quinone ring modification (coq2-6) and isoprene synthesis (HMGR, fps) were overexpressed. The results showed that overexpression of genes for isoprene side chain synthesis could not increase the yield of AQ, but overexpression of coq2 and coq5 could significantly increase AQ production. This is consistent with the results of the experiment of precursors. It indicated that the A. camphorata lack the ability to modify the quinone ring of AQ during LSF. Of the modification steps, prenylation of UQ0 is the key step of AQ biosynthesis. The result will help us to understand the genetic evidence for the requirements of AQ biosynthesis in A. camphorata.
Collapse
Affiliation(s)
- Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xuan Zhou
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lihong Liang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaofeng Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui Li
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
14
|
Agrobacterium tumefaciens-Mediated Nuclear Transformation of a Biotechnologically Important Microalga- Euglena gracilis. Int J Mol Sci 2021; 22:ijms22126299. [PMID: 34208268 PMCID: PMC8230907 DOI: 10.3390/ijms22126299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/30/2022] Open
Abstract
Euglena gracilis (E. gracilis) is an attractive organism due to its evolutionary history and substantial potential to produce biochemicals of commercial importance. This study describes the establishment of an optimized protocol for the genetic transformation of E. gracilis mediated by Agrobacterium (A. tumefaciens). E. gracilis was found to be highly sensitive to hygromycin and zeocin, thus offering a set of resistance marker genes for the selection of transformants. A. tumefaciens-mediated transformation (ATMT) yielded hygromycin-resistant cells. However, hygromycin-resistant cells hosting the gus gene (encoding β-glucuronidase (GUS)) were found to be GUS-negative, indicating that the gus gene had explicitly been silenced. To circumvent transgene silencing, GUS was expressed from the nuclear genome as transcriptional fusions with the hygromycin resistance gene (hptII) (encoding hygromycin phosphotransferase II) with the foot and mouth disease virus (FMDV)-derived 2A self-cleaving sequence placed between the coding sequences. ATMT of Euglena with the hptII-2A–gus gene yielded hygromycin-resistant, GUS-positive cells. The transformation was verified by PCR amplification of the T-DNA region genes, determination of GUS activity, and indirect immunofluorescence assays. Cocultivation factors optimization revealed that a higher number of transformants was obtained when A. tumefaciens LBA4404 (A600 = 1.0) and E. gracilis (A750 = 2.0) cultures were cocultured for 48 h at 19 °C in an organic medium (pH 6.5) containing 50 µM acetosyringone. Transformation efficiency of 8.26 ± 4.9% was achieved under the optimized cocultivation parameters. The molecular toolkits and method presented here can be used to bioengineer E. gracilis for producing high-value products and fundamental studies.
Collapse
|
15
|
Quorum Sensing Regulation in Phytopathogenic Bacteria. Microorganisms 2021; 9:microorganisms9020239. [PMID: 33498890 PMCID: PMC7912708 DOI: 10.3390/microorganisms9020239] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Quorum sensing is a type of chemical communication by which bacterial populations control expression of their genes in a coordinated manner. This regulatory mechanism is commonly used by pathogens to control the expression of genes encoding virulence factors and that of genes involved in the bacterial adaptation to variations in environmental conditions. In phytopathogenic bacteria, several mechanisms of quorum sensing have been characterized. In this review, we describe the different quorum sensing systems present in phytopathogenic bacteria, such as those using the signal molecules named N-acyl-homoserine lactone (AHL), diffusible signal factor (DSF), and the unknown signal molecule of the virulence factor modulating (VFM) system. We focus on studies performed on phytopathogenic bacteria of major importance, including Pseudomonas, Ralstonia, Agrobacterium, Xanthomonas, Erwinia, Xylella,Dickeya, and Pectobacterium spp. For each system, we present the mechanism of regulation, the functions targeted by the quorum sensing system, and the mechanisms by which quorum sensing is regulated.
Collapse
|
16
|
Yoshihara R, Mitomi Y, Okada M, Shibata H, Tanokami M, Nakajima Y, Inui H, Oono Y, Furudate H, Tanaka S. Effects of Arabidopsis Ku80 deletion on the integration of the left border of T-DNA into plant chromosomal DNA via Agrobacterium tumefaciens. Genes Genet Syst 2020; 95:173-182. [PMID: 32848122 DOI: 10.1266/ggs.19-00064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
T-DNA integration into plant chromosomal DNA via Agrobacterium tumefaciens can be achieved by exploiting the double-strand break repair system of the host's DNA. However, the detailed mechanism of T-DNA integration remains unclear. Here, a sequence analysis of the junction sequences of T-DNA and chromosomal DNA was performed to assess the mechanism of T-DNA integration. T-DNA was introduced into Arabidopsis wild-type and NHEJ-deficient ku80 mutant plants using the floral dip method; the junctions of the left border (LB) of T-DNA were subsequently analyzed by adapter PCR. The most frequent junction of the LB of T-DNA with chromosomal DNA was of the filler DNA type in both lines. The lengths of direct or inverted repeat sequences within or around the filler DNA sequence were greater in the ku80 mutant. In addition, the frequency of T-DNA integration near a transcription start site was significantly higher in the ku80 mutant. Our observations suggest that the presence of the Ku80 protein affects the location of the integration of T-DNA and the pattern of formation of repeat sequences within or around the filler DNA during LB integration into chromosomal DNA.
