1
|
Ding C, Zhang Y, Chen C, Wang J, Qin M, Gu Y, Zhang S, Wang L, Luo Y. Hollow Mesoporous Silica Nanoparticles as a New Nanoscale Resistance Inducer for Fusarium Wilt Control: Size Effects and Mechanism of Action. Int J Mol Sci 2024; 25:4514. [PMID: 38674099 PMCID: PMC11050273 DOI: 10.3390/ijms25084514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
In agriculture, soil-borne fungal pathogens, especially Fusarium oxysporum strains, are posing a serious threat to efforts to achieve global food security. In the search for safer agrochemicals, silica nanoparticles (SiO2NPs) have recently been proposed as a new tool to alleviate pathogen damage including Fusarium wilt. Hollow mesoporous silica nanoparticles (HMSNs), a unique class of SiO2NPs, have been widely accepted as desirable carriers for pesticides. However, their roles in enhancing disease resistance in plants and the specific mechanism remain unknown. In this study, three sizes of HMSNs (19, 96, and 406 nm as HMSNs-19, HMSNs-96, and HMSNs-406, respectively) were synthesized and characterized to determine their effects on seed germination, seedling growth, and Fusarium oxysporum f. sp. phaseoli (FOP) suppression. The three HMSNs exhibited no side effects on cowpea seed germination and seedling growth at concentrations ranging from 100 to 1500 mg/L. The inhibitory effects of the three HMSNs on FOP mycelial growth were very weak, showing inhibition ratios of less than 20% even at 2000 mg/L. Foliar application of HMSNs, however, was demonstrated to reduce the FOP severity in cowpea roots in a size- and concentration-dependent manner. The three HMSNs at a low concentration of 100 mg/L, as well as HMSNs-19 at a high concentration of 1000 mg/L, were observed to have little effect on alleviating the disease incidence. HMSNs-406 were most effective at a concentration of 1000 mg/L, showing an up to 40.00% decline in the disease severity with significant growth-promoting effects on cowpea plants. Moreover, foliar application of HMSNs-406 (1000 mg/L) increased the salicylic acid (SA) content in cowpea roots by 4.3-fold, as well as the expression levels of SA marker genes of PR-1 (by 1.97-fold) and PR-5 (by 9.38-fold), and its receptor gene of NPR-1 (by 1.62-fold), as compared with the FOP infected control plants. Meanwhile, another resistance-related gene of PAL was also upregulated by 8.54-fold. Three defense-responsive enzymes of POD, PAL, and PPO were also involved in the HMSNs-enhanced disease resistance in cowpea roots, with varying degrees of reduction in activity. These results provide substantial evidence that HMSNs exert their Fusarium wilt suppression in cowpea plants by activating SA-dependent SAR (systemic acquired resistance) responses rather than directly suppressing FOP growth. Overall, for the first time, our results indicate a new role of HMSNs as a potent resistance inducer to serve as a low-cost, highly efficient, safe and sustainable alternative for plant disease protection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shujing Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (C.D.); (Y.Z.); (C.C.); (J.W.); (M.Q.); (Y.G.); (L.W.)
| | | | - Yanping Luo
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (C.D.); (Y.Z.); (C.C.); (J.W.); (M.Q.); (Y.G.); (L.W.)
| |
Collapse
|
2
|
Deng YJ, Chen Z, Chen YP, Wang JP, Xiao RF, Wang X, Liu B, Chen MC, He J. Lipopeptide C 17 Fengycin B Exhibits a Novel Antifungal Mechanism by Triggering Metacaspase-Dependent Apoptosis in Fusarium oxysporum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7943-7953. [PMID: 38529919 DOI: 10.1021/acs.jafc.4c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Fusarium wilt is a worldwide soil-borne fungal disease caused by Fusarium oxysporum that causes serious damage to agricultural products. Therefore, preventing and treating fusarium wilt is of great significance. In this study, we purified ten single lipopeptide fengycin components from Bacillus subtilis FAJT-4 and found that C17 fengycin B inhibited the growth of F. oxysporum FJAT-31362. We observed early apoptosis hallmarks, including reactive oxygen species accumulation, mitochondrial dysfunction, and phosphatidylserine externalization in C17 fengycin B-treated F. oxysporum cells. Further data showed that C17 fengycin B induces cell apoptosis in a metacaspase-dependent manner. Importantly, we found that the expression of autophagy-related genes in the TOR signaling pathway was significantly upregulated; simultaneously, the accumulation of acidic autophagy vacuoles in F. oxysporum cell indicated that the autophagy pathway was activated during apoptosis induced by C17 fengycin B. Therefore, this study provides new insights into the antifungal mechanism of fengycin.
