1
|
Kishk A, Stelinski LL, Gowda S, Killiny N. Citrus-mediated gene silencing of cytochrome P 450 suppresses insecticide resistance and increases mortality in Diaphorina citri. PEST MANAGEMENT SCIENCE 2024; 80:4980-4992. [PMID: 38843443 DOI: 10.1002/ps.8218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/08/2024] [Accepted: 05/20/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Asian citrus psyllid, Diaphorina citri, is a hemipteran that vectors the causal pathogen of citrus greening disease, or huanglongbing (HLB). HLB is a tree killing disease that has severely limited citrus production globally. Unfortunately, there is no cure for this disease, and mitigation depends on multiple insecticide applications to reduce vector populations. Silencing of cytochrome P450 expression associated with detoxification enzymes by RNA interference is known to increase susceptibility of D. citri to insecticides. However, dsRNA was previously introduced into psyllids by topical applications. The possible application of this technology for pest management will require effective field delivery of the dsRNA. Therefore, we evaluated a virus vector (Citrus tristeza virus; 'mild strain' T36) to deliver gene silencing directly to this sap-sucking insect via plant phloem. Citrus macrophylla plants inoculated with CTV expressing a truncated consensus sequence of CYP450 (CTV-tCYP450) constantly produced small interfering RNA in the plant phloem that targeted five cytochrome p540 (CYP450) genes in D. citri. RESULTS Insecticide susceptible D. citri reared on citrus infected with CTV-tCYP450 were subsequently more susceptible to imidacloprid, fenpropathrin, carbaryl, and chlorpyrifos than those reared on citrus infected with wildtype CTV or non-infected negative controls. Additionally, nymph survival and adult lifespan were significantly reduced when psyllids were reared on CTV-tCYP450 citrus plants compared with controls. Interestingly, similar results were obtained after one and two generations of rearing. Finally, field-collected psyllids from areas with known broad-spectrum insecticide resistance were rendered more susceptible to imidacloprid and fenpropathrin after feeding on CTV-tCYP450 citrus trees as compared with those reared on controls. CONCLUSION The integration of citrus-mediated RNA inference targeting psyllid detoxification enzymes could function as a resistance management tool and reduce insecticide input in an integrated pest management program for HLB. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Abdelaziz Kishk
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL, USA
- Department of Plant Protection, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Lukasz L Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Siddarame Gowda
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
2
|
Mosca A, Dimaria G, Nicotra D, Modica F, Massimino ME, Catara AF, Scuderi G, Russo M, Catara V. Soil Microbial Communities in Lemon Orchards Affected by Citrus Mal Secco Disease. Genes (Basel) 2024; 15:824. [PMID: 39062603 PMCID: PMC11276235 DOI: 10.3390/genes15070824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Mal secco is a vascular disease of citrus caused by the mitosporic fungus Plenodomus tracheiphilus. Soil containing infected plant material constitutes an inoculum source for root infections. In this study, the soil bacterial and fungal communities of five lemon orchards located in Syracuse Province (Sicily, Italy) affected by mal secco were analyzed. Soil samples were collected under lemon tree canopies and subjected to total genomic DNA extraction. The fungal DNA was detected through qPCR in all orchards, with variable concentrations. Bacterial and fungal communities were profiled using 16S and ITS amplicon-based high-throughput sequencing, respectively. According to our results, the relative abundances of the most represented bacterial phyla (e.g., Proteobacteria, Actinobacteriota, Acidobacteriota) changed across the orchards, while in the fungal community, the phylum Ascomycota was dominant, with Basidiomycota and Mortierellomycota abundances fluctuating. On the whole, β diversity analysis showed significant variation in the composition of the soil microbial communities across the orchards. This result was confirmed by the analysis of the core community (taxa present at ≥ 75% of total samples), where putative beneficial bacteria resulted in significantly enriched fungus-infected soil samples, suggesting complex microbial interactions. Our findings shed light on the composition and diversity of the soil microbiome in lemon orchards with the occurrence of mal secco infections.
Collapse
Affiliation(s)
- Alexandros Mosca
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (A.M.); (G.D.); (D.N.); (F.M.); (M.E.M.)
| | - Giulio Dimaria
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (A.M.); (G.D.); (D.N.); (F.M.); (M.E.M.)
| | - Daniele Nicotra
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (A.M.); (G.D.); (D.N.); (F.M.); (M.E.M.)
| | - Francesco Modica
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (A.M.); (G.D.); (D.N.); (F.M.); (M.E.M.)
| | - Maria Elena Massimino
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (A.M.); (G.D.); (D.N.); (F.M.); (M.E.M.)
| | | | - Giuseppe Scuderi
- Agrobiotech Soc. Coop., 95121 Catania, Italy; (A.F.C.); (G.S.); (M.R.)
| | - Marcella Russo
- Agrobiotech Soc. Coop., 95121 Catania, Italy; (A.F.C.); (G.S.); (M.R.)
| | - Vittoria Catara
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (A.M.); (G.D.); (D.N.); (F.M.); (M.E.M.)
| |
Collapse
|
3
|
Quintana-González de Chaves M, Montero-Gomez N, Álvarez-Acosta C, Hernández-Suárez E, Hervalejo A, Arjona-López JM, Arenas-Arenas FJ. The Combination of Citrus Rootstock and Scion Cultivar Influences Trioza erytreae (Hemiptera: Triozidae) Survival, Preference Choice and Oviposition. INSECTS 2024; 15:363. [PMID: 38786919 PMCID: PMC11122159 DOI: 10.3390/insects15050363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Trioza erytreae (Del Guercio, 1918) (Hemiptera: Triozidae) is a citrus pest which produces gall symptoms on leaves and transmits bacteria associated with the citrus disease Huanglongbing, 'Candidatus Liberibacter' spp. In the present work, the biology and behaviour of T. erytreae were studied in different rootstock-cultivar combinations. Six rootstocks were used, Flying dragon (FD), 'Cleopatra' mandarin (CL), Carrizo citrange (CC), Forner-Alcaide no.5 (FA5), Forner-Alcaide no.517 (FA517) and Citrus macrophylla (CM), and six scion cultivars: 'Star Ruby', 'Clemenules', 'Navelina', 'Valencia Late', 'Fino 49' and 'Ortanique'. Survival and oviposition were evaluated in a no-choice trial, and preference in a choice trial, all of them under greenhouse conditions. Trioza erytreae did not show a clear settle preference for any citrus combination. However, it was able to lay more eggs in 'Fino 49' grafted on CC than on FD. In terms of survival, 'Ortanique' grafted onto FA5 was more suitable than when grafted onto FA517, and in the case of 'Valencia Late', when it was grafted onto CM rather than CC. Our results showed that T. erytreae behave differently depending on the citrus combination.
Collapse
Affiliation(s)
- María Quintana-González de Chaves
- Unidad de Protección Vegetal, Instituto Canario de Investigaciones Agrarias (ICIA), Ctra. El Boquerón s/n, 38270 La Laguna, Spain; (M.Q.-G.d.C.); (N.M.-G.)
| | - Nancy Montero-Gomez
- Unidad de Protección Vegetal, Instituto Canario de Investigaciones Agrarias (ICIA), Ctra. El Boquerón s/n, 38270 La Laguna, Spain; (M.Q.-G.d.C.); (N.M.-G.)
| | - Carlos Álvarez-Acosta
- Departamento de Producción Vegetal en Zonas Tropicales y Subtropicales, Instituto Canario de Investigaciones Agrarias (ICIA), Ctra. El Boquerón s/n, 38270 La Laguna, Spain;
| | - Estrella Hernández-Suárez
- Unidad de Protección Vegetal, Instituto Canario de Investigaciones Agrarias (ICIA), Ctra. El Boquerón s/n, 38270 La Laguna, Spain; (M.Q.-G.d.C.); (N.M.-G.)
| | - Aurea Hervalejo
- Department of Agri-Food Engineering and Technology, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), “Las Torres” Center, Ctra. Sevilla-Cazalla de la Sierra km. 12.2, 41200 Alcalá del Río, Spain; (A.H.); (J.M.A.-L.); (F.J.A.-A.)
| | - Juan M. Arjona-López
- Department of Agri-Food Engineering and Technology, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), “Las Torres” Center, Ctra. Sevilla-Cazalla de la Sierra km. 12.2, 41200 Alcalá del Río, Spain; (A.H.); (J.M.A.-L.); (F.J.A.-A.)
| | - Francisco J. Arenas-Arenas
- Department of Agri-Food Engineering and Technology, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), “Las Torres” Center, Ctra. Sevilla-Cazalla de la Sierra km. 12.2, 41200 Alcalá del Río, Spain; (A.H.); (J.M.A.-L.); (F.J.A.-A.)
| |
Collapse
|
4
|
Hussain M, Zhong Y, Tao T, Xiu B, Ye F, Gao J, Mao R. Effect of tree height and spraying methods on Diaphorina citri kuwayama endosymbionts in the context of Huanglongbing disease management in citrus orchards. PEST MANAGEMENT SCIENCE 2024; 80:1484-1500. [PMID: 37948354 DOI: 10.1002/ps.7880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Huanglongbing (HLB) (caused by Candidatus Liberibacter asiaticus) is the most damaging disease of citrus around the world. This study investigated the effects of citrus tree height on Diaphorina citri Kuwayama mortality, endosymbiont responses, and HLB distribution. RESULTS The results reveal that the age of citrus trees plays a significant role in psyllid mortality. Interestingly, the cumulative mean mortality (%) of psyllids over the seven-day observation period was higher (31.50±0.03) when four-year-old (501A1, 502A2, 501A3) citrus trees were sprayed with a US-SMART mechanical sprayer. In contrast, the psyllids mortality was 0.09±0.23 for the 13-year-old citrus trees (104A2, 104A3, 104C1) sprayed with a US-SMART mechanical sprayer and 9.10±0.05 for 13-year-old (502A2, 502B2, 502D1) citrus trees sprayed with a fixed US-SMART mechanical sprayer. Our findings also revealed that psyllids from both four- and 13-year-old citrus trees carried Candidatus Carsonella ruddii species and Wolbachia, the primary and secondary endosymbionts, respectively. Surprisingly, infection rates of these endosymbionts remained consistent across different age groups, as confirmed by quantitative polymerase chain reaction analysis. Furthermore, our study highlights the significance of tree height as a proxy for tree age in influencing HLB occurrence. Specifically, four-year-old citrus trees subjected to the US-SMART mechanical sprayer for citrus psyllid control demonstrated effective disease management compared to 13-year-old (104A2, 104A3, 104C1) citrus trees sprayed with US-SMART mechanical sprayers. Additionally, the investigation explored the impact of tree height on HLB distribution. In four-year-old trees, no significant correlation between HLB disease and tree height was observed, potentially due to effective spray coverage with US-SMART mechanical sprayer. However, in 13-year-old (104A2, 104A3, 104C1) citrus tree sprayed with US-SMART mechanical sprayer, a positive correlation between tree height and HLB disease was evident. CONCLUSION This research provides valuable insights into the complex interaction between citrus tree age, psyllid endosymbionts responses, and HLB distribution. These results emphasize effective HLB management strategies, especially in orchards with diverse tree age populations, ultimately contributing to the long-term sustainability of citrus cultivation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mubasher Hussain
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Yun Zhong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China
| | - Tonglai Tao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Baolin Xiu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Fengxian Ye
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Jing Gao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Runqian Mao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral Oil Pesticides, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| |
Collapse
|
5
|
Zuo S, Xu L, Zhang H, Jiang M, Wu S, Zhang LH, Zhou X, Wang J. FlgI Is a Sec-Dependent Effector of Candidatus Liberibacter asiaticus That Can Be Blocked by Small Molecules Identified Using a Yeast Screen. PLANTS (BASEL, SWITZERLAND) 2024; 13:318. [PMID: 38276775 PMCID: PMC10819201 DOI: 10.3390/plants13020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Huanglongbing (HLB) is one of the most devastating diseases of citrus worldwide. The phloem-restricted bacterium Candidatus Liberibacter asiaticus (CLas) is considered to be the main pathogen responsible for HLB. There is currently no effective practical strategy for the control of HLB. Our understanding of how pathogens cause HLB is limited because CLas has not been artificially cultured. In this study, 15 potential virulence factors were predicted from the proteome of CLas through DeepVF and PHI-base searches. One among them, FlgI, was found to inhibit yeast growth when expressed in Saccharomyces cerevisiae. The expression of the signal peptide of FlgI fused with PhoA in Escherichia coli resulted in the discovery that FlgI was a novel Sec-dependent secretory protein. We further found that the carboxyl-terminal HA-tagged FlgI was secreted via outer membrane vesicles in Sinorhizobium meliloti. Fluoresence localization of transient expression FlgI-GFP in Nicotiana benthamiana revealed that FlgI is mainly localized in the cytoplasm, cell periphery, and nuclear periphery of tobacco cells. In addition, our experimental results suggest that FlgI has a strong ability to induce callose deposition and cell necrosis in N. benthamiana. Finally, by screening a large library of compounds in a high-throughput format, we found that cyclosporin A restored the growth of FlgI-expressing yeast. These results confirm that FlgI is a novel Sec-dependent effector, enriching our understanding of CLas pathogenicity and helping to develop new and more effective strategies to manage HLB.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaofan Zhou
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; (S.Z.); (L.X.); (H.Z.); (M.J.); (S.W.); (L.-H.Z.)
