1
|
Patarroyo C, Dupas S, Restrepo S. A machine learning algorithm for the automatic classification of Phytophthora infestans genotypes into clonal lineages. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11603. [PMID: 39360191 PMCID: PMC11443441 DOI: 10.1002/aps3.11603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 10/04/2024]
Abstract
Premise The prompt categorization of Phytophthora infestans isolates into described clonal lineages is a key tool for the management of its associated disease, potato late blight. New isolates of this pathogen are currently classified by comparing their microsatellite genotypes with characterized clonal lineages, but an automated classification tool would greatly improve this process. Here, we developed a flexible machine learning-based classifier for P. infestans genotypes. Methods The performance of different machine learning algorithms in classifying P. infestans genotypes into its clonal lineages was preliminarily evaluated with decreasing amounts of training data. The four best algorithms were then evaluated using all collected genotypes. Results mlpML, cforest, nnet, and AdaBag performed best in the preliminary test, correctly classifying almost 100% of the genotypes. AdaBag performed significantly better than the others when tested using the complete data set (Tukey HSD P < 0.001). This algorithm was then implemented in a web application for the automated classification of P. infestans genotypes, which is freely available at https://github.com/cpatarroyo/genotypeclas. Discussion We developed a gradient boosting-based tool to automatically classify P. infestans genotypes into its clonal lineages. This could become a valuable resource for the prompt identification of clonal lineages spreading into new regions.
Collapse
Affiliation(s)
- Camilo Patarroyo
- Department of Biological SciencesUniversidad de los AndesBogotáColombia
- Université Paris‐Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et ÉcologieGif‐sur‐Yvette91198France
| | - Stéphane Dupas
- Université Paris‐Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et ÉcologieGif‐sur‐Yvette91198France
| | - Silvia Restrepo
- Department of Food and Chemical EngineeringUniversidad de los AndesBogotáColombia
| |
Collapse
|
2
|
Babarinde S, Burlakoti RR, Peters RD, Al-Mughrabi K, Novinscak A, Sapkota S, Prithiviraj B. Genetic structure and population diversity of Phytophthora infestans strains in Pacific western Canada. Appl Microbiol Biotechnol 2024; 108:237. [PMID: 38407622 PMCID: PMC10896882 DOI: 10.1007/s00253-024-13040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/07/2024] [Accepted: 01/28/2024] [Indexed: 02/27/2024]
Abstract
Late blight caused by Phytophthora infestans is an economically important disease of potato and tomato worldwide. In Canada, an increase in late blight incidence and severity coincided with changes in genetic composition of P. infestans. We monitored late blight incidence on tomato and potato in Pacific western and eastern Canada between 2019 and 2022, identified genotypes of P. infestans, and examined their population genetic diversity. We identified four major existing genotypes US11, US17, US8, and US23 as well as 25 new genotypes. The US11 genotype was dominant in Pacific western Canada, accounting for 59% of the total population. We discovered the US17 genotype for the first time in Canada. We revealed a higher incidence of late blight and quite diverse genotypes of P. infestans in Pacific western Canada than in eastern Canada. We found high genetic diversity of P. infestans population from Pacific western Canada, as evidenced by the high number of multilocus genotypes, high values of genetic diversity indices, and emergence of 25 new genotypes. Considering the number of disease incidence, the detection of diverse known genotypes, the emergence of novel genotypes, and the high number of isolates resistant to metalaxyl-m (95%) from Pacific western Canada, the region could play a role in establishing sexual recombination and diverse populations, which could ultimately pose challenges for late blight management. Therefore, continuous monitoring of P. infestans populations in Pacific western region and across Canada is warranted. KEY POINTS: • Genotypes of P. infestans in Pacific western were quite diverse than in eastern Canada. • We discovered US17 genotype for the first time in Canada and identified 26 novel genotypes. • Approximately 95% of P. infestans isolates were resistant to metalaxyl-m.