Collapse
Affiliation(s)
- Ryouhei Yoshihara
- Department of Regulatory Biology, Faculty of Science, Saitama University
| | - Yuka Mitomi
- Department of Regulatory Biology, Faculty of Science, Saitama University
| | - Maki Okada
- Department of Regulatory Biology, Faculty of Science, Saitama University
| | - Hanako Shibata
- Department of Regulatory Biology, Faculty of Science, Saitama University
| | - Mai Tanokami
- Department of Regulatory Biology, Faculty of Science, Saitama University
| | - Yurie Nakajima
- Department of Regulatory Biology, Faculty of Science, Saitama University
| | | | - Yutaka Oono
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology
| | - Hiroyuki Furudate
- Department of Regulatory Biology, Faculty of Science, Saitama University
| | - Shuuitsu Tanaka
- Department of Regulatory Biology, Faculty of Science, Saitama University
| |
Collapse
|
17
|
Thompson MG, Moore WM, Hummel NFC, Pearson AN, Barnum CR, Scheller HV, Shih PM. Agrobacterium tumefaciens: A Bacterium Primed for Synthetic Biology. BIODESIGN RESEARCH 2020; 2020:8189219. [PMID: 37849895 PMCID: PMC10530663 DOI: 10.34133/2020/8189219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/26/2020] [Indexed: 10/19/2023] Open
Abstract
Agrobacterium tumefaciens is an important tool in plant biotechnology due to its natural ability to transfer DNA into the genomes of host plants. Genetic manipulations of A. tumefaciens have yielded considerable advances in increasing transformational efficiency in a number of plant species and cultivars. Moreover, there is overwhelming evidence that modulating the expression of various mediators of A. tumefaciens virulence can lead to more successful plant transformation; thus, the application of synthetic biology to enable targeted engineering of the bacterium may enable new opportunities for advancing plant biotechnology. In this review, we highlight engineering targets in both A. tumefaciens and plant hosts that could be exploited more effectively through precision genetic control to generate high-quality transformation events in a wider range of host plants. We then further discuss the current state of A. tumefaciens and plant engineering with regard to plant transformation and describe how future work may incorporate a rigorous synthetic biology approach to tailor strains of A. tumefaciens used in plant transformation.
Collapse
Affiliation(s)
- Mitchell G. Thompson
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - William M. Moore
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Niklas F. C. Hummel
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - Allison N. Pearson
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Collin R. Barnum
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - Henrik V. Scheller
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Patrick M. Shih
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
- Genome Center, University of California-Davis, Davis, CA, USA
| |
Collapse
|
18
|
Lamelas A, Desgarennes D, López-Lima D, Villain L, Alonso-Sánchez A, Artacho A, Latorre A, Moya A, Carrión G. The Bacterial Microbiome of Meloidogyne-Based Disease Complex in Coffee and Tomato. FRONTIERS IN PLANT SCIENCE 2020; 11:136. [PMID: 32174936 PMCID: PMC7056832 DOI: 10.3389/fpls.2020.00136] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/29/2020] [Indexed: 02/05/2023]
Abstract
The Meloidogyne-based disease complexes (MDCs) are caused by the interaction of different root-knot nematode species and phytopathogenic fungi. These complexes are devastating several important crops worldwide including tomato and coffee. Despite their relevance, little is known about the role of the bacterial communities in the MDCs. In this study 16s rDNA gene sequencing was used to analyze the bacterial microbiome associated with healthy and infested roots, as well with females and eggs of Meloidogyne enterolobii and M. paranaensis, the causal agents of MDC in tomato and coffee, respectively. Each MDC pathosystems displayed a specific taxonomic diversity and relative abundances constituting a very complex system. The main bacterial drivers of the MDC infection process were identified for both crops at order level. While corky-root coffee samples presented an enrichment of Bacillales and Burkholderiales, the corcky-root tomato samples presented an enrichment on Saprospirales, Chthoniobacterales, Alteromonadales, and Xanthomonadales. At genus level, Nocardia was common to both systems, and it could be related to the development of tumor symptoms by altering both nematode and plant systems. Furthermore, we predicted the healthy metabolic profile of the roots microbiome and a shift that may result in an increment of activity of central metabolism and the presence of pathogenic genes in both crops.