| | - Junxia Wang
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; (S.Z.); (L.X.); (H.Z.); (M.J.); (S.W.); (L.-H.Z.)
| |
Collapse
|
6
|
Xia K, Feng Z, Zhang X, Zhou Y, Zhu H, Yao Q. Potential functions of the shared bacterial taxa in the citrus leaf midribs determine the symptoms of Huanglongbing. FRONTIERS IN PLANT SCIENCE 2023; 14:1270929. [PMID: 38034569 PMCID: PMC10682189 DOI: 10.3389/fpls.2023.1270929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Instruction Citrus is a globally important fruit tree whose microbiome plays a vital role in its growth, adaptability, and resistance to stress. Methods With the high throughput sequencing of 16S rRNA genes, this study focused on analyzing the bacterial community, especially in the leaf midribs, of healthy and Huanglongbing (HLB)-infected plants. Results We firstly identified the shared bacterial taxa in the midribs of both healthy and HLB-infected plants, and then analyzed their functions. Results showed that the shared bacterial taxa in midribs belonged to 62 genera, with approximately 1/3 of which modified in the infected samples. Furthermore, 366 metabolic pathways, 5851 proteins, and 1833 enzymes in the shared taxa were predicted. Among these, three metabolic pathways and one protein showed significant importance in HLB infection. With the random forest method, six genera were identified to be significantly important for HLB infection. Notably, four of these genera were also among the significantly different shared taxa. Further functional characterization of these four genera revealed that Pseudomonas and Erwinia likely contributed to plant defense against HLB, while Streptomyces might have implications for plant defense against HLB or the pathogenicity of Candidatus Liberibacter asiaticus (CLas). Disccusion Overall, our study highlights that the functions of the shared taxa in leaf midribs are distinguished between healthy and HLB-infected plants, and these microbiome-based findings can contribute to the management and protection of citrus crops against CLas.
Collapse
Affiliation(s)
- Kaili Xia
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Horticulture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zengwei Feng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xianjiao Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Horticulture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yang Zhou
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qing Yao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Adejoro DO, Jones EE, Ridgway HJ, Mundy DC, Vanga BR, Bulman SR. Grapevines escaping trunk diseases in New Zealand vineyards have a distinct microbiome structure. Front Microbiol 2023; 14:1231832. [PMID: 37680529 PMCID: PMC10482235 DOI: 10.3389/fmicb.2023.1231832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 09/09/2023] Open
Abstract
Grapevine trunk diseases (GTDs) are a substantial challenge to viticulture, especially with a lack of available control measures. The lack of approved fungicides necessitates the exploration of alternative controls. One promising approach is the investigation of disease escape plants, which remain healthy under high disease pressure, likely due to their microbiome function. This study explored the microbiome of grapevines with the disease escape phenotype. DNA metabarcoding of the ribosomal internal transcribed spacer 1 (ITS1) and 16S ribosomal RNA gene was applied to trunk tissues of GTD escape and adjacent diseased vines. Our findings showed that the GTD escape vines had a significantly different microbiome compared with diseased vines. The GTD escape vines consistently harbored a higher relative abundance of the bacterial taxa Pseudomonas and Hymenobacter. Among fungi, Aureobasidium and Rhodotorula were differentially associated with GTD escape vines, while the GTD pathogen, Eutypa, was associated with the diseased vines. This is the first report of the link between the GTD escape phenotype and the grapevine microbiome.
Collapse
Affiliation(s)
- Damola O. Adejoro
- Department of Pest-Management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - E. Eirian Jones
- Department of Pest-Management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Hayley J. Ridgway
- Department of Pest-Management and Conservation, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, Canterbury, New Zealand
| | - Dion C. Mundy
- The New Zealand Institute for Plant and Food Research Limited, Blenheim, Marlborough, New Zealand
| | - Bhanupratap R. Vanga
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, Canterbury, New Zealand
- Grapevine Improvement Laboratory, Bragato Research Institute, Lincoln, Canterbury, New Zealand
| | - Simon R. Bulman
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, Canterbury, New Zealand
| |
Collapse
|
8
|
Castellano-Hinojosa A, Albrecht U, Strauss SL. Interactions between rootstocks and compost influence the active rhizosphere bacterial communities in citrus. MICROBIOME 2023; 11:79. [PMID: 37076924 PMCID: PMC10116748 DOI: 10.1186/s40168-023-01524-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND While the rootstock genotype (belowground part of a plant) can impact rhizosphere microbial communities, few studies have examined the relationships between rootstock genotype-based recruitment of active rhizosphere bacterial communities and the availability of root nutrients for plant uptake. Rootstocks are developed to provide resistance to disease or tolerance of abiotic stresses, and compost application is a common practice to also control biotic and abiotic stresses in crops. In this field study, we examined: (i) the effect of four citrus rootstocks and/or compost application on the abundance, diversity, composition, and predicted functionality of active rhizosphere bacterial communities, and (ii) the relationships between active rhizosphere bacterial communities and root nutrient concentrations, with identification of bacterial taxa significantly correlated with changes in root nutrients in the rhizosphere. RESULTS The rootstock genotype determined differences in the diversity of active rhizosphere bacterial communities and also impacted how compost altered the abundance, diversity, composition, and predicted functions of these active communities. Variations in the active bacterial rhizobiome were strongly linked to root nutrient cycling, and these interactions were root-nutrient- and rootstock-specific. Direct positive relationships between enriched taxa in treated soils and specific root nutrients were detected, and potentially important taxa for root nutrient uptake were identified. Significant differences in specific predicted functions were related to soil nutrient cycling (carbon, nitrogen, and tryptophan metabolisms) in the active bacterial rhizobiome among rootstocks, particularly in soils treated with compost. CONCLUSIONS This study illustrates that interactions between citrus rootstocks and compost can influence active rhizosphere bacterial communities, which impact root nutrient concentrations. In particular, the response of the rhizobiome bacterial abundance, diversity, and community composition to compost was determined by the rootstock. Specific bacterial taxa therefore appear to be driving changes in root nutrient concentrations in the active rhizobiome of different citrus rootstocks. Several potential functions of active bacterial rhizobiomes recruited by different citrus rootstocks did not appear to be redundant but rather rootstock-specific. Together, these findings have important agronomic implications as they indicate the potential for agricultural production systems to maximize benefits from rhizobiomes through the choice of selected rootstocks and the application of compost. Video Abstract.
Collapse
Affiliation(s)
- Antonio Castellano-Hinojosa
- Department of Soil, Water, and Ecosystem Sciences, Southwest Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 2685 State Rd 29N, Immokalee, FL, 34142, USA.
| | - Ute Albrecht
- Department of Horticultural Sciences, Southwest Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 2685 State Rd 29N, Immokalee, FL, 34142, USA
| | - Sarah L Strauss
- Department of Soil, Water, and Ecosystem Sciences, Southwest Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 2685 State Rd 29N, Immokalee, FL, 34142, USA.
| |
Collapse
|
9
|
Lu J, Zeng L, Holford P, Beattie GAC, Wang Y. Discovery of Brassica Yellows Virus and Porcine Reproductive and Respiratory Syndrome Virus in Diaphorina citri and Changes in Virome Due to Infection with ' Ca. L. asiaticus'. Microbiol Spectr 2023; 11:e0499622. [PMID: 36943045 PMCID: PMC10100913 DOI: 10.1128/spectrum.04996-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/19/2023] [Indexed: 03/23/2023] Open
Abstract
Detection of new viruses or new virus hosts is essential for the protection of economically important agroecosystems and human health. Increasingly, metatranscriptomic data are being used to facilitate this process. Such data were obtained from adult Asian citrus psyllids (ACP) (Diaphorina citri Kuwayama) that fed solely on mandarin (Citrus ×aurantium L.) plants grafted with buds infected with 'Candidatus Liberibacter asiaticus' (CLas), a phloem-limited bacterium associated with the severe Asian variant of huanglongbing (HLB), the most destructive disease of citrus. Brassica yellows virus (BrYV), the causative agent of yellowing or leafroll symptoms in brassicaceous plants, and its associated RNA (named as BrYVaRNA) were detected in ACP. In addition, the porcine reproductive and respiratory syndrome virus (PRRSV), which affects pigs and is economically important to pig production, was also found in ACP. These viruses were not detected in insects feeding on plants grafted with CLas-free buds. Changes in the concentrations of insect-specific viruses within the psyllid were caused by coinfection with CLas. IMPORTANCE The cross transmission of pathogenic viruses between different farming systems or plant communities is a major threat to plants and animals and, potentially, human health. The use of metagenomics is an effective approach to discover viruses and vectors. Here, we collected buds from the CLas-infected and CLas-free mandarin (Citrus ×aurantium L. [Rutaceae: Aurantioideae: Aurantieae]) trees from a commercial orchard and grafted them onto CLas-free mandarin plants under laboratory conditions. Through metatranscriptome sequencing, we first identified the Asian citrus psyllids feeding on plants grafted with CLas-infected buds carried the plant pathogen, brassica yellows virus and its associated RNA, and the swine pathogen, porcine reproductive and respiratory syndrome virus. These discoveries indicate that both viruses can be transmitted by grafting and acquired by ACP from CLas+ mandarin seedlings.
Collapse
Affiliation(s)
- Jinming Lu
- College of Forestry and Biotechnology, Zhejiang A&F University, Linan, Hangzhou, Zhejiang, China
- College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lixia Zeng
- College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - George A. C. Beattie
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Yanjing Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Wang J, Zhao L, Yan B. Functionalized luminescent covalent organic frameworks hybrid material as smart nose for the diagnosis of Huanglongbing. J Mater Chem B 2022; 10:5835-5841. [PMID: 35876301 DOI: 10.1039/d2tb01185a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantitative identification of several volatile organic compounds (VOCs) associated with the same disease provides a strong guarantee of the accurate analysis of the disease. Designing a single luminescent material to interact differently with multiple analytes can generate response patterns with remarkable diversity. Here, a highly green luminescent imine-based 2D COF (TtDFP) is designed and synthesized. TtDFP has ultrasensitive detection performance for trace water in organic solvent. Constructing a ratiometric fluorescence sensor can improve sensitivity for detecting analytes. To contrast the fluorescence signals of Eu3+ and COFs in sensing assays, a simple postsynthetic modification (PSM) method is used to introduce Eu3+ into TtDFP. The obtained red luminescent hybrid material Eu3+@TtDFP EVA film can be a fluorescent nose capable of "sniffing out" and quantifying VOCs (GA and PhA) associated with Huanglongbing (HLB, a devastating disease of citrus) at ppb levels. This work provides a technique of developing functionalized COF hybrid material to facilitate the distinction of various VOCs, which can also be extended to monitor the levels of other VOCs relevant to human health.