Collapse
Affiliation(s)
- Ying-Jie Deng
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430000, China
| | - Zheng Chen
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Yan-Ping Chen
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Jie-Ping Wang
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Rong-Feng Xiao
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Xun Wang
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430000, China
| | - Bo Liu
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Mei-Chun Chen
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Jin He
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430000, China
| |
Collapse
|
3
|
Wang T, Ahmad S, Yang L, Yan X, Zhang Y, Zhang S, Wang L, Luo Y. Preparation, biocontrol activity and growth promotion of biofertilizer containing Streptomyces aureoverticillatus HN6. FRONTIERS IN PLANT SCIENCE 2022; 13:1090689. [PMID: 36589102 PMCID: PMC9798099 DOI: 10.3389/fpls.2022.1090689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Nowadays, due to the excessive dependence on chemical fertilizers and pesticides in agricultural production, many problems, such as soil hardening and soil-borne diseases, have become increasingly prominent, which seriously restrict the sustainable development of agriculture. The application of microbial fertilizer prepared by biocontrol microorganisms can not only improve soil structure and increase fertility but also have the function of controlling diseases. Streptomyces aureoverticillatus HN6 has obvious disease prevention and growth promotive effect, which can improve the rhizosphere fertility of plants and even regulate the rhizosphere microbial community of plants. Based on the comparison of frame composting and natural composting, we used the response surface method to optimize the preparation conditions of Streptomyces HN6 bacterial fertilizer. The results showed that natural composting not only produced higher composting temperatures and maintained long high temperature periods in accordance with local conditions, but was also more suitable for composting in the field according to local conditions. Therefore, the substrate's conductivity changed more, the ash accumulation increased, and the substrate decomposed more thoroughly. Thus, this composting method is highly recommended. Additionally, Streptomyces HN6 microbial fertilizer EC20 can reduce cowpea fusarium wilt and promote cowpea growth. The number of plant leaves, plant height and fresh weight, increased significantly in the microbial fertilizer EC20. Moreover, Streptomyces HN6 fertilizer EC20 could significantly induce soil invertase, urease and catalase activities. Our study highlights the potential use of Streptomyces HN6 as a biofertilizer to improve plant productivity and biological control of plant pathogenic fungi.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanping Luo
- *Correspondence: Yanping Luo, ; Lanying Wang,
| |
Collapse
|
4
|
Spolaor S, Rovetta M, Nobile MS, Cazzaniga P, Tisi R, Besozzi D. Modeling Calcium Signaling in S. cerevisiae Highlights the Role and Regulation of the Calmodulin-Calcineurin Pathway in Response to Hypotonic Shock. Front Mol Biosci 2022; 9:856030. [PMID: 35664674 PMCID: PMC9158465 DOI: 10.3389/fmolb.2022.856030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/04/2022] [Indexed: 01/17/2023] Open
Abstract
Calcium homeostasis and signaling processes in Saccharomyces cerevisiae, as well as in any eukaryotic organism, depend on various transporters and channels located on both the plasma and intracellular membranes. The activity of these proteins is regulated by a number of feedback mechanisms that act through the calmodulin-calcineurin pathway. When exposed to hypotonic shock (HTS), yeast cells respond with an increased cytosolic calcium transient, which seems to be conditioned by the opening of stretch-activated channels. To better understand the role of each channel and transporter involved in the generation and recovery of the calcium transient—and of their feedback regulations—we defined and analyzed a mathematical model of the calcium signaling response to HTS in yeast cells. The model was validated by comparing the simulation outcomes with calcium concentration variations before and during the HTS response, which were observed experimentally in both wild-type and mutant strains. Our results show that calcium normally enters the cell through the High Affinity Calcium influx System and mechanosensitive channels. The increase of the plasma membrane tension, caused by HTS, boosts the opening probability of mechanosensitive channels. This event causes a sudden calcium pulse that is rapidly dissipated by the activity of the vacuolar transporter Pmc1. According to model simulations, the role of another vacuolar transporter, Vcx1, is instead marginal, unless calcineurin is inhibited or removed. Our results also suggest that the mechanosensitive channels are subject to a calcium-dependent feedback inhibition, possibly involving calmodulin. Noteworthy, the model predictions are in accordance with literature results concerning some aspects of calcium homeostasis and signaling that were not specifically addressed within the model itself, suggesting that it actually depicts all the main cellular components and interactions that constitute the HTS calcium pathway, and thus can correctly reproduce the shaping of the calcium signature by calmodulin- and calcineurin-dependent complex regulations. The model predictions also allowed to provide an interpretation of different regulatory schemes involved in calcium handling in both wild-type and mutants yeast strains. The model could be easily extended to represent different calcium signals in other eukaryotic cells.
Collapse
Affiliation(s)
- Simone Spolaor
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
| | - Mattia Rovetta
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
| | - Marco S. Nobile
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Venice, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre—B4, Milan, Italy
- SYSBIO/ISBE.IT Centre of Systems Biology, Milan, Italy
| | - Paolo Cazzaniga
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre—B4, Milan, Italy
- SYSBIO/ISBE.IT Centre of Systems Biology, Milan, Italy
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| | - Renata Tisi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- *Correspondence: Renata Tisi, ; Daniela Besozzi,
| | - Daniela Besozzi
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Centre—B4, Milan, Italy
- SYSBIO/ISBE.IT Centre of Systems Biology, Milan, Italy
- *Correspondence: Renata Tisi, ; Daniela Besozzi,
| |
Collapse
|