Collapse
Affiliation(s)
- Segun Babarinde
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, 6947 Hwy 7, Agassiz, BC, V0M 1A0, Canada
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Rishi R Burlakoti
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, 6947 Hwy 7, Agassiz, BC, V0M 1A0, Canada.
| | - Rick D Peters
- Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE, C1A 4N6, Canada
| | - Khalil Al-Mughrabi
- New Brunswick Department of Agriculture, Aquaculture and Fisheries, 39 Barker Lane, Wicklow, NB, E7L 3S4, Canada
| | - Amy Novinscak
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, 6947 Hwy 7, Agassiz, BC, V0M 1A0, Canada
| | - Sanjib Sapkota
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, 6947 Hwy 7, Agassiz, BC, V0M 1A0, Canada
| | - Balakrishnan Prithiviraj
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| |
Collapse
|
3
|
Martini F, Jijakli MH, Gontier E, Muchembled J, Fauconnier ML. Harnessing Plant's Arsenal: Essential Oils as Promising Tools for Sustainable Management of Potato Late Blight Disease Caused by Phytophthora infestans-A Comprehensive Review. Molecules 2023; 28:7302. [PMID: 37959721 PMCID: PMC10650712 DOI: 10.3390/molecules28217302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Potato late blight disease is caused by the oomycete Phytophthora infestans and is listed as one of the most severe phytopathologies on Earth. The current environmental issues require new methods of pest management. For that reason, plant secondary metabolites and, in particular, essential oils (EOs) have demonstrated promising potential as pesticide alternatives. This review presents the up-to-date work accomplished using EOs against P. infestans at various experimental scales, from in vitro to in vivo. Additionally, some cellular mechanisms of action on Phytophthora spp., especially towards cell membranes, are also presented for a better understanding of anti-oomycete activities. Finally, some challenges and constraints encountered for the development of EOs-based biopesticides are highlighted.
Collapse
Affiliation(s)
- Florian Martini
- Joint and Research Unit, 1158 BioEcoAgro Junia, 59000 Lille, France;
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium;
- Laboratory of Plant Biology and Innovation, BIOPI-UPJV, UMRT BioEcoAgro INRAE1158, UFR Sciences of University of Picardie Jules Verne, 33 rue Saint Leu, 80000 Amiens, France;
| | - M. Haïssam Jijakli
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium;
| | - Eric Gontier
- Laboratory of Plant Biology and Innovation, BIOPI-UPJV, UMRT BioEcoAgro INRAE1158, UFR Sciences of University of Picardie Jules Verne, 33 rue Saint Leu, 80000 Amiens, France;
| | - Jérôme Muchembled
- Joint and Research Unit, 1158 BioEcoAgro Junia, 59000 Lille, France;
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium;
| |
Collapse
|
4
|
Bubolz J, Sleboda P, Lehrman A, Hansson SO, Johan Lagerkvist C, Andersson B, Lenman M, Resjö S, Ghislain M, Zahid MA, Kieu NP, Andreasson E. Genetically modified (GM) late blight-resistant potato and consumer attitudes before and after a field visit. GM CROPS & FOOD 2022; 13:290-298. [PMID: 36263889 PMCID: PMC9586588 DOI: 10.1080/21645698.2022.2133396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Late blight, caused by Phytophthora infestans, is the most devastating disease in potato production. Here, we show full late blight resistance in a location with a genetically diverse pathogen population with the use of GM potato stacked with three resistance (R) genes over three seasons. In addition, using this field trials, we demonstrate that in-the-field intervention among consumers led to change for more favorable attitude generally toward GM crops.