Collapse
Affiliation(s)
- Jinmin Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Limin Zhao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
11
|
Mann M, Saha S, Cicero JM, Pitino M, Moulton K, Hunter WB, Cano LM, Mueller LA, Heck M. Lessons learned about the biology and genomics of Diaphorina citri infection with "Candidatus Liberibacter asiaticus" by integrating new and archived organ-specific transcriptome data. Gigascience 2022; 11:giac035. [PMID: 35482489 PMCID: PMC9049105 DOI: 10.1093/gigascience/giac035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/16/2022] [Accepted: 03/16/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Huanglongbing, a devastating disease of citrus, is caused by the obligate, intracellular bacterium "Candidatus Liberibacter asiaticus" (CLas). CLas is transmitted by Diaphorina citri, the Asian citrus psyllid. Development of transmission-blocking strategies to manage huanglongbing relies on knowledge of CLas and D. citri interactions at the molecular level. Prior transcriptome analyses of D. citri point to changes in psyllid biology due to CLas infection but have been hampered by incomplete versions of the D. citri genome, proper host plant controls, and/or a lack of a uniform data analysis approach. In this work, we present lessons learned from a quantitative transcriptome analysis of excised heads, salivary glands, midguts, and bacteriomes from CLas-positive and CLas-negative D. citri using the chromosomal length D. citri genome assembly. RESULTS Each organ had a unique transcriptome profile and response to CLas infection. Though most psyllids were infected with the bacterium, CLas-derived transcripts were not detected in all organs. By analyzing the midgut dataset using both the Diaci_v1.1 and v3.0 D. citri genomes, we showed that improved genome assembly led to significant and quantifiable differences in RNA-sequencing data interpretation. CONCLUSIONS Our results support the hypothesis that future transcriptome studies on circulative, vector-borne pathogens should be conducted at the tissue-specific level using complete, chromosomal-length genome assemblies for the most accurate understanding of pathogen-induced changes in vector gene expression.
Collapse
Affiliation(s)
- Marina Mann
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Surya Saha
- Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Joseph M Cicero
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | - Kathy Moulton
- U.S. Horticultural Research Laboratory, Unit of Subtropical Insects and Horticulture, USDA Agricultural Research Service, Fort Pierce, FL 34945, USA
| | - Wayne B Hunter
- U.S. Horticultural Research Laboratory, Unit of Subtropical Insects and Horticulture, USDA Agricultural Research Service, Fort Pierce, FL 34945, USA
| | - Liliana M Cano
- Indian River Research and Education Center, University of Florida, Fort Pierce, FL 34945,
USA
| | | | - Michelle Heck
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA Agricultural Research Service, Ithaca, NY 14853, USA
| |
Collapse
|
12
|
Srivastava AK, Das AK, Jagannadham PTK, Bora P, Ansari FA, Bhate R. Bioprospecting Microbiome for Soil and Plant Health Management Amidst Huanglongbing Threat in Citrus: A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:858842. [PMID: 35557712 PMCID: PMC9088001 DOI: 10.3389/fpls.2022.858842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Microorganisms have dynamic and complex interactions with their hosts. Diverse microbial communities residing near, on, and within the plants, called phytobiome, are an essential part of plant health and productivity. Exploiting citrus-associated microbiomes represents a scientific approach toward sustained and environment-friendly module of citrus production, though periodically exposed to several threats, with Huanglongbing (HLB) predominantly being most influential. Exploring the composition and function of the citrus microbiome, and possible microbial redesigning under HLB disease pressure has sparked renewed interest in recent times. A concise account of various achievements in understanding the citrus-associated microbiome, in various niche environments viz., rhizosphere, phyllosphere, endosphere, and core microbiota alongside their functional attributes has been thoroughly reviewed and presented. Efforts were also made to analyze the actual role of the citrus microbiome in soil fertility and resilience, interaction with and suppression of invading pathogens along with native microbial communities and their consequences thereupon. Despite the desired potential of the citrus microbiota to counter different pathogenic diseases, utilizing the citrus microbiome for beneficial applications at the field level is yet to be translated as a commercial product. We anticipate that advancement in multiomics technologies, high-throughput sequencing and culturing, genome editing tools, artificial intelligence, and microbial consortia will provide some exciting avenues for citrus microbiome research and microbial manipulation to improve the health and productivity of citrus plants.
Collapse
Affiliation(s)
- Anoop Kumar Srivastava
- Indian Council of Agricultural Research (ICAR)-Central Citrus Research Institute, Nagpur, India
| | - Ashis Kumar Das
- Indian Council of Agricultural Research (ICAR)-Central Citrus Research Institute, Nagpur, India
| | | | - Popy Bora
- Department of Plant Pathology, Assam Agricultural University, Jorhat, India
| | - Firoz Ahmad Ansari
- Indian Council of Agricultural Research (ICAR)-Central Citrus Research Institute, Nagpur, India
| | - Ruchi Bhate
- Indian Council of Agricultural Research (ICAR)-Central Citrus Research Institute, Nagpur, India
| |
Collapse
|
13
|
Duan S, Long Y, Cheng S, Li J, Ouyang Z, Wang N. Rapid Evaluation of the Resistance of Citrus Germplasms Against Xanthomonas citri subsp. citri. PHYTOPATHOLOGY 2022; 112:765-774. [PMID: 34495678 DOI: 10.1094/phyto-04-21-0175-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Xanthomonas citri subsp. citri (Xcc) is the causal agent of citrus bacterial canker (CBC), one of the most devastating citrus diseases. Most commercial citrus varieties are susceptible to CBC. However, some citrus varieties and wild citrus germplasms are CBC resistant and are promising in genetic increases in citrus resistance against CBC. We aimed to evaluate citrus germplasms for resistance against CBC. First, we developed a rapid evaluation method based on enhanced yellow fluorescent protein (eYFP)-labeled Xcc. The results demonstrated that eYFP does not affect the growth and virulence of Xcc. Xcc-eYFP allows measurement of bacterial titers but is more efficient and rapid than the plate colony counting method. Next, we evaluated citrus germplasms collected in China. Based on symptoms and bacterial titers, we identified that two citrus germplasms ('Ichang' papeda and 'Huapi' kumquat) are resistant, whereas eight citrus germplasms ('Chongyi' wild mandarin, 'Mangshan' wild mandarin, 'Ledong' kumquat, 'Dali' citron, 'Yiliang' citron, 'Longyan' kumquat, 'Bawang' kumquat, and 'Daoxian' wild mandarin) are tolerant. In summary, we have developed a rapid evaluation method to test the resistance of citrus plants against CBC. This method was successfully used to identify two highly canker-resistant citrus germplasms and eight citrus germplasms with canker tolerance. These results could be leveraged in traditional breeding contexts or be used to identify canker resistance genes to increase the disease resistance of commercial citrus varieties via biotechnological approaches.
Collapse
Affiliation(s)
- Shuo Duan
- Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yunfei Long
- Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Shuyuan Cheng
- Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Zhigang Ouyang
- Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
14
|
Nakabachi A, Inoue H, Hirose Y. Microbiome analyses of 12 psyllid species of the family Psyllidae identified various bacteria including Fukatsuia and Serratia symbiotica, known as secondary symbionts of aphids. BMC Microbiol 2022; 22:15. [PMID: 34996376 PMCID: PMC8740488 DOI: 10.1186/s12866-021-02429-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/20/2021] [Indexed: 01/04/2023] Open
Abstract
Background Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing that interactions among such bacterial populations are important for psyllid biology and host plant pathology. In the present study, to obtain further insight into the ecological and evolutionary behaviors of bacteria in Psylloidea, we analyzed the microbiomes of 12 psyllid species belonging to the family Psyllidae (11 from Psyllinae and one from Macrocorsinae), using high-throughput amplicon sequencing of the 16S rRNA gene. Results The analysis showed that all 12 psyllids have the primary symbiont, Candidatus Carsonella ruddii (Gammaproteobacteria: Oceanospirillales), and at least one secondary symbiont. The majority of the secondary symbionts were gammaproteobacteria, especially those of the family Enterobacteriaceae (order: Enterobacteriales). Among them, symbionts belonging to “endosymbionts3”, which is a genus-level monophyletic group assigned by the SILVA rRNA database, were the most prevalent and were found in 9 of 11 Psyllinae species. Ca. Fukatsuia symbiotica and Serratia symbiotica, which were recognized only as secondary symbionts of aphids, were also identified. In addition to other Enterobacteriaceae bacteria, including Arsenophonus, Sodalis, and “endosymbionts2”, which is another genus-level clade, Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae) were identified. Regarding Alphaproteobacteria, the potential plant pathogen Ca. Liberibacter europaeus (Rhizobiales: Rhizobiaceae) was detected for the first time in Anomoneura mori (Psyllinae), a mulberry pest. Wolbachia (Rickettsiales: Anaplasmataceae) and Rickettsia (Rickettsiales: Rickettsiaceae), plausible host reproduction manipulators that are potential tools to control pest insects, were also detected. Conclusions The present study identified various bacterial symbionts including previously unexpected lineages in psyllids, suggesting considerable interspecific transfer of arthropod symbionts. The findings provide deeper insights into the evolution of interactions among insects, bacteria, and plants, which may be exploited to facilitate the control of pest psyllids in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02429-2.
Collapse
Affiliation(s)
- Atsushi Nakabachi
- Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan. .,Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan.
| | - Hiromitsu Inoue
- Institute for Plant Protection, National Agriculture and Food Research Organization, Higashihiroshima, Hiroshima, 739-2494, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan
| |
Collapse
|
15
|
Li B, Wang Y, Hu T, Qiu D, Francis F, Wang S, Wang S. Root-Associated Microbiota Response to Ecological Factors: Role of Soil Acidity in Enhancing Citrus Tolerance to Huanglongbing. FRONTIERS IN PLANT SCIENCE 2022; 13:937414. [PMID: 35909738 PMCID: PMC9335078 DOI: 10.3389/fpls.2022.937414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 05/14/2023]
Abstract
The citrus orchards in southern China are widely threatened by low soil pH and Huanglongbing (HLB) prevalence. Notably, the lime application has been used to optimize soil pH, which is propitious to maintain root health and enhance HLB tolerance of citrus; however, little is known about the interactive effects of soil acidity on the soil properties and root-associated (rhizoplane and endosphere) microbial community of HLB-infected citrus orchard. In this study, the differences in microbial community structures and functions between the acidified and amended soils in the Gannan citrus orchard were investigated, which may represent the response of the host-associated microbiome in diseased roots and rhizoplane to dynamic soil acidity. Our findings demonstrated that the severity of soil acidification and aluminum toxicity was mitigated after soil improvement, accompanied by the increase in root activity and the decrease of HLB pathogen concentration in citrus roots. Additionally, the Illumina sequencing-based community analysis showed that the application of soil amendment enriched functional categories involved in host-microbe interactions and nitrogen and sulfur metabolisms in the HLB-infected citrus rhizoplane; and it also strongly altered root endophytic microbial community diversity and structure, which represented by the enrichment of beneficial microorganisms in diseased roots. These changes in rhizoplane-enriched functional properties and microbial composition may subsequently benefit the plant's health and tolerance to HLB disease. Overall, this study advances our understanding of the important role of root-associated microbiota changes and ecological factors, such as soil acidity, in delaying and alleviating HLB disease.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
- Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Yanan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Tongle Hu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Dewen Qiu
- The State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Frédéric Francis
- Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Shuangchao Wang
- The State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Shuangchao Wang
| | - Shutong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
- Shutong Wang
| |
Collapse
|
16
|
Igwe DO, Higgins SA, Heck M. An Excised Leaf Assay to Measure Acquisition of ' Candidatus Liberibacter asiaticus' by Psyllids Associated with Citrus Huanglongbing Disease. PHYTOPATHOLOGY 2022; 112:69-75. [PMID: 33988458 DOI: 10.1094/phyto-03-21-0124-sc] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Huanglongbing, or citrus greening disease, is the most serious disease of citrus worldwide and is associated with plant infection by 'Candidatus Liberibacter asiaticus' (CLas) and other Liberibacter species. CLas is transmitted by Diaphorina citri, the Asian citrus psyllid, in a circulative propagative manner. Circulative propagative transmission is a complex process comprising at least three steps: movement of the pathogen into vector tissues, translocation and replication of the pathogen within the vector host, and pathogen inoculation of a new host by the vector. In this work, we describe an excised leaf CLas acquisition assay, which enables precise measurements of CLas acquisition by D. citri in a streamlined laboratory assay. Briefly, healthy fourth and fifth instar D. citri nymphs acquire CLas from excised CLas-positive leaves, where the insects also complete their developmental cycle. CLas titer in the resulting adults is measured using quantitative PCR and CLas-specific 16S rRNA gene primers. We observed positive correlations between CLas titer in each leaf replicate and the CLas titer that developed in the insects after acquisition (rs = 0.78; P = 0.0002). This simple assay could be used to detect CLas acquisition phenotypes and their underlying genotypes, facilitate assessment of plant factors that impact acquisition, and screen for compounds that interfere with CLas acquisition by delivering these compounds through the excised leaf.