Collapse
Affiliation(s)
- Araceli Lamelas
- Red de Estudios Moleculares Avanzados and Red de Biodiversidad y Sistemática, Instituto de Ecología A. C., Xalapa, Mexico
| | - Damaris Desgarennes
- Red de Estudios Moleculares Avanzados and Red de Biodiversidad y Sistemática, Instituto de Ecología A. C., Xalapa, Mexico
| | - Daniel López-Lima
- Red de Estudios Moleculares Avanzados and Red de Biodiversidad y Sistemática, Instituto de Ecología A. C., Xalapa, Mexico
| | | | - Alexandro Alonso-Sánchez
- Red de Estudios Moleculares Avanzados and Red de Biodiversidad y Sistemática, Instituto de Ecología A. C., Xalapa, Mexico
| | - Alejandro Artacho
- Joint Unit of Research in Genomics and Health, Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO) and Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València, Valencia, Spain
| | - Amparo Latorre
- Joint Unit of Research in Genomics and Health, Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO) and Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València, Valencia, Spain
- CIBER en Epidemiología y Salud Pública, Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia, Spanish National Research Council (CSIC-UVEG), Valencia, Spain
| | - Andrés Moya
- Joint Unit of Research in Genomics and Health, Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO) and Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València, Valencia, Spain
- CIBER en Epidemiología y Salud Pública, Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia, Spanish National Research Council (CSIC-UVEG), Valencia, Spain
| | - Gloria Carrión
- Red de Estudios Moleculares Avanzados and Red de Biodiversidad y Sistemática, Instituto de Ecología A. C., Xalapa, Mexico
- *Correspondence: Gloria Carrión,
| |
Collapse
|
19
|
Overexpression of VIRE2-INTERACTING PROTEIN2 in Arabidopsis regulates genes involved in Agrobacterium-mediated plant transformation and abiotic stresses. Sci Rep 2019; 9:13503. [PMID: 31534160 PMCID: PMC6751215 DOI: 10.1038/s41598-019-49590-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 08/19/2019] [Indexed: 11/23/2022] Open
Abstract
Arabidopsis VIRE2-INTERACTING PROTEIN2 (VIP2) was previously described as a protein with a NOT domain, and Arabidopsis vip2 mutants are recalcitrant to Agrobacterium-mediated root transformation. Here we show that VIP2 is a transcription regulator and the C-terminal NOT2 domain of VIP2 interacts with VirE2. Interestingly, AtVIP2 overexpressor lines in Arabidopsis did not show an improvement in Agrobacterium-mediated stable root transformation, but the transcriptome analysis identified 1,634 differentially expressed genes compared to wild-type. These differentially expressed genes belonged to various functional categories such as membrane proteins, circadian rhythm, signaling, response to stimulus, regulation of plant hypersensitive response, sequence-specific DNA binding transcription factor activity and transcription regulatory region binding. In addition to regulating genes involved in Agrobacterium-mediated plant transformation, AtVIP2 overexpressor line showed differential expression of genes involved in abiotic stresses. The majority of the genes involved in abscisic acid (ABA) response pathway, containing the Abscisic Acid Responsive Element (ABRE) element within their promoters, were down-regulated in AtVIP2 overexpressor lines. Consistent with this observation, AtVIP2 overexpressor lines were more susceptible to ABA and other abiotic stresses. Based on the above findings, we hypothesize that VIP2 not only plays a role in Agrobacterium-mediated plant transformation but also acts as a general transcriptional regulator in plants.
Collapse
|
20
|
Ianiri G, Dagotto G, Sun S, Heitman J. Advancing Functional Genetics Through Agrobacterium-Mediated Insertional Mutagenesis and CRISPR/Cas9 in the Commensal and Pathogenic Yeast Malassezia. Genetics 2019; 212:1163-1179. [PMID: 31243056 PMCID: PMC6707463 DOI: 10.1534/genetics.119.302329] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/22/2019] [Indexed: 12/20/2022] Open
Abstract
Malassezia encompasses a monophyletic group of basidiomycetous yeasts naturally found on the skin of humans and other animals. Malassezia species have lost genes for lipid biosynthesis, and are therefore lipid-dependent and difficult to manipulate under laboratory conditions. In this study, we applied a recently-developed Agrobacterium tumefaciens-mediated transformation protocol to perform transfer (T)-DNA random insertional mutagenesis in Malassezia furfur A total of 767 transformants were screened for sensitivity to 10 different stresses, and 19 mutants that exhibited a phenotype different from the wild type were further characterized. The majority of these strains had single T-DNA insertions, which were identified within open reading frames of genes, untranslated regions, and intergenic regions. Some T-DNA insertions generated chromosomal rearrangements while others could not be characterized. To validate the findings of our forward genetic screen, a novel clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system was developed to generate targeted deletion mutants for two genes identified in the screen: CDC55 and PDR10 This system is based on cotransformation of M. furfur mediated by A. tumefaciens, to deliver both a CAS9-gRNA construct that induces double-strand DNA breaks and a gene replacement allele that serves as a homology-directed repair template. Targeted deletion mutants for both CDC55 and PDR10 were readily generated with this method. This study demonstrates the feasibility and reliability of A. tumefaciens-mediated transformation to aid in the identification of gene functions in M. furfur, through both insertional mutagenesis and CRISPR/Cas9-mediated targeted gene deletion.