Collapse
Affiliation(s)
- Jéssica Bubolz
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp Campus, Sweden
| | - Patrycja Sleboda
- Deparment of Economics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna Lehrman
- Department of crop prodction ecology, Swedish University of Agricultural Sciences, Uppsala, Swedan
| | - Sven-Ove Hansson
- Department of crop prodction ecology, Swedish University of Agricultural Sciences, Uppsala, Swedan
| | - Carl Johan Lagerkvist
- Deparment of Economics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Björn Andersson
- Department of forest mycology and plant pathology, Swedish University of Agricultural Sciences
| | - Marit Lenman
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp Campus, Sweden
| | - Svante Resjö
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp Campus, Sweden
| | | | - Muhammad Awais Zahid
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp Campus, Sweden
| | - Nam Phuong Kieu
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp Campus, Sweden,Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp Campus, Sweden,CONTACT Erik Andreasson Professor Resistance Biology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190,SE-234 22, Lomma, Sweden
| |
Collapse
|
5
|
Runno-Paurson E, Nassar H, Tähtjärv T, Eremeev V, Hansen M, Niinemets Ü. High Temporal Variability in Late Blight Pathogen Diversity, Virulence, and Fungicide Resistance in Potato Breeding Fields: Results from a Long-Term Monitoring Study. PLANTS 2022; 11:plants11182426. [PMID: 36145827 PMCID: PMC9502785 DOI: 10.3390/plants11182426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
Long-term site-specific studies describing changes in the phenotypic variability of Phytophthora infestans populations allow quantitative predictions of pathogen spread and possible outbreaks of epidemics, and provide key input for regional resistance breeding programs. Late blight samples were collected from potato (Solanum tuberosum) breeding fields in Estonia during a twelve-year study period between 2001 and 2014. In total, 207 isolates were assessed for mating type and 235 isolates for metalaxyl resistance and 251 isolates for virulence factors. The frequency of mating types strongly fluctuated across the years, whereas the later period of 2010–2014 was dominated by the A2 mating. Despite fluctuations, both mating types were recorded in the same fields in most years, indicating sustained sexual reproduction of P. infestans with oospore production. Metalaxyl-resistant and intermediately resistant strains dominated in the first years of study, but with the progression of the study, metalaxyl-sensitive isolates became dominant, reaching up to 88%. Racial diversity, characterized by normalized Shannon diversity index decreased in time, varying from 1.00 in 2003 to 0.43 in 2013. The frequency of several virulence factors changed in a time-dependent manner, with R2 increasing and R6, R8, and R9 decreasing in time. Potato cultivar resistance background did not influence the frequency of P. infestans mating type, response to metalaxyl, and racial diversity. However, the diversity index decreased in time among isolates collected from resistant and susceptible cultivars, and remained at a high level in moderately resistant cultivars. These data demonstrate major time-dependent changes in racial diversity, fungicide resistance, and virulence factors in P. infestans, consistent with alterations in the control strategies and popularity of potato cultivars with different resistance.
Collapse
Affiliation(s)
- Eve Runno-Paurson
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
- Correspondence:
| | - Helina Nassar
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| | - Terje Tähtjärv
- Estonian Crop Research Institute, J. Aamisepa 1, 48309 Jõgeva, Estonia
| | - Viacheslav Eremeev
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| | - Merili Hansen
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| |
Collapse
|
6
|
Abuley IK, Hansen JG. Characterization of the Level and Type of Resistance of Potato Varieties to Late Blight ( Phytophthora infestans). PHYTOPATHOLOGY 2022; 112:1917-1927. [PMID: 35357158 DOI: 10.1094/phyto-07-21-0309-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Understanding the level and type of resistance in potato varieties is relevant for integrating varietal resistance into the management of potato late blight. Accordingly, 54 potato varieties were tested for their level and type of resistance to late blight in 2019 and 2020 in Denmark. Spreader rows were artificially inoculated to ensure an even inoculum distribution in the trial. Disease severity was assessed once or twice per week. Cluster analysis (CA) was done based on the weighted mean absolute rate (WMAR), the relative area under the disease progress curve, the onset of disease (Xo), the severity of disease in the middle of the season, the time to reach 1% disease severity, the time to reach final disease severity, and the maximum disease severity. The resistance types were determined by comparing the tested varieties to Bintje (susceptible reference) for Xo and WMAR. The CA ranked the varieties as susceptible, moderately resistant, resistant, and very resistant based on their level of resistance. Except for a few varieties, the expressed resistance levels varied between the years. Several varieties that were susceptible in 2019 were moderately resistant in 2020. Also, the types of resistance that the varieties exhibited varied from year to year. In 2020, most varieties exhibited race-specific resistance, while in 2019 they mostly showed susceptible characteristics. The variation between years for the level and types of resistance of the varieties highlights the importance of regularly monitoring varietal resistance across time and space.
Collapse
Affiliation(s)
- I K Abuley
- Department of Agroecology, Aarhus University Flakkebjerg, Forsøgsvej 1, Slagelse 4200
| | - J G Hansen
- Department of Agroecology, Aarhus University Flakkebjerg, Forsøgsvej 1, Slagelse 4200
| |
Collapse
|