Collapse
Affiliation(s)
- David O Igwe
- Plant Pathology and Plant Microbe Biology, School of Integrated Plant Sciences, Cornell University, Ithaca, NY 14853
| | - Steven A Higgins
- Plant Pathology and Plant Microbe Biology, School of Integrated Plant Sciences, Cornell University, Ithaca, NY 14853
- Emerging Pests and Pathogens Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Ithaca, NY 14853
| | - Michelle Heck
- Plant Pathology and Plant Microbe Biology, School of Integrated Plant Sciences, Cornell University, Ithaca, NY 14853
- Emerging Pests and Pathogens Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Ithaca, NY 14853
| |
Collapse
|
17
|
Suh JH, Guha A, Wang Z, Li SY, Killiny N, Vincent C, Wang Y. Metabolomic analysis elucidates how shade conditions ameliorate the deleterious effects of greening (Huanglongbing) disease in citrus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1798-1814. [PMID: 34687249 DOI: 10.1111/tpj.15546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 10/05/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Under tropical and subtropical environments, citrus leaves are exposed to excess sunlight, inducing photoinhibition. Huanglongbing (HLB, citrus greening), a devastating phloem-limited disease putatively caused by Candidatus Liberibacter asiaticus, exacerbates this challenge with additional photosynthetic loss and excessive starch accumulation. A combined metabolomics and physiological approach was used to elucidate whether shade alleviates the deleterious effects of HLB in field-grown citrus trees, and to understand the underlying metabolic mechanisms related to shade-induced morpho-physiological changes in citrus. Using metabolite profiling and multinomial logistic regression, we identified pivotal metabolites altered in response to shade. A core metabolic network associated with shade conditions was identified through pathway enrichment analysis and metabolite mapping. We measured physio-biochemical responses and growth and yield characteristics. With these, the relationships between metabolic network and the variables measured above were investigated. We found that moderate-shade alleviates sink limitation by preventing excessive starch accumulation and increasing foliar sucrose levels. Increased growth and fruit yield in shaded compared with non-shaded trees were associated with increased photosystem II efficiency and leaf carbon fixation pathway metabolites. Our study also shows that, in HLB-affected trees under shade, the signaling of plant hormones (auxins and cytokinins) and nitrogen supply were downregulated with reducing new shoot production likely due to diminished needs of cell damage repair and tissue regeneration under shade. Overall, our findings provide the first glimpse of the complex dynamics between cellular metabolites and leaf physiological functions in citrus HLB pathosystem under shade, and reveal the mechanistic basis of how shade ameliorates HLB disease.
Collapse
Affiliation(s)
- Joon Hyuk Suh
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL, 33850, USA
| | - Anirban Guha
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL, 33850, USA
| | - Zhixin Wang
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL, 33850, USA
| | - Sheng-Yang Li
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL, 33850, USA
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL, 33850, USA
| | - Christopher Vincent
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL, 33850, USA
| | - Yu Wang
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL, 33850, USA
| |
Collapse
|
18
|
Zhou Y, Tang Y, Hu C, Zhan T, Zhang S, Cai M, Zhao X. Soil applied Ca, Mg and B altered phyllosphere and rhizosphere bacterial microbiome and reduced Huanglongbing incidence in Gannan Navel Orange. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148046. [PMID: 34118675 DOI: 10.1016/j.scitotenv.2021.148046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 05/27/2023]
Abstract
Huanglongbing (HLB) caused by 'Ca. Liberibacter. Asiaticus (Clas)' is one of the destructive diseases for citrus, threatening the development of citrus industry. Adopting a proper fertilization method instead of using pesticides seems particularly important, which would contribute to a sustainable development of orchard. In this study, the impact of soil application of nutrients combined with foliar spray of macro- and micro-nutrients on the incidence of HLB and the phyllosphere and rhizosphere bacterial microbiome was investigated in Gannan Navel Orange orchard from 2015 to 2018. Compared with the control (T1), the yield of Gannan Navel Orange in all other treatments applied with macro- and micro-nutrients increased significantly in 2018 (by 20.5%-45.8%), but not in the first two years (2016-17). Among treatments, Ca + Mg + B application in soil (T2) showed the highest yield and lowest HLB incidence. According to the PCR results, CLas was negative in T2 but positive in the control, which directly proved HLB incidence was reduced with Ca + Mg + B application in soil. Moreover, 16S rRNA sequencing was used to characterize rhizosphere and phyllosphere microbial communities. Results showed that microbial biodiversity was increased and microbial community structure was altered in T2 treatment, of which the beneficial bacteria were enriched in phyllosphere and rhizosphere. The results of PICRUSt showed that in T2 treatment, rhizosphere microbe contained more membrane transport (ABC transporters) genes, while, carbohydrate metabolism genes were enriched in the control rhizosphere due to HLB obstruct the photosynthetic metabolite transport. In summary, results indicated that macro- and micro-nutrients application improved the yield of Gannan Navel Orange and soil application of Ca + Mg + B reduced HLB incidence by altering microbial community structure and increasing microbial biodiversity. This study developed an environment-friendly way to reduce HLB incidence and improve the yield of citrus.
Collapse
Affiliation(s)
- Yingjie Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China; Research Center of Trace Elements, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Yanni Tang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China; Research Center of Trace Elements, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China; Research Center of Trace Elements, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Ting Zhan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China; Research Center of Trace Elements, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Simin Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China; Research Center of Trace Elements, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Miaomiao Cai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China; Research Center of Trace Elements, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China; Research Center of Trace Elements, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China.
| |
Collapse
|
19
|
Teper D, Xu J, Pandey SS, Wang N. PthAW1, a Transcription Activator-Like Effector of Xanthomonas citri subsp. citri, Promotes Host-Specific Immune Responses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1033-1047. [PMID: 33970668 DOI: 10.1094/mpmi-01-21-0026-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Citrus canker disease caused by Xanthomonas citri subsp. citri is one of the most destructive diseases in citrus. X. citri subsp. citri pathotypes display different host ranges. X. citri subsp. citri strain A (XccA) causes canker disease in most commercial citrus varieties, whereas strain AW (XccAW), which is genetically similar to XccA, infects only lime and alemow. Understanding the mechanism that determines the host range of pathogens is critical to investigating and utilizing host resistance. We hypothesized that XccAW would undergo mutations in genes that restrict its host range when artificially inoculated into incompatible citrus varieties. To test this hypothesis, we used an experimental evolution approach to identify phenotypic traits and genetic loci associated with the adaptation of XccAW to incompatible sweet orange. Repeated inoculation and reisolation cycles improved the ability of three independent XccAW strains to colonize sweet orange. Adapted XccAW strains displayed increased expression of type III secretion system and effector genes. Genome sequencing analysis indicated that two of the adapted strains harbored mutations in pthAW1, a transcription activator-like effector (TALE) gene, that corresponded to the removal of one or two repeats from the central DNA-binding repeat region. Introduction of the original but not the adapted pthAW1 variants into XccA abolished its ability to cause canker symptoms in sweet orange, Meyer lemon, and clementine but not in other XccAW-resistant citrus varieties. The original pthAW1, when expressed in XccA, induced ion leakage and the expression of pathogenesis-related genes but had no effect on CsLOB1 expression in sweet orange. Our study has identified a novel host-specific avirulence TALE and demonstrated active adaptive rearrangements of the TALE repeat array during host adaptation.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Doron Teper
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
20
|
Hunter WB, Wintermantel WM. Optimizing Efficient RNAi-Mediated Control of Hemipteran Pests (Psyllids, Leafhoppers, Whitefly): Modified Pyrimidines in dsRNA Triggers. PLANTS 2021; 10:plants10091782. [PMID: 34579315 PMCID: PMC8472347 DOI: 10.3390/plants10091782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023]
Abstract
The advantages from exogenously applied RNAi biopesticides have yet to be realized in through commercialization due to inconsistent activity of the dsRNA trigger, and the activity level of RNAi suppression. This has prompted research on improving delivery methods for applying exogenous dsRNA into plants and insects for the management of pests and pathogens. Another aspect to improve RNAi activity is the incorporation of modified 2′-F pyrimidine nucleotides into the dsRNA trigger. Modified dsRNA incorporating 32–55% of the 2′-F- nucleotides produced improved RNAi activity that increased insect mortality by 12–35% greater than non-modified dsRNA triggers of the same sequence. These results were repeatable across multiple Hemiptera: the Asian citrus psyllid (Diaphorina citri, Liviidae); whitefly (Bemisia tabaci, Aleyroididae); and the glassy-winged sharpshooter (Homalodisca vitripennis, Cicadellidae). Studies using siRNA with modified 2′-F- pyrimidines in mammalian cells show they improved resistance to degradation from nucleases, plus result in greater RNAi activity, due to increase concentrations and improved binding affinity to the mRNA target. Successful RNAi biopesticides of the future will be able to increase RNAi repeatability in the field, by incorporating modifications of the dsRNA, such as 2′-F- pyrimidines, that will improve delivery after applied to fruit trees or crop plants, with increased activity after ingestion by insects. Costs of RNA modification have decreased significantly over the past few years such that biopesticides can now compete on pricing with commercial chemical products.