Collapse
Affiliation(s)
- Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Gabriel Dagotto
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
21
|
Zuniga-Soto E, Fitzpatrick DA, Doohan FM, Mullins E. Insights into the transcriptomic response of the plant engineering bacterium Ensifer adhaerens OV14 during transformation. Sci Rep 2019; 9:10344. [PMID: 31316079 PMCID: PMC6637203 DOI: 10.1038/s41598-019-44648-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 05/08/2019] [Indexed: 11/08/2022] Open
Abstract
The ability to engineer plant genomes has been primarily driven by the soil bacterium Agrobacterium tumefaciens but recently the potential of alternative rhizobia such as Rhizobium etli and Ensifer adhaerens OV14, the latter of which supports Ensifer Mediated Transformation (EMT) has been reported. Surprisingly, a knowledge deficit exists in regards to understanding the whole genome processes underway in plant transforming bacteria, irrespective of the species. To begin to address the issue, we undertook a temporal RNAseq-based profiling study of E. adhaerens OV14 in the presence/absence of Arabidopsis thaliana tissues. Following co-cultivation with root tissues, 2333 differentially expressed genes (DEGs) were noted. Meta-analysis of the RNAseq data sets identified a clear shift from plasmid-derived gene expression to chromosomal-based transcription within the early stages of bacterium-plant co-cultivation. During this time, the number of differentially expressed prokaryotic genes increased steadily out to 7 days co-cultivation, a time at which optimum rates of transformation were observed. Gene ontology evaluations indicated a role for both chromosomal and plasmid-based gene families linked specifically with quorum sensing, flagellin production and biofilm formation in the process of EMT. Transcriptional evaluation of vir genes, housed on the pCAMBIA 5105 plasmid in E. adhaerens OV14 confirmed the ability of E. adhaerens OV14 to perceive and activate its transcriptome in response to the presence of 200 µM of acetosyringone. Significantly, this is the first study to characterise the whole transcriptomic response of a plant engineering bacterium in the presence of plant tissues and provides a novel insight into prokaryotic genetic processes that support T-DNA transfer.
Collapse
Affiliation(s)
- Evelyn Zuniga-Soto
- Department of Crop Science, Teagasc Crops Research Centre, Oak Park, Carlow, Ireland
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - David A Fitzpatrick
- Department of Biology, National University of Ireland Maynooth, Maynooth, Ireland
| | - Fiona M Doohan
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ewen Mullins
- Department of Crop Science, Teagasc Crops Research Centre, Oak Park, Carlow, Ireland.
| |
Collapse
|
22
|
Diel B, Dequivre M, Wisniewski‐Dyé F, Vial L, Hommais F. A novel plasmid‐transcribed regulatory sRNA, QfsR, controls chromosomal polycistronic gene expression in
Agrobacterium fabrum. Environ Microbiol 2019; 21:3063-3075. [DOI: 10.1111/1462-2920.14704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/04/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Benjamin Diel
- Université de Lyon F‐69622 Lyon France
- Université Lyon 1 F‐69622 Villeurbanne France
- CNRSUMR 5240 Microbiologie Adaptation et Pathogénie F‐69622 Villeurbanne France
- CNRSUMR 5557 Ecologie Microbienne F‐69622 Villeurbanne France
- INRAUMR1418 Ecologie Microbienne F‐69622 Villeurbanne France
| | - Magali Dequivre
- Université de Lyon F‐69622 Lyon France
- Université Lyon 1 F‐69622 Villeurbanne France
- CNRSUMR 5240 Microbiologie Adaptation et Pathogénie F‐69622 Villeurbanne France
| | - Florence Wisniewski‐Dyé
- Université de Lyon F‐69622 Lyon France
- Université Lyon 1 F‐69622 Villeurbanne France
- CNRSUMR 5557 Ecologie Microbienne F‐69622 Villeurbanne France
- INRAUMR1418 Ecologie Microbienne F‐69622 Villeurbanne France
| | - Ludovic Vial
- Université de Lyon F‐69622 Lyon France
- Université Lyon 1 F‐69622 Villeurbanne France
- CNRSUMR 5557 Ecologie Microbienne F‐69622 Villeurbanne France
- INRAUMR1418 Ecologie Microbienne F‐69622 Villeurbanne France
| | - Florence Hommais
- Université de Lyon F‐69622 Lyon France
- Université Lyon 1 F‐69622 Villeurbanne France
- CNRSUMR 5240 Microbiologie Adaptation et Pathogénie F‐69622 Villeurbanne France
| |
Collapse
|
23
|
Kim Y, Chhor G, Tsai CS, Winans JB, Jedrzejczak R, Joachimiak A, Winans SC. Crystal structure of the ligand-binding domain of a LysR-type transcriptional regulator: transcriptional activation via a rotary switch. Mol Microbiol 2019; 110:550-561. [PMID: 30168204 DOI: 10.1111/mmi.14115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/20/2018] [Accepted: 08/26/2018] [Indexed: 11/29/2022]
Abstract
LysR-type transcriptional regulators (LTTRs) generally bind to target promoters in two conformations, depending on the availability of inducing ligands. OccR is an LTTR that regulates the octopine catabolism operon of Agrobacterium tumefaciens. OccR binds to a site located between the divergent occQ and occR promoters. Octopine triggers a conformational change that activates the occQ promoter, and does not affect autorepression. This change shortens the length of bound DNA and relaxes a high-angle DNA bend. Here, we describe the crystal structure of the ligand-binding domain (LBD) of OccR apoprotein and holoprotein. Pairs of LBDs form dimers with extensive hydrogen bonding, while pairs of dimers interact via a single helix, creating a tetramer interface. Octopine causes a 70° rotation of each dimer with respect to the opposite dimer, precisely at the tetramer interface. We modeled the DNA binding domain (DBD), linker helix and bound DNA onto the apoprotein and holoprotein. The two DBDs of the modeled apoprotein lie far apart and the bound DNA between them has a high-angle DNA bend. In contrast, the two DBDs of the holoprotein lie closer to each other, with a low DNA bend angle. This inter-dimer pivot fully explains earlier studies of this LTTR.
