1
|
Bierman JJ, Walker MC. Genome sequencing and mining expand the naturalproduct repertoire of Lysobacter. RESEARCH SQUARE 2024:rs.3.rs-4939843. [PMID: 39372940 PMCID: PMC11451712 DOI: 10.21203/rs.3.rs-4939843/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Compounds produced by living organisms serve as an important source of inspiration for the development of pharmaceuticals. A potential source of new natural products are bacteria from a genus with species that are known to produce bioactive natural products, but are relatively understudied. Lysobacter is a genus of bacteria that have attracted attention as possible biocontrol agents and are known to produce antibiotic natural products. To further explore the biosynthetic potential of Lysobacter, we sequenced the genomes of two species and performed genome mining studies on those and publicly available genomes. Results In this study we produced draft genome sequences for Lysobacter firmicutimachus and Lysobacter yananisis. We additionally examined 113 publicly available Lysobacter genomes and found that biosynthetic potential of individual species ranges broadly, with species having between 1 and nearly 20 biosynthetic gene clusters. Filtering for more complete genome assemblies and 9 or more biosynthetic gene clusters, we performed genome mining on 24 Lysobacter genomes. Within these genomes we identified 21 unique nonribosomal peptide, 11 unique hybrid polyketide/nonribosomal peptide, 4 unique polyketide, and 27 unique lanthipeptide biosynthetic gene clusters that produce uncharacterized compounds. Additionally, we tentatively identified the biosynthetic gene cluster in L. rmicutimachus responsible for producing plusbacins, which has not been previously identified. Conclusions This study demonstrated that Lysobacter have a large repertoire of natural products that remain to be characterized. Additionally, we found that some Lysobacter species are substantially more biosynthetically gifted than others and that strains of the same species of Lysobacter have similar biosynthetic capacities.
Collapse