Collapse
Affiliation(s)
- Wayne Brian Hunter
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture, Agriculture Research Service, Subtropical Insects Res., Fort Pierce, FL 34945, USA
- Correspondence:
| | - William M. Wintermantel
- U.S. Department of Agriculture, Agriculture Research Service, Crop Improvement and Protection Research, Salinas, CA 93905, USA;
| |
Collapse
|
21
|
Yuan X, Chen C, Bassanezi RB, Wu F, Feng Z, Shi D, Li J, Du Y, Zhong L, Zhong B, Lu Z, Song X, Hu Y, Ouyang Z, Liu X, Xie J, Rao X, Wang X, Wu DO, Guan Z, Wang N. Region-Wide Comprehensive Implementation of Roguing Infected Trees, Tree Replacement, and Insecticide Applications Successfully Controls Citrus Huanglongbing. PHYTOPATHOLOGY 2021; 111:1361-1368. [PMID: 33356429 DOI: 10.1094/phyto-09-20-0436-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Huanglongbing (HLB) is a devastating citrus disease worldwide. A three-pronged approach to controlling HLB has been suggested, namely, removal of HLB-symptomatic trees, psyllid control, and replacement with HLB-free trees. However, such a strategy did not lead to successful HLB control in many citrus-producing regions, such as Florida. We hypothesize that this is because of the small-scale or incomprehensive implementation of the program; conversely, a comprehensive implementation of such a strategy at the regional level can successfully control HLB. To test our hypothesis, we investigated the effects of region-wide comprehensive implementation of this scheme to control HLB in Gannan region, China, with a total planted citrus acreage of over 110,000 ha from 2013 to 2019. With the region-wide implementation of comprehensive HLB management, the overall HLB incidence in Gannan decreased from 19.71% in 2014 to 3.86% in 2019. A partial implementation of such a program (without a comprehensive inoculum removal) at the regional level in Brazil resulted in HLB incidence increasing from 1.89% in 2010 to 19.02% in 2019. Using dynamic regression model analyses with data from both Brazil and China, we constructed a model to predict HLB incidence when all three components were applied at 100%. It was predicated that in a region-wide comprehensive implementation of such a program, HLB incidence would be controlled to a level of less than 1%. We conducted economic feasibility analyses and showed that average net profits were positive for groves that implemented the comprehensive strategy, but groves that did not implement it had negative net profits over a 10-year period. Overall, the key for the three-pronged program to successfully control HLB is the large scale (region-wide) and comprehensiveness in implementation. This study provides valuable information to control HLB and other economically important endemic diseases worldwide.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Xiaoyong Yuan
- Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Cixiang Chen
- Ganzhou Plant Protection Department of Fruit Industry/Jiangxi Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
| | | | - Feng Wu
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, U.S.A
| | - Zheng Feng
- Department of Electrical & Computer Engineering, University of Florida, Gainesville, FL, U.S.A
| | - Damin Shi
- Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, U.S.A
| | - Yimin Du
- Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Ling Zhong
- Plant Protection Bureau, Department of Agriculture, Nanchang, Jiangxi, China
| | - Balian Zhong
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Zhanjun Lu
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Xiang Song
- Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Yan Hu
- Ganzhou Plant Protection Department of Fruit Industry/Jiangxi Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
| | - Zhigang Ouyang
- Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Xinjun Liu
- Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Jinzhao Xie
- Ganzhou Plant Protection Department of Fruit Industry/Jiangxi Navel Orange Engineering Research Center, Ganzhou, Jiangxi, China
| | - Xi Rao
- Plant Protection Bureau, Department of Agriculture, Nanchang, Jiangxi, China
| | - Xi Wang
- Plant Protection Bureau, Department of Agriculture, Nanchang, Jiangxi, China
| | - Dapeng Oliver Wu
- Department of Electrical & Computer Engineering, University of Florida, Gainesville, FL, U.S.A
| | - Zhengfei Guan
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, U.S.A
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, U.S.A
| |
Collapse
|
22
|
Ribeiro C, Xu J, Teper D, Lee D, Wang N. The transcriptome landscapes of citrus leaf in different developmental stages. PLANT MOLECULAR BIOLOGY 2021; 106:349-366. [PMID: 33871796 DOI: 10.1007/s11103-021-01154-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
The temporal expression profiles of citrus leaves explain the sink-source transition of immature leaves to mature leaves and provide knowledge regarding the differential responses of mature and immature leaves to biotic stress such as citrus canker and Asian citrus psyllid (Diaphorina citri). Citrus is an important fruit crop worldwide. Different developmental stages of citrus leaves are associated with distinct features, such as differences in susceptibilities to pathogens and insects, as well as photosynthetic capacity. Here, we investigated the mechanisms underlying these distinctions by comparing the gene expression profiles of mature and immature citrus leaves. Immature (stages V3 and V4), transition (stage V5), and mature (stage V6) Citrus sinensis leaves were chosen for RNA-seq analyses. Carbohydrate biosynthesis, photosynthesis, starch biosynthesis, and disaccharide metabolic processes were enriched among the upregulated differentially expressed genes (DEGs) in the V5 and V6 stages compared with that in the V3 and V4 stages. Glucose level was found to be higher in V5 and V6 than in V3 and V4. Among the four stages, the largest number of DEGs between contiguous stages were identified between V5 and V4, consistent with a change from sink to source, as well as with the sucrose and starch quantification data. The differential expression profiles related to cell wall synthesis, secondary metabolites such as flavonoids and terpenoids, amino acid biosynthesis, and immunity between immature and mature leaves may contribute to their different responses to Asian citrus psyllid infestation. The expression data suggested that both the constitutive and induced gene expression of immunity-related genes plays important roles in the greater resistance of mature leaves against Xanthomonas citri compared with immature leaves. The gene expression profiles in the different stages can help identify stage-specific promoters for the manipulation of the expression of citrus traits according to the stage. The temporal expression profiles explain the sink-source transition of immature leaves to mature leaves and provide knowledge regarding the differential responses to biotic stress.
Collapse
Affiliation(s)
- Camila Ribeiro
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, 33850, USA
| | - Jin Xu
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, 33850, USA
| | - Doron Teper
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, 33850, USA
| | - Donghwan Lee
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, 33850, USA
| | - Nian Wang
- Citrus Research & Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, 33850, USA.
| |
Collapse
|
23
|
Li J, Kolbasov VG, Lee D, Pang Z, Huang Y, Collins N, Wang N. Residue Dynamics of Streptomycin in Citrus Delivered by Foliar Spray and Trunk Injection and Effect on ' Candidatus Liberibacter asiaticus' Titer. PHYTOPATHOLOGY 2021; 111:1095-1103. [PMID: 33267628 DOI: 10.1094/phyto-09-20-0427-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Streptomycin (STR) has been used to control citrus huanglongbing (HLB) caused by 'Candidatus Liberibacter asiaticus' (CLas) via foliar spray. Here, we studied the residue dynamics of STR and its effect on CLas titers in planta applied by foliar spray and trunk injection of 3-year-old citrus trees that were naturally infected by CLas in the field. After foliar spray, STR levels in leaves peaked at 2 to 7 days postapplication (dpa) and gradually declined thereafter. The STR spray did not significantly affect CLas titers in leaves of treated plants as determined by quantitative PCR. After trunk injection, peak levels of STR were observed 7 to 14 dpa in the leaf and root tissues, and near-peak levels were sustained for another 14 days before significantly declining. At 12 months after injection, moderate to low or undetectable levels of STR were observed in the leaf, root, and fruit, depending on the doses of STR injected, with a residue level of 0.28 µg/g in harvested fruit at the highest injection concentration of 2.0 µg/tree. CLas titers in leaves were significantly reduced by trunk injection of STR at 1.0 or 2.0 g/tree, starting from 7 dpa and throughout the experimental period. The reduction of CLas titers was positively correlated with STR residue levels in leaves. The in planta minimum effective concentration of STR needed to suppress the CLas titer to an undetectable level (cycle threshold ≥36.0) was 1.92 µg/g fresh weight. Determination of the in planta minimum effective concentration of STR against CLas and its spatiotemporal residue levels in planta provides the guidance to use STR for HLB management.
Collapse
Affiliation(s)
- Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Vladimir G Kolbasov
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Donghwan Lee
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Zhiqian Pang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Yixiao Huang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Nicole Collins
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| |
Collapse
|
24
|
Huanglongbing Model under the Control Strategy of Discontinuous Removal of Infected Trees. Symmetry (Basel) 2021. [DOI: 10.3390/sym13071164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
By using differential equations with discontinuous right-hand sides, a dynamic model for vector-borne infectious disease under the discontinuous removal of infected trees was established after understanding the transmission mechanism of Huanglongbing (HLB) disease in citrus trees. Through calculation, the basic reproductive number of the model can be attained and the properties of the model are discussed. On this basis, the existence and global stability of the calculated equilibria are verified. Moreover, it was found that different I0 in the control strategy cannot change the dynamic properties of HLB disease. However, the lower the value of I0, the fewer HLB-infected citrus trees, which provides a theoretical basis for controlling HLB disease and reducing expenditure.
Collapse
|
25
|
Pandey SS, Nogales da Costa Vasconcelos F, Wang N. Spatiotemporal Dynamics of ' Candidatus Liberibacter asiaticus' Colonization Inside Citrus Plant and Huanglongbing Disease Development. PHYTOPATHOLOGY 2021; 111:921-928. [PMID: 33174821 DOI: 10.1094/phyto-09-20-0407-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
'Candidatus Liberibacter asiaticus' (CLas), the causal agent of citrus huanglongbing (HLB), colonizes inside the phloem and is naturally transmitted by the Asian citrus psyllid (ACP). Here, we investigated spatiotemporal CLas colonization in different tissues after ACP transmission. Of the nine plants successfully infected via ACP transmission, CLas was detected in the roots of all trees at 75 days postremoval of ACPs (DPR) but in the mature leaf of only one tree; this finding is consistent with the model that CLas moves passively from source to sink tissues. At 75 and 365 DPR, CLas was detected in 11.1 and 43.1% of mature leaves not fed on by ACPs during transmission, respectively, unveiling active movement to the source tissue. The difference in colonization timing of sink and source tissues indicates that CLas is capable of both passive and active movement, with passive movement being dominant. At 225 DPR, leaves fed on by ACPs during the young stage showed the highest ratio of HLB symptomatic leaves and the highest CLas titer, followed by leaves that emerged after ACP removal and mature leaves not fed on by ACPs. Importantly, our data showed that ACPs were unable to transmit CLas via feeding on mature leaves. It is estimated that it takes 3 years at most for CLas to infect the whole tree. Overall, spatiotemporal detection of CLas in different tissues after ACP transmission helps visualize the infection process of CLas in planta and subsequent HLB symptom development and provides evidence showing that young leaves should be the focus of HLB management.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL 33850
| | | | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, FL 33850
| |
Collapse
|
26
|
Li B, Zhang Y, Qiu D, Francis F, Wang S. Comparative Proteomic Analysis of Sweet Orange Petiole Provides Insights Into the Development of Huanglongbing Symptoms. FRONTIERS IN PLANT SCIENCE 2021; 12:656997. [PMID: 33953735 PMCID: PMC8092123 DOI: 10.3389/fpls.2021.656997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Huanglongbing (HLB) is the most destructive citrus disease worldwide. This is associated with the phloem-limited bacterium Candidatus Liberibacter, and the typical symptom is leaf blotchy mottle. To better understand the biological processes involved in the establishment of HLB disease symptoms, the comparative proteomic analysis was performed to reveal the global protein accumulation profiles in leaf petiole, where there are massive HLB pathogens of Ca. L. asiaticus-infected Newhall sweet orange (Citrus sinensis) plants at the asymptomatic and symptomatic stages compared to their healthy counterpart. Photosynthesis, especially the pathway involved in the photosystem I and II light reactions, was shown to be suppressed throughout the whole Ca. L. asiaticus infection cycle. Also, starch biosynthesis was induced after the symptom-free prodromal period. Many defense-associated proteins were more extensively regulated in the petiole with the symptoms than the ones from healthy plants. The change of salicylic and jasmonic acid levels in different disease stages had a positive correlation with the abundance of phytohormone biosynthesis-related proteins. Moreover, the protein-protein interaction network analysis indicated that an F-type ATPase and an alpha-1,4 glucan phosphorylase were the core nodes in the interactions of differentially accumulated proteins. Our study indicated that the infected citrus plants probably activated the non-unified and lagging enhancement of defense responses against Ca. L. asiaticus at the expense of photosynthesis and contribute to find out the key Ca. L. asiaticus-responsive genes for tolerance and resistance breeding.
Collapse
Affiliation(s)
- Bo Li
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Yi Zhang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dewen Qiu
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Shuangchao Wang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
Pagliaccia D, Bodaghi S, Chen X, Stevenson D, Deyett E, De Francesco A, Borneman J, Ruegger P, Peacock B, Ellstrand N, Rolshausen PE, Popa R, Ying S, Vidalakis G. Two Food Waste By-Products Selectively Stimulate Beneficial Resident Citrus Host-Associated Microbes in a Zero-Runoff Indoor Plant Production System. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.593568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The global production of food waste is a far-reaching problem with sizable financial, ethical, social, and environmental costs. Over 66 million tons of food waste is produced annually in the United States alone. This waste can be converted into valuable digestate by-products that promote a circular economy within agri-food systems. The present work investigated the use of two liquid digestates of microaerobic fermentation from mixed food waste and beer mash, respectively, as biostimulants for non-bearing citrus plants (nursery stock) grown in a zero-runoff greenhouse system with recirculating irrigation. The digestates' impact on the structure and diversity of the microbiota was determined on the irrigation water, soil, leaves, roots, and rhizosphere of citrus plants. A combination of culture-dependent (selective media) and culture-independent approaches (Next-Generation Sequencing) was used to assess the composition of the microbial communities and to single out the presence of foodborne pathogens. Our results suggest that the use of digestates is safe (i.e., no human or plant pathogens were present in the digestates or enriched in the plant production system following amendments). Digestates application to the irrigation water reduced the bacterial diversity within 24–48 h and selectively and significantly stimulated beneficial resident host-associated microorganisms (Pseudomonas putida) by two to three orders of magnitude. Carbon dynamics were analyzed in the nutrient solutions by measuring dissolved organic carbon and characterizing carbon species through gas chromatography-electron ionization-mass spectrometry. Our results indicate that dissolved organic carbon in the recirculating irrigation water spikes after each digestate amendment and it is quickly metabolized by bacteria, plateauing 24 h after application. Soil carbon, nitrogen, and nutrient dynamics were also analyzed, and results suggest that digestates increased the concentration of some plant nutrients in soils without causing a surge of potentially toxic elements. This study represents a proof-of-concept for the safe re-use of organic wastes, from farming and consumers, in agriculture. Implementing this type of integrated plant production system could reduce the environmental impact of food waste and benefit the public by improving soil health, reducing agricultural footprint, and increasing crop fitness by deploying a method based on a circular economy and sustainable food production approaches.