Collapse
Affiliation(s)
- Youngchang Kim
- Midwest Center for Structural Genomics, Biosciences, Argonne National Laboratory, Argonne, IL, 60439, USA.,Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Gekleng Chhor
- Midwest Center for Structural Genomics, Biosciences, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Ching-Sung Tsai
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - James B Winans
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Robert Jedrzejczak
- Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Biosciences, Argonne National Laboratory, Argonne, IL, 60439, USA.,Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, IL, 60439, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Stephen C Winans
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
24
|
Mohammed S, Samad AA, Rahmat Z. Agrobacterium-Mediated Transformation of Rice: Constraints and Possible Solutions. RICE SCIENCE 2019; 26:133-146. [DOI: 10.1016/j.rsci.2019.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
25
|
Gan HM, Lee MVL, Savka MA. Improved genome of Agrobacterium radiobacter type strain provides new taxonomic insight into Agrobacterium genomospecies 4. PeerJ 2019; 7:e6366. [PMID: 30775173 PMCID: PMC6369824 DOI: 10.7717/peerj.6366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
The reported Agrobacterium radiobacter DSM 30174T genome is highly fragmented, hindering robust comparative genomics and genome-based taxonomic analysis. We re-sequenced the Agrobacterium radiobacter type strain, generating a dramatically improved genome with high contiguity. In addition, we sequenced the genome of Agrobacterium tumefaciens B6T, enabling for the first time, a proper comparative genomics of these contentious Agrobacterium species. We provide concrete evidence that the previously reported Agrobacterium radiobacter type strain genome (Accession Number: ASXY01) is contaminated which explains its abnormally large genome size and fragmented assembly. We propose that Agrobacterium tumefaciens be reclassified as Agrobacterium radiobacter subsp. tumefaciens and that Agrobacterium radiobacter retains it species status with the proposed name of Agrobacterium radiobacter subsp. radiobacter. This proposal is based, first on the high pairwise genome-scale average nucleotide identity supporting the amalgamation of both Agrobacterium radiobacter and Agrobacterium tumefaciens into a single species. Second, maximum likelihood tree construction based on the concatenated alignment of shared genes (core genes) among related strains indicates that Agrobacterium radiobacter NCPPB3001 is sufficiently divergent from Agrobacterium tumefaciens to propose two independent sub-clades. Third, Agrobacterium tumefaciens demonstrates the genomic potential to synthesize the L configuration of fucose in its lipid polysaccharide, fostering its ability to colonize plant cells more effectively than Agrobacterium radiobacter.
Collapse
Affiliation(s)
- Han Ming Gan
- Deakin Genomics Centre, Deakin University, Geelong, VIC, Australia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.,School of Science, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia
| | - Melvin V L Lee
- School of Science, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia
| | - Michael A Savka
- College of Science, The Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
26
|
Agrobacterium-mediated horizontal gene transfer: Mechanism, biotechnological application, potential risk and forestalling strategy. Biotechnol Adv 2018; 37:259-270. [PMID: 30579929 DOI: 10.1016/j.biotechadv.2018.12.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 11/20/2022]
Abstract
The extraordinary capacity of Agrobacterium to transfer its genetic material to host cell makes it evolve from phytopathogen to a powerful transgenic vector. Agrobacterium-mediated stable transformation is widely used as the preferred method to create transgenic plants for molecular plant biology research and crop breeding. Recent years, both mechanism and application of Agrobacterium-mediated horizontal gene transfer have made significant progresses, especially Agrobacterium-mediated transient transformation was developed for plant biotechnology industry to produce recombinant proteins. Agrobacterium strains are almost used and saved not only by each of microbiology and molecular plant labs, but also by many of plant biotechnology manufacturers. Agrobacterium is able to transfer its genetic material to a broad range of hosts, including plant and non-plant hosts. As a consequence, the concern of environmental risk associated with the accidental release of genetically modified Agrobacterium arises. In this article, we outline the recent progress in the molecular mechanism of Agrobacterium-meditated gene transfer, focus on the application of Agrobacterium-mediated horizontal gene transfer, and review the potential risk associated with Agrobacterium-meditated gene transfer. Based on the comparison between the infecting process of Agrobacterium as a pathogen and the transgenic process of Agrobacterium as a transgenic vector, we realize that chemotaxis is the distinct difference between these two biological processes and thus discuss the possible role of chemotaxis in forestalling the potential risk of Agrobacterium-meditated horizontal gene transfer to non-target plant species.
Collapse
|
27
|
Pathogenicity, Phylogenetic relationship and NGS based identification and assembly of tumorigenic Agrobacterium radiabacter plasmidic and chromosomic reads isolated from Prunus duclcis. Genomics 2018; 111:1423-1430. [PMID: 30287402 DOI: 10.1016/j.ygeno.2018.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/25/2018] [Indexed: 11/22/2022]
Abstract
Although many Agrobacterium radiobacter strains have already been identified, only a few genomes of strains belonging to genomovar G4 have been sequenced so far. In this study, we report the first virulent genome sequence of Agrobacterium radiobacter strain tun 183, which is highly virulent to almond specie. The genome size was estimated to be 5.53 Mb, with 57.9%GC content. In total, 6486 genes encoding proteins and 61 genes encoding RNAs were identified in this genome. Comparisons with the available sequenced genomes of genomovar G4 as well as with other A. sp. were conducted, revealing a hexapartite genome containing circular and linear chromosomes in addition to two accessory plasmids and a tumor inducing plasmid (pTi) in strain tun 183. The phylogenetic analysis of recA gene clearly showed the clustering of tun 183 strain within genomovar G4, supporting the monophyly within this genomovar.
Collapse
|
28
|
Huang Z, Zhou Q, Sun P, Yang J, Guo M. Two Agrobacterium tumefaciens CheW Proteins Are Incorporated into One Chemosensory Pathway with Different Efficiencies. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:460-470. [PMID: 29182466 DOI: 10.1094/mpmi-10-17-0255-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Agrobacterium tumefaciens is the agent that causes crown gall tumor disease on more than 140 species of dicotyledonous plants. Chemotaxis of A. tumefaciens toward the wound sites of the host plant is the first step to recognize the host. CheW is a coupling protein that bridges the histidine kinase CheA and the chemoreceptors to form the chemotaxis core signaling complex and plays a crucial role in the assembly and function of the large chemosensory array. Unlike all previously reported chemotaxis systems, A. tumefaciens has only one major che operon but two cheW homologs (atu2075 as cheW1 and atu2617 as cheW2) on unlinked loci. The in-frame deletion of either cheW gene significantly affects A. tumefaciens chemotaxis but does not abolish the chemotaxis, unless both cheW genes were deleted. The effect of cheW2 deletion on the chemotaxis is more severe than that of cheW1 deletion. Either CheW can interact with CheA and couple it to the cell poles. The promoter activity of cheW2 is always higher than that of cheW1 under all of the tested conditions. When two cheW genes were adjusted to the same expression level by using the identical promoter, the difference between the effects of two CheW proteins on the chemotaxis still existed. Therefore, we envision that both the different molecular ratio of two CheW proteins in cell and the different affinities of two CheW proteins with CheA and chemoreceptors result in the efficiency difference of two CheW proteins in functioning in the large chemosensory array.
Collapse
Affiliation(s)
- Zhiwei Huang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou City, Jiangsu 225009, P R China
| | - Qingxuan Zhou
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou City, Jiangsu 225009, P R China
| | - Pan Sun
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou City, Jiangsu 225009, P R China
| | - Jing Yang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou City, Jiangsu 225009, P R China
| | - Minliang Guo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou City, Jiangsu 225009, P R China
| |
Collapse
|
29
|
Alam Z, Roncal J, Peña-Castillo L. Genetic variation associated with healthy traits and environmental conditions in Vaccinium vitis-idaea. BMC Genomics 2018; 19:4. [PMID: 29291734 PMCID: PMC5748963 DOI: 10.1186/s12864-017-4396-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/19/2017] [Indexed: 12/31/2022] Open
Abstract
Background Lingonberry (Vaccinium vitis-idaea L.), one of the least studied fruit crops in the Ericaceae family, has a dramatically increased worldwide demand due to its numerous health benefits. Genetic markers can facilitate the selection of berries with desirable climatic adaptations, agronomic and nutritious characteristics to improve cultivation programs. However, no genomic resources are available for this species. Results We used Genotyping-by-Sequencing (GBS) to analyze the genetic variation of 56 lingonberry samples from across Newfoundland and Labrador, Canada. To elucidate a potential adaptation to environmental conditions we searched for genotype-environment associations by applying three distinct approaches to screen the identified single nucleotide polymorphisms (SNPs) for correlation with six environmental variables. We also searched for an association between the identified SNPs and two phenotypic traits: the total phenolic content (TPC) and antioxidant capacity (AC) of fruit. We identified 1586 high-quality putative SNPs using the UNEAK pipeline available in TASSEL. We found 132 SNPs likely associated with at least one of the environmental or phenotypic variables. To obtain insights on the function of the genomic sequences containing the SNPs likely to be associated with the environmental or phenotypic variables, we performed a sequence-based functional annotation and identified homologous protein-coding sequences with functional roles related to abiotic stress response, pathogen defense, RNA metabolism, and, most interestingly, phenolic compound biosynthesis. Conclusions The putative SNPs discovered are the first genomic resource for lingonberry. This resource might prove useful in high-density quantitative trait locus analysis, and association mapping. The identified candidate genes containing the SNPs need further studies on their potential role in local adaptation of lingonberry. Altogether, the present study provides new resources that can be used to breed for desirable traits in lingonberry. Electronic supplementary material The online version of this article (10.1186/s12864-017-4396-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zobayer Alam