Collapse
|
28
|
Sandoval-Mojica AF, Altman S, Hunter WB, Pelz-Stelinski KS. Peptide conjugated morpholinos for management of the huanglongbing pathosystem. PEST MANAGEMENT SCIENCE 2020; 76:3217-3224. [PMID: 32358830 DOI: 10.1002/ps.5877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND 'Candidatus Liberibacter asiaticus' (CLas) is the causal agent of the devastating citrus disease Huanglongbing (HLB) and is transmitted by the insect vector Diaphorina citri (Hemiptera: Liviidae). A potential approach for treating CLas infection is the use of synthetic nucleic acid-like oligomers to silence bacterial gene expression. Peptide conjugated morpholinos (PPMOs) targeting essential genes in CLas and the psyllid vector's endosymbiotic bacteria, Wolbachia (-Diaphorina, wDi), were evaluated using in vitro and in vivo assays. RESULTS Expression of the wDi gyrA gene was significantly reduced following incubation of wDi cells with PPMOs. In addition, the viability of isolated wDi cells was greatly reduced when treated with PPMOs as compared to untreated cells. Feeding D. citri adults with a complementary PPMO (CLgyrA-14) showed significantly reduced (70% lower) expression of the CLas gyrA gene. CLas relative density was significantly lower in the psyllids fed with CLgyrA-14, when compared to untreated insects. Psyllids that were treated with CLgyrA-14 were less successful in transmitting the pathogen into uninfected plants, compared to untreated insects. CONCLUSION The expression of essential genes in the D. citri symbiont, wDi and the HLB pathogen were suppressed in response to PPMO treatments. This study demonstrates the potential of PPMOs as a novel strategy for management of bacterial pathogens of fruit trees, such as HLB. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Andrés F Sandoval-Mojica
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Sidney Altman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT,, USA
| | - Wayne B Hunter
- U.S Department of Agriculture, Agricultural Research Service, Fort Pierce, FL, USA
| | - Kirsten S Pelz-Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
29
|
Yang F, Zhang J, Zhang H, Ji G, Zeng L, Li Y, Yu C, Fernando WGD, Chen W. Bacterial Blight Induced Shifts in Endophytic Microbiome of Rice Leaves and the Enrichment of Specific Bacterial Strains With Pathogen Antagonism. FRONTIERS IN PLANT SCIENCE 2020; 11:963. [PMID: 32793250 PMCID: PMC7390967 DOI: 10.3389/fpls.2020.00963] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/11/2020] [Indexed: 05/25/2023]
Abstract
The endophytic microbiome plays an important role in plant health and pathogenesis. However, little is known about its relationship with bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae (Xoo). The current study compared the community compositional structure of the endophytic microbiota in healthy and BB symptomatic leaves of rice through a metabarcoding approach, which revealed BB induced a decrease in the alpha-diversity of the fungal communities and an increase in the bacterial communities. BB-diseased rice leaves were enriched with saprophytic fungi that are capable of decomposing plant cell walls (e.g. Khuskia spp. and Leptosphaerulina spp.), while healthy rice leaves were found to be significantly more abundant with plant pathogens or mycotoxin-producing fungi (e.g. Fusarium, Magnaporthe, and Aspergillus). The endophytic bacterial communities of BB-diseased leaves were significantly enriched with Pantoea, Pseudomonas, and Curtobacterium, strains. Pantoea sp. isolates from BB leaves are identified as promising candidates for the biocontrol of BB for their ability to inhibit in vitro growth of Xoo, suppress the development of rice BB disease, and possess multiple PGP characteristics. Our study revealed BB-induced complexed changes in the endophytic fungal and bacterial communities of rice leaves and demonstrated that BB-associated enrichment of some endophytic bacterial taxa, e.g. Pantoea sp. isolates, may play important roles in suppressing the development of BB disease in rice.
Collapse
Affiliation(s)
- Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huaying Zhang
- Ottawa Research & Development Centre, Science & Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Guanghai Ji
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Liexian Zeng
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yan Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Chao Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Wen Chen
- Ottawa Research & Development Centre, Science & Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| |
Collapse
|
30
|
Acid Soil Improvement Enhances Disease Tolerance in Citrus Infected by Candidatus Liberibacter asiaticus. Int J Mol Sci 2020; 21:ijms21103614. [PMID: 32443846 PMCID: PMC7279377 DOI: 10.3390/ijms21103614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/20/2022] Open
Abstract
Huanglongbing (HLB) is a devastating citrus disease that has caused massive economic losses to the citrus industry worldwide. The disease is endemic in most citrus-producing areas of southern China, especially in the sweet orange orchards where soil acidification has intensified. In this work, we used lime as soil pH amendment to optimize soil pH and enhance the endurance capacity of citrus against Candidatus Liberibacter asiaticus (CLas). The results showed that regulation of soil acidity is effective to reduce the occurrence of new infections and mitigate disease severity in the presence of HLB disease. We also studied the associated molecular mechanism and found that acid soil improvement can (i) increase the root metabolic activity and up-regulate the expression of ion transporter-related genes in HLB-infected roots, (ii) alleviate the physiological disorders of sieve tube blockage of HLB-infected leaves, (iii) strengthen the citrus immune response by increasing the expression of genes involved in SAR and activating the salicylic acid signal pathway, (iv) up-regulate 55 proteins related to stress/defence response and secondary metabolism. This study contributes to a better understanding of the correlation between environment factors and HLB disease outbreaks and also suggests that acid soil improvement is of potential value for the management of HLB disease in southern China.
Collapse
|
31
|
Wu Y, Qu M, Pu X, Lin J, Shu B. Distinct microbial communities among different tissues of citrus tree Citrus reticulata cv. Chachiensis. Sci Rep 2020; 10:6068. [PMID: 32269258 PMCID: PMC7142118 DOI: 10.1038/s41598-020-62991-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/18/2020] [Indexed: 11/17/2022] Open
Abstract
Plant microbiota colonize all organs of a plant and play crucial roles including supplying nutrients to plants, stimulating seed germination, promoting plant growth, and defending plants against biotic and abiotic stress. Because of the economic importance, interactions between citrus and microbes have been studied relatively extensively, especially citrus-pathogen interactions. However, the spatial distribution of microbial taxa in citrus trees remains under-studied. In this study, Citrus reticulata cv. Chachiensis was examined for the spatial distribution of microbes by sequencing 16S rRNA genes. More than 2.5 million sequences were obtained from 60 samples collected from soil, roots, leaves, and phloem. The dominant microbial phyla from all samples were Proteobacteria, Actinobacteria and Acidobacteria. The composition and structure of microbial communities in different samples were analyzed by PCoA, CAP, Anosim and MRPP methods. Variation in microbial species between samples were analyzed and the indicator microbes of each sample group were identified. Our results suggested that the microbial communities from different tissues varied significantly and the microenvironments of tree tissues could affect the composition of its microbial community.
Collapse
Affiliation(s)
- Yongxian Wu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Mengqiu Qu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xinhua Pu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
32
|
Li J, Pang Z, Duan S, Lee D, Kolbasov VG, Wang N. The in Planta Effective Concentration of Oxytetracycline Against ' Candidatus Liberibacter asiaticus' for Suppression of Citrus Huanglongbing. PHYTOPATHOLOGY 2019; 109:2046-2054. [PMID: 31369360 DOI: 10.1094/phyto-06-19-0198-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Huanglongbing (HLB) or greening currently is the most devastating citrus disease worldwide. The fastidious phloem-colonizing bacterium 'Candidatus Liberibacter asiaticus' (CLas) is the causal agent of citrus HLB in Florida. Bactericides containing the active ingredient oxytetracycline (OTC) have been used in foliar spray to control citrus HLB in Florida since 2016. However, the minimum concentration of OTC required to suppress CLas in planta remains unknown. We developed a new method for evaluating the effects of OTC treatment on CLas titers in infected plants and determined the relationship between OTC residue levels and control levels achieved for CLas using mathematical modeling in greenhouse and field experiments. In both greenhouse and field, OTC spray did not reduce the titers of CLas, and it produced undetectable or mild levels of OTC residue in leaves within 7 days post-application (DPA). In greenhouse, OTC injection at 0.05 g per tree decreased CLas titers to an undetectable level (cycle threshold value ≥ 36.0) from 7 to 30 DPA and produced a residue level of OTC at 0.68 to 0.73 µg/g of fresh tissue over this period. In the field, OTC injection at 0.50 g per tree resulted in the decline of CLas titers by 1.52 log reduction from 14 to 60 DPA, with residue levels of OTC at 0.27 to 0.33 µg/g of fresh tissue. In both trials, a first-order compart model of OTC residue dynamics in leaves of trunk-injected trees was specified for estimating the retention of effective concentrations. Furthermore, nonlinear modeling revealed significant positive correlations between OTC residue levels in leaves and the control levels for CLas achieved. The results suggested that the minimum concentrations of OTC required to suppress CLas populations in planta to below the detection limit are 0.68 and 0.86 µg/g and that the minimum concentrations of OTC required for initial inhibition of CLas growth in planta are ∼0.17 and ∼0.215 µg/g in leaf tissues under greenhouse and field conditions, respectively. This finding highlights that a minimum concentration of OTC should be guaranteed to be delivered to target CLas in infected plants for effective control of citrus HLB.
Collapse
Affiliation(s)
- Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Zhiqian Pang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Shuo Duan
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Donghwan Lee
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Vladimir G Kolbasov
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| |
Collapse
|
33
|
Padhi EMT, Maharaj N, Lin SY, Mishchuk DO, Chin E, Godfrey K, Foster E, Polek M, Leveau JHJ, Slupsky CM. Metabolome and Microbiome Signatures in the Roots of Citrus Affected by Huanglongbing. PHYTOPATHOLOGY 2019; 109:2022-2032. [PMID: 31433274 DOI: 10.1094/phyto-03-19-0103-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Huanglongbing (HLB) is a severe, incurable citrus disease caused by the bacterium 'Candidatus Liberibacter asiaticus' (CLas). Although citrus leaves serve as the site of initial infection, CLas is known to migrate to and colonize the root system; however, little is known about the impact of CLas infection on root metabolism and resident microbial communities. Scions of 'Lisbon' lemon and 'Washington Navel' orange grafted onto 'Carrizo' rootstock were grafted with either CLas-infected citrus budwood or uninfected budwood. Roots were obtained from trees 46 weeks after grafting and analyzed via 1H nuclear magnetic resonance spectroscopy to identify water-soluble root metabolites and high-throughput sequencing of 16S rRNA and ITS gene amplicons to determine the relative abundance of bacterial and fungal taxa in the root rhizosphere and endosphere. In both citrus varieties, 27 metabolites were identified, of which several were significantly different between CLas(+) and control plants. CLas infection also appeared to alter the microbial community structure near and inside the roots of citrus plants. Nonmetric multidimensional scaling (NMDS) and a principal coordinate analysis (PCoA) revealed distinct metabolite and microbial profiles, demonstrating that CLas impacts the root metabolome and microbiome in a manner that is variety-specific.