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Julissa Roncal
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| | - Lourdes Peña-Castillo
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.,Department of Computer Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada
| |
Collapse
|
30
|
Attai H, Rimbey J, Smith GP, Brown PJB. Expression of a Peptidoglycan Hydrolase from Lytic Bacteriophages Atu_ph02 and Atu_ph03 Triggers Lysis of Agrobacterium tumefaciens. Appl Environ Microbiol 2017; 83:e01498-17. [PMID: 28970228 PMCID: PMC5691410 DOI: 10.1128/aem.01498-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/23/2017] [Indexed: 01/07/2023] Open
Abstract
To provide food security, innovative approaches to preventing plant disease are currently being explored. Here, we demonstrate that lytic bacteriophages and phage lysis proteins are effective at triggering lysis of the phytopathogen Agrobacterium tumefaciens Phages Atu_ph02 and Atu_ph03 were isolated from wastewater and induced lysis of C58-derived strains of A. tumefaciens The coinoculation of A. tumefaciens with phages on potato discs limited tumor formation. The genomes of Atu_ph02 and Atu_ph03 are nearly identical and are ∼42% identical to those of T7 supercluster phages. In silico attempts to find a canonical lysis cassette were unsuccessful; however, we found a putative phage peptidoglycan hydrolase (PPH), which contains a C-terminal transmembrane domain. Remarkably, the endogenous expression of pph in the absence of additional phage genes causes a block in cell division and subsequent lysis of A. tumefaciens cells. When the presumed active site of the N-acetylmuramidase domain carries an inactivating mutation, PPH expression causes extensive cell branching due to a block in cell division but does not trigger rapid cell lysis. In contrast, the mutation of positively charged residues at the extreme C terminus of PPH causes more rapid cell lysis. Together, these results suggest that PPH causes a block in cell division and triggers cell lysis through two distinct activities. Finally, the potent killing activity of this single lysis protein can be modulated, suggesting that it could be engineered to be an effective enzybiotic.IMPORTANCE The characterization of bacteriophages such as Atu_ph02 and Atu_ph03, which infect plant pathogens such as Agrobacterium tumefaciens, may be the basis of new biocontrol strategies. First, cocktails of diverse bacteriophages could be used as a preventative measure to limit plant diseases caused by bacteria; a bacterial pathogen is unlikely to simultaneously develop resistances to multiple bacteriophage species. The specificity of bacteriophage treatment for the host is an asset in complex communities, such as in orchards where it would be detrimental to harm the symbiotic bacteria in the environment. Second, bacteriophages are potential sources of enzymes that efficiently lyse bacterial cells. These phage proteins may have a broad specificity, but since proteins do not replicate as phages do, their effect is highly localized, providing an alternative to traditional antibiotic treatments. Thus, studies of lytic bacteriophages that infect A. tumefaciens may provide insights for designing preventative strategies against bacterial pathogens.
Collapse
Affiliation(s)
- Hedieh Attai
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jeanette Rimbey
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - George P Smith
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Pamela J B Brown
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
31
|
Caserta R, Souza-Neto RR, Takita MA, Lindow SE, De Souza AA. Ectopic Expression of Xylella fastidiosa rpfF Conferring Production of Diffusible Signal Factor in Transgenic Tobacco and Citrus Alters Pathogen Behavior and Reduces Disease Severity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:866-875. [PMID: 28777044 DOI: 10.1094/mpmi-07-17-0167-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The pathogenicity of Xylella fastidiosa is associated with its ability to colonize the xylem of host plants. Expression of genes contributing to xylem colonization are suppressed, while those necessary for insect vector acquisition are increased with increasing concentrations of diffusible signal factor (DSF), whose production is dependent on RpfF. We previously demonstrated that transgenic citrus plants ectopically expressing rpfF from a citrus strain of X. fastidiosa subsp. pauca exhibited less susceptibility to Xanthomonas citri subsp. citri, another pathogen whose virulence is modulated by DSF accumulation. Here, we demonstrate that ectopic expression of rpfF in both transgenic tobacco and sweet orange also confers a reduction in disease severity incited by X. fastidiosa and reduces its colonization of those plants. Decreased disease severity in the transgenic plants was generally associated with increased expression of genes conferring adhesiveness to the pathogen and decreased expression of genes necessary for active motility, accounting for the reduced population sizes achieved in the plants, apparently by limiting pathogen dispersal through the plant. Plant-derived DSF signal molecules in a host plant can, therefore, be exploited to interfere with more than one pathogen whose virulence is controlled by DSF signaling.