Collapse
Affiliation(s)
- Emily M T Padhi
- Department of Food Science and Technology, University of California at Davis, Davis, CA 95616
| | - Nilesh Maharaj
- Department of Plant Pathology, University of California at Davis, Davis, CA 95616
| | - Shin-Yi Lin
- Department of Food Science and Technology, University of California at Davis, Davis, CA 95616
| | - Darya O Mishchuk
- Department of Food Science and Technology, University of California at Davis, Davis, CA 95616
| | - Elizabeth Chin
- Department of Food Science and Technology, University of California at Davis, Davis, CA 95616
| | - Kris Godfrey
- Contained Research Facility, University of California at Davis, Davis, CA 95616
| | - Elizabeth Foster
- Contained Research Facility, University of California at Davis, Davis, CA 95616
| | - Marylou Polek
- U.S. Department of Agriculture-Agricultural Research Service National Germplasm Repository, Riverside, CA 92507
| | - Johan H J Leveau
- Department of Plant Pathology, University of California at Davis, Davis, CA 95616
| | - Carolyn M Slupsky
- Department of Food Science and Technology, University of California at Davis, Davis, CA 95616
- Department of Nutrition, University of California at Davis, Davis, CA 95616
| |
Collapse
|
34
|
Jia H, Orbović V, Wang N. CRISPR-LbCas12a-mediated modification of citrus. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1928-1937. [PMID: 30908830 PMCID: PMC6737016 DOI: 10.1111/pbi.13109] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/06/2019] [Accepted: 03/11/2019] [Indexed: 05/14/2023]
Abstract
Recently, CRISPR-Cas12a (Cpf1) from Prevotella and Francisella was engineered to modify plant genomes. In this report, we employed CRISPR-LbCas12a (LbCpf1), which is derived from Lachnospiraceae bacterium ND2006, to edit a citrus genome for the first time. First, LbCas12a was used to modify the CsPDS gene successfully in Duncan grapefruit via Xcc-facilitated agroinfiltration. Next, LbCas12a driven by either the 35S or Yao promoter was used to edit the PthA4 effector binding elements in the promoter (EBEPthA4 -CsLOBP) of CsLOB1. A single crRNA was selected to target a conserved region of both Type I and Type II CsLOBPs, since the protospacer adjacent motif of LbCas12a (TTTV) allows crRNA to act on the conserved region of these two types of CsLOBP. CsLOB1 is the canker susceptibility gene, and it is induced by the corresponding pathogenicity factor PthA4 in Xanthomonas citri by binding to EBEPthA4 -CsLOBP. A total of seven 35S-LbCas12a-transformed Duncan plants were generated, and they were designated as #D35 s1 to #D35 s7, and ten Yao-LbCas12a-transformed Duncan plants were created and designated as #Dyao 1 to #Dyao 10. LbCas12a-directed EBEPthA4 -CsLOBP modifications were observed in three 35S-LbCas12a-transformed Duncan plants (#D35 s1, #D35 s4 and #D35 s7). However, no LbCas12a-mediated indels were observed in the Yao-LbCas12a-transformed plants. Notably, transgenic line #D35 s4, which contains the highest mutation rate, alleviates XccΔpthA4:dCsLOB1.4 infection. Finally, no potential off-targets were observed. Therefore, CRISPR-LbCas12a can readily be used as a powerful tool for citrus genome editing.
Collapse
Affiliation(s)
- Hongge Jia
- Department of Microbiology and Cell ScienceCitrus Research and Education CenterInstitute of Food and Agricultural Sciences (IFAS)University of FloridaLake AlfredFLUSA
| | - Vladimir Orbović
- Citrus Research and Education CenterIFASUniversity of FloridaLake AlfredFLUSA
| | - Nian Wang
- Department of Microbiology and Cell ScienceCitrus Research and Education CenterInstitute of Food and Agricultural Sciences (IFAS)University of FloridaLake AlfredFLUSA
- China‐USA Citrus Huanglongbing Joint Laboratory (A joint laboratory of The University of Florida’s Institute of Food and Agricultural Sciences and Gannan Normal University)National Navel Orange Engineering Research CenterGannan Normal UniversityGanzhouJiangxiChina
| |
Collapse
|
35
|
Host-free biofilm culture of " Candidatus Liberibacter asiaticus," the bacterium associated with Huanglongbing. Biofilm 2019; 1:100005. [PMID: 33447792 PMCID: PMC7798463 DOI: 10.1016/j.bioflm.2019.100005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/05/2022] Open
Abstract
Inability to culture the phloem-restricted alpha-proteobacterium “Candidatus Liberibacter asiaticus” (“Ca. L. asiaticus”) or the closely related species (“Candidatus Liberibacter americanus” and “Candidatus Liberibacter africanus”) that are associated with Huanglongbing (HLB) hampers the development of effective long-term control strategies for this devastating disease. Here we report successful establishment and long-term maintenance of host-free “Ca. L. asiaticus” cultures, with the bacterium growing within cultured biofilms derived from infected citrus tissue. The biofilms were grown in a newly designed growth medium under specific conditions. The initial biofilm-based culture has been successfully maintained for over two years and has undergone over a dozen subcultures. Multiple independent cultures have been established and maintained in a biofilm reactor system, opening the door to the development of pure culture of “Ca. L. asiaticus” and the use of genetics-based methods to understand and mitigate the spread of HLB.
Collapse
|
36
|
The Probing Behavior Component of Disease Transmission in Insect-Transmitted Bacterial Plant Pathogens. INSECTS 2019; 10:insects10070212. [PMID: 31331012 PMCID: PMC6681269 DOI: 10.3390/insects10070212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 11/16/2022]
Abstract
Insects can be effective vectors of plant diseases and this may result in billions of dollars in lost agricultural productivity. New, emerging or introduced diseases will continue to cause extensive damage in afflicted areas. Understanding how the vector acquires the pathogen and inoculates new hosts is critical in developing effective management strategies. Management may be an insecticide applied to kill the vector or a host plant resistance mechanism to make the host plant less suitable for the vector. In either case, the tactic must act before the insect performs the key behavior(s) resulting in either acquisition or transmission. This requires knowledge of the timing of behaviors the insect uses to probe the plant and commence ingestion. These behaviors are visualized using electropenetrography (EPG), wherein the plant and insect become part of an electrical circuit. With the tools to define specific steps in the probing process, we can understand the timing of acquisition and inoculation. With that understanding comes the potential for more relevant testing of management strategies, through insecticides or host plant resistance. The primary example will be Candidatus Liberibacter asiaticus transmitted by Diaphorina citri Kuwayama in the citrus agroecosystem, with additional examples used as appropriate.
Collapse
|
37
|
van Bruggen AHC, Goss EM, Havelaar A, van Diepeningen AD, Finckh MR, Morris JG. One Health - Cycling of diverse microbial communities as a connecting force for soil, plant, animal, human and ecosystem health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:927-937. [PMID: 30769316 DOI: 10.1016/j.scitotenv.2019.02.091] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 05/06/2023]
Abstract
The One Health concept proposes that there is a connection between human, animal and environmental health. Plants and their health are not explicitly included. In this review, we broaden the One Health concept to include soil, plant, animal and ecosystem health. We argue that the health conditions of all organisms in an ecosystem are interconnected through the cycling of subsets of microbial communities from the environment (in particular the soil) to plants, animals and humans, and back into the environment. After an introduction on health concepts, we present examples of community stability and resilience, diversity and interconnectedness as affected by pollutants, and integrity of nutrient cycles and energy flows. Next, we explain our concept of microbial cycling in relation to ecosystem health, and end with examples of plant and animal disease outbreaks in relation to microbial community composition and diversity. We conclude that we need a better understanding of the role of interconnected microbiomes in promoting plant and animal health and possible ways to stimulate a healthy, diverse microbiome throughout human-dominated ecosystems. We suggest that it is essential to maintain ecosystem and soil health through diversification of plant communities and oligotrophication of managed ecosystems.
Collapse
Affiliation(s)
- Ariena H C van Bruggen
- Department of Plant Pathology, University of Florida, Gainesville FL32611, USA; Emerging Pathogens Institute, University of Florida, Gainesville FL32611, USA.
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville FL32611, USA; Emerging Pathogens Institute, University of Florida, Gainesville FL32611, USA
| | - Arie Havelaar
- Emerging Pathogens Institute, University of Florida, Gainesville FL32611, USA; Department of Animal Science, University of Florida, Gainesville FL32611, USA
| | - Anne D van Diepeningen
- Business Unit Biointeractions and Plant Health, Wageningen UR, 6708 PB Wageningen, the Netherlands
| | - Maria R Finckh
- Faculty of Organic Agricultural Sciences, Ecological Plant Protection, University of Kassel, 37213 Witzenhausen, Germany
| | - J Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville FL32611, USA; Department of Medicine, School of Medicine, University of Florida, Gainesville FL32611, USA
| |
Collapse
|
38
|
Huang M, Roose ML, Yu Q, Du D, Yu Y, Zhang Y, Deng Z, Stover E, Gmitter FG. Construction of High-Density Genetic Maps and Detection of QTLs Associated With Huanglongbing Tolerance in Citrus. FRONTIERS IN PLANT SCIENCE 2018; 9:1694. [PMID: 30542355 PMCID: PMC6278636 DOI: 10.3389/fpls.2018.01694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/31/2018] [Indexed: 05/29/2023]
Abstract
Huanglongbing (HLB), or citrus greening, is the most devastating disease in citrus worldwide. Commercial citrus varieties including sweet orange (Citrus sinensis) are highly susceptible to HLB, and trifoliate orange (Poncirus trifoliata, a close Citrus relative) is widely considered resistant or highly tolerant to HLB. In this study, an intergeneric F1 population of sweet orange and trifoliate orange was genotyped by Genotyping-by-Sequencing, and high-density SNP-based genetic maps were constructed separately for trifoliate orange and sweet orange. The two genetic maps exhibited high synteny and high coverage of the citrus genome. Progenies of the F1 population and their parents were planted in a replicated field trial, exposed to intense HLB pressure for 3 years, and then evaluated for susceptibility to HLB over 2 years. The F1 population exhibited a wide range in severity of HLB foliar symptom and canopy damage. Genome-wide QTL analysis based on the phenotypic data of foliar symptom and canopy damage in 2 years identified three clusters of repeatable QTLs in trifoliate orange linkage groups LG-t6, LG-t8 and LG-t9. Co-localization of QTLs for two traits was observed within all three regions. Additionally, one cluster of QTLs in sweet orange (linkage group LG-s7) was also detected. The majority of the identified QTLs each explained 18-30% of the phenotypic variation, indicating their major role in determining HLB responses. These results show, for the first time, a quantitative genetic nature yet the presence of major loci for the HLB tolerance in trifoliate orange. The results suggest that sweet orange also contains useful genetic factor(s) for improving HLB tolerance in commercial citrus varieties. Findings from this study should be very valuable and timely to researchers worldwide as they are hastily searching for genetic solutions to the devastating HLB crisis through breeding, genetic engineering, or genome editing.
Collapse
Affiliation(s)
- Ming Huang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Mikeal L. Roose
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Qibin Yu
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Dongliang Du
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Yuan Yu
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Yi Zhang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Zhanao Deng
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
| | - Ed Stover
- United States Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Fort Pierce, FL, United States
| | - Frederick G. Gmitter
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
39
|
Abstract
Antibiotics have been used for the management of relatively few bacterial plant diseases and are largely restricted to high-value fruit crops because of the expense involved. Antibiotic resistance in plant-pathogenic bacteria has become a problem in pathosystems where these antibiotics have been used for many years. Where the genetic basis for resistance has been examined, antibiotic resistance in plant pathogens has most often evolved through the acquisition of a resistance determinant via horizontal gene transfer. For example, the strAB streptomycin-resistance genes occur in Erwinia amylovora, Pseudomonas syringae, and Xanthomonas campestris, and these genes have presumably been acquired from nonpathogenic epiphytic bacteria colocated on plant hosts under antibiotic selection. We currently lack knowledge of the effect of the microbiome of commensal organisms on the potential of plant pathogens to evolve antibiotic resistance. Such knowledge is critical to the development of robust resistance management strategies to ensure the safe and effective continued use of antibiotics in the management of critically important diseases.
Collapse
Affiliation(s)
- George W Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida 33850, USA
| |
Collapse
|
40
|
The quest for a non-vector psyllid: Natural variation in acquisition and transmission of the huanglongbing pathogen 'Candidatus Liberibacter asiaticus' by Asian citrus psyllid isofemale lines. PLoS One 2018; 13:e0195804. [PMID: 29652934 PMCID: PMC5898736 DOI: 10.1371/journal.pone.0195804] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/29/2018] [Indexed: 01/24/2023] Open
Abstract
Genetic variability in insect vectors is valuable to study vector competence determinants and to select non-vector populations that may help reduce the spread of vector-borne pathogens. We collected and tested vector competency of 15 isofemale lines of Asian citrus psyllid, Diaphorina citri, vector of ‘Candidatus Liberibacter asiaticus’ (CLas). CLas is associated with huanglongbing (citrus greening), the most serious citrus disease worldwide. D. citri adults were collected from orange jasmine (Murraya paniculata) hedges in Florida, and individual pairs (females and males) were caged on healthy Murraya plants for egg laying. The progeny from each pair that tested CLas-negative by qPCR were maintained on Murraya plants and considered an isofemale line. Six acquisition tests on D. citri adults that were reared as nymphs on CLas-infected citrus, from various generations of each line, were conducted to assess their acquisition rates (percentage of qPCR-positive adults). Three lines with mean acquisition rates of 28 to 32%, were classified as ‘good’ acquirers and three other lines were classified as ‘poor’ acquirers, with only 5 to 8% acquisition rates. All lines were further tested for their ability to inoculate CLas by confining CLas-exposed psyllids for one week onto healthy citrus leaves (6–10 adults/leaf/week), and testing the leaves for CLas by qPCR. Mean inoculation rates were 19 to 28% for the three good acquirer lines and 0 to 3% for the three poor acquirer lines. Statistical analyses indicated positive correlations between CLas acquisition and inoculation rates, as well as between CLas titer in the psyllids and CLas acquisition or inoculation rates. Phenotypic and molecular characterization of one of the good and one of the poor acquirer lines revealed differences between them in color morphs and hemocyanin expression, but not the composition of bacterial endosymbionts. Understanding the genetic architecture of CLas transmission will enable the development of new tools for combating this devastating citrus disease.
Collapse
|
41
|
Szebenyi DM, Kriksunov I, Howe KJ, Ramsey JS, Hall DG, Heck ML, Krasnoff SB. Crystal structure of diaphorin methanol monosolvate isolated from Diaphorina citri Kuwayama, the insect vector of citrus greening disease. Acta Crystallogr E Crystallogr Commun 2018; 74:445-449. [PMID: 29765742 PMCID: PMC5946964 DOI: 10.1107/s2056989018002992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/20/2018] [Indexed: 11/10/2022]
Abstract
The title compound C22H39NO9·CH3OH [systematic name: (S)-N-((S)-{(2S,4R,6R)-6-[(S)-2,3-di-hydroxy-prop-yl]-4-hy-droxy-5,5-di-methyl-tetra-hydro-2H-pyran-2-yl}(hy-droxy)meth-yl)-2-hy-droxy-2-[(2R,5R,6R)-2-meth-oxy-5,6-dimeth-yl-4-methyl-ene-tetra-hydro-2H-pyran-2-yl]acetamide methanol monosolvate], was isolated from the Asian citrus psyllid, Diaphorina citri Kuwayama, and crystallizes in the space group P21. 'Candidatus Profftella armatura' a bacterial endosymbiont of D. citri, biosynthesizes diaphorin, which is a hybrid polyketide-nonribosomal peptide comprising two highly substituted tetra-hydro-pyran rings joined by an N-acyl aminal bridge [Nakabachi et al. (2013 ▸). Curr. Biol.23, 1478-1484]. The crystal structure of the title compound establishes the complete relative configuration of diaphorin, which agrees at all nine chiral centers with the structure of the methanol monosolvate of the di-p-bromo-benzoate derivative of pederin, a biogenically related compound whose crystal structure was reported previously [Furusaki et al. (1968 ▸). Tetra-hedron Lett.9, 6301-6304]. Thus, the absolute configuration of diaphorin is proposed by analogy to that of pederin.
Collapse
Affiliation(s)
- D. Marian Szebenyi
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853, USA
| | - Irina Kriksunov
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853, USA
| | - Kevin J. Howe
- USDA-ARS RW Holley Center for Agriculture and Health, Ithaca NY 14853, USA
| | - John S. Ramsey
- USDA-ARS RW Holley Center for Agriculture and Health, Ithaca NY 14853, USA
| | - David G. Hall
- U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| | - Michelle L. Heck
- USDA-ARS RW Holley Center for Agriculture and Health, Ithaca NY 14853, USA
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14853, USA
| | - Stuart B. Krasnoff
- USDA-ARS RW Holley Center for Agriculture and Health, Ithaca NY 14853, USA
| |
Collapse
|
42
|
Blaustein RA, Lorca GL, Teplitski M. Challenges for Managing Candidatus Liberibacter spp. (Huanglongbing Disease Pathogen): Current Control Measures and Future Directions. PHYTOPATHOLOGY 2018; 108:424-435. [PMID: 28990481 DOI: 10.1094/phyto-07-17-0260-rvw] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Huanglongbing (HLB; "citrus greening" disease) has caused significant damages to the global citrus industry as it has become well established in leading citrus-producing regions and continues to spread worldwide. Insecticidal control has been a critical component of HLB disease management, as there is a direct relationship between vector control and Candidatus Liberibacter spp. (i.e., the HLB pathogen) titer in HLB-infected citrus trees. In recent years, there have been substantial efforts to develop practical strategies for specifically managing Ca. Liberibacter spp.; however, a literature review on the outcomes of such attempts is still lacking. This work summarizes the greenhouse and field studies that have documented the effects and implications of chemical-based treatments (i.e., applications of broad-spectrum antibiotics, small molecule compounds) and nonchemical measures (i.e., applications of plant-beneficial compounds, applications of inorganic fertilizers, biological control, thermotherapy) for phytopathogen control. The ongoing challenges associated with mitigating Ca. Liberibacter spp. populations at the field-scale, such as the seasonality of the phytopathogen and associated HLB disease symptoms, limitations for therapeutics to contact the phytopathogen in planta, adverse impacts of broad-spectrum treatments on plant-beneficial microbiota, and potential implications on public and ecosystem health, are also discussed.
Collapse
Affiliation(s)
- Ryan A Blaustein
- First and third authors: Department of Soil and Water Sciences, Genetics Institute, University of Florida, Gainesville; and second author: Department of Microbiology and Cell Science, Genetics Institute, University of Florida, Gainesville
| | - Graciela L Lorca
- First and third authors: Department of Soil and Water Sciences, Genetics Institute, University of Florida, Gainesville; and second author: Department of Microbiology and Cell Science, Genetics Institute, University of Florida, Gainesville
| | - Max Teplitski
- First and third authors: Department of Soil and Water Sciences, Genetics Institute, University of Florida, Gainesville; and second author: Department of Microbiology and Cell Science, Genetics Institute, University of Florida, Gainesville
| |
Collapse
|
43
|
Huang M, Roose ML, Yu Q, Du D, Yu Y, Zhang Y, Deng Z, Stover E, Gmitter FG. Construction of High-Density Genetic Maps and Detection of QTLs Associated With Huanglongbing Tolerance in Citrus. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 30542355 DOI: 10.1101/330753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Huanglongbing (HLB), or citrus greening, is the most devastating disease in citrus worldwide. Commercial citrus varieties including sweet orange (Citrus sinensis) are highly susceptible to HLB, and trifoliate orange (Poncirus trifoliata, a close Citrus relative) is widely considered resistant or highly tolerant to HLB. In this study, an intergeneric F1 population of sweet orange and trifoliate orange was genotyped by Genotyping-by-Sequencing, and high-density SNP-based genetic maps were constructed separately for trifoliate orange and sweet orange. The two genetic maps exhibited high synteny and high coverage of the citrus genome. Progenies of the F1 population and their parents were planted in a replicated field trial, exposed to intense HLB pressure for 3 years, and then evaluated for susceptibility to HLB over 2 years. The F1 population exhibited a wide range in severity of HLB foliar symptom and canopy damage. Genome-wide QTL analysis based on the phenotypic data of foliar symptom and canopy damage in 2 years identified three clusters of repeatable QTLs in trifoliate orange linkage groups LG-t6, LG-t8 and LG-t9. Co-localization of QTLs for two traits was observed within all three regions. Additionally, one cluster of QTLs in sweet orange (linkage group LG-s7) was also detected. The majority of the identified QTLs each explained 18-30% of the phenotypic variation, indicating their major role in determining HLB responses. These results show, for the first time, a quantitative genetic nature yet the presence of major loci for the HLB tolerance in trifoliate orange. The results suggest that sweet orange also contains useful genetic factor(s) for improving HLB tolerance in commercial citrus varieties. Findings from this study should be very valuable and timely to researchers worldwide as they are hastily searching for genetic solutions to the devastating HLB crisis through breeding, genetic engineering, or genome editing.
Collapse
Affiliation(s)
- Ming Huang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Mikeal L Roose
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Qibin Yu
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Dongliang Du
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Yuan Yu
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Yi Zhang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Zhanao Deng
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
| | - Ed Stover
- United States Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Fort Pierce, FL, United States
| | - Frederick G Gmitter
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
44
|
Riera N, Handique U, Zhang Y, Dewdney MM, Wang N. Characterization of Antimicrobial-Producing Beneficial Bacteria Isolated from Huanglongbing Escape Citrus Trees. Front Microbiol 2017; 8:2415. [PMID: 29375487 PMCID: PMC5770638 DOI: 10.3389/fmicb.2017.02415] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/22/2017] [Indexed: 11/13/2022] Open
Abstract
The microbiome associated with crop plants has a strong impact on their health and productivity. Candidatus Liberibacter asiaticus (Las), the bacterial pathogen responsible for Huanglongbing (HLB) disease, lives inside the phloem of citrus plants including the root system. It has been suggested that Las negatively affects citrus microbiome. On the other hand, members of citrus microbiome also influence the interaction between Las and citrus. Here, we report the isolation and characterization of multiple putative beneficial bacteria from healthy citrus rhizosphere. Firstly, six bacterial strains showing antibacterial activity against two bacteria closely related to Las: Agrobacterium tumefaciens and Sinorhizobium meliloti were selected. Among them, Burkholderia metallica strain A53 and Burkholderia territorii strain A63 are within the β-proteobacteria class, whereas Pseudomonas granadensis strain 100 and Pseudomonas geniculata strain 95 are within the γ-proteobacteria class. Additionally, two gram-positive bacteria Rhodococcus jialingiae strain 108 and Bacillus pumilus strain 104 were also identified. Secondly, antimicrobial activity against three fungal pathogens: Alternaria alternata, Colletotrichum acutatum, Phyllosticta citricarpa, and two oomycetes: Phytophthora nicotianae and Phytophthora palmivora. Four bacterial strains Burkholderia territorii A63, Burkholderia metallica A53, Pseudomonas geniculata 95, and Bacillus pumilus 104 were shown to have antagonistic activity against the citrus root pathogen Phytophthora nicotianae based on dual culture antagonist assays and compartmentalized petri dish assays. The four selected bacteria were sequenced. Genes involved in phosphate solubilization, siderophore production and iron acquisition, volatile organic compound production, osmoprotection and osmotic tolerance, phytohormone production, antagonism, and nutrient competition were predicted and discussed related to the beneficial traits.
Collapse
Affiliation(s)
- Nadia Riera
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Utpal Handique
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Yunzeng Zhang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Megan M. Dewdney
- Citrus Research and Education Center, Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| |
Collapse
|