Collapse
Affiliation(s)
- R Caserta
- 1 Centro de Citricultura Sylvio Moreira/IAC, Corderiópolis, SP, Brazil
| | - R R Souza-Neto
- 1 Centro de Citricultura Sylvio Moreira/IAC, Corderiópolis, SP, Brazil
- 2 Universidade Estadual de Campinas-UNICAMP, Campinas, SP, Brazil; and
| | - M A Takita
- 1 Centro de Citricultura Sylvio Moreira/IAC, Corderiópolis, SP, Brazil
| | - S E Lindow
- 3 University of California, Berkeley, CA, U.S.A
| | - A A De Souza
- 1 Centro de Citricultura Sylvio Moreira/IAC, Corderiópolis, SP, Brazil
| |
Collapse
|
32
|
Idnurm A, Bailey AM, Cairns TC, Elliott CE, Foster GD, Ianiri G, Jeon J. A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-mediated transformation of fungi. Fungal Biol Biotechnol 2017; 4:6. [PMID: 28955474 PMCID: PMC5615635 DOI: 10.1186/s40694-017-0035-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/18/2017] [Indexed: 11/10/2022] Open
Abstract
The implementation of Agrobacterium tumefaciens as a transformation tool revolutionized approaches to discover and understand gene functions in a large number of fungal species. A. tumefaciens mediated transformation (AtMT) is one of the most transformative technologies for research on fungi developed in the last 20 years, a development arguably only surpassed by the impact of genomics. AtMT has been widely applied in forward genetics, whereby generation of strain libraries using random T-DNA insertional mutagenesis, combined with phenotypic screening, has enabled the genetic basis of many processes to be elucidated. Alternatively, AtMT has been fundamental for reverse genetics, where mutant isolates are generated with targeted gene deletions or disruptions, enabling gene functional roles to be determined. When combined with concomitant advances in genomics, both forward and reverse approaches using AtMT have enabled complex fungal phenotypes to be dissected at the molecular and genetic level. Additionally, in several cases AtMT has paved the way for the development of new species to act as models for specific areas of fungal biology, particularly in plant pathogenic ascomycetes and in a number of basidiomycete species. Despite its impact, the implementation of AtMT has been uneven in the fungi. This review provides insight into the dynamics of expansion of new research tools into a large research community and across multiple organisms. As such, AtMT in the fungi, beyond the demonstrated and continuing power for gene discovery and as a facile transformation tool, provides a model to understand how other technologies that are just being pioneered, e.g. CRISPR/Cas, may play roles in fungi and other eukaryotic species.
Collapse
Affiliation(s)
- Alexander Idnurm
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Andy M. Bailey
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Timothy C. Cairns
- Department of Applied and Molecular Microbiology, Technische Universität Berlin, Berlin, Germany
| | - Candace E. Elliott
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Gary D. Foster
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA
| | - Junhyun Jeon
- College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
33
|
Kochetov AV, Shumny VK. Transgenic plants as genetic models for studying functions of plant genes. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s2079059717040050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Giritch A, Klimyuk V, Gleba Y. 125 years of virology and ascent of biotechnologies based on viral expressio. CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717020037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Leonard S, Hommais F, Nasser W, Reverchon S. Plant-phytopathogen interactions: bacterial responses to environmental and plant stimuli. Environ Microbiol 2017; 19:1689-1716. [DOI: 10.1111/1462-2920.13611] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/09/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Simon Leonard
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - Florence Hommais
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - William Nasser
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - Sylvie Reverchon
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| |
Collapse
|
36
|
|
37
|
Aguilar A, Peralta H, Mora Y, Díaz R, Vargas-Lagunas C, Girard L, Mora J. Genomic Comparison of Agrobacterium pusense Strains Isolated from Bean Nodules. Front Microbiol 2016; 7:1720. [PMID: 27833604 PMCID: PMC5081363 DOI: 10.3389/fmicb.2016.01720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/13/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alejandro Aguilar
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Humberto Peralta
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Yolanda Mora
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Rafael Díaz
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Carmen Vargas-Lagunas
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Lourdes Girard
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Jaime Mora
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| |
Collapse
|
38
|
Stephan BI, Alvarez Crespo MC, Kemppainen MJ, Pardo AG. Agrobacterium-mediated insertional mutagenesis in the mycorrhizal fungus Laccaria bicolor. Curr Genet 2016; 63:215-227. [PMID: 27387518 DOI: 10.1007/s00294-016-0627-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 11/24/2022]
Abstract
Agrobacterium-mediated gene transfer (AMT) is extensively employed as a tool in fungal functional genomics and accordingly, in previous studies we used AMT on a dikaryotic strain of the ectomycorrhizal basidiomycete Laccaria bicolor. The interest in this fungus derives from its capacity to establish a symbiosis with tree roots, thereby playing a major role in nutrient cycling of forest ecosystems. The ectomycorrhizal symbiosis is a highly complex interaction involving many genes from both partners. To advance in the functional characterization of fungal genes, AMT was used on a monokaryotic L. bicolor. A collection of over 1200 transgenic strains was produced, of which 200 randomly selected strains were analyzed for their genomic T-DNA insertion patterns. By means of insertional mutagenesis, a number of transgenic strains were obtained displaying differential growth features. Moreover, mating with a compatible strain resulted in dikaryons that retained altered phenotypic features of the transgenic monokaryon. The analysis of the T-DNA integration pattern revealed mostly similar results to those reported in earlier studies, confirming the usefulness of AMT on different genetic backgrounds of L. bicolor. Taken together, our studies display the great versatility and potentiality of AMT as a tool for the genetic characterization of L. bicolor.
Collapse
Affiliation(s)
- B I Stephan
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas, Roque Saenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - M C Alvarez Crespo
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas, Roque Saenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - M J Kemppainen
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas, Roque Saenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - A G Pardo
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas, Roque Saenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina.
| |
Collapse
|
39
|
Gasanova TV, Petukhova NV, Ivanov PA. Chimeric particles of tobacco mosaic virus as a platform for the development of next-generation nanovaccines. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s1995078016020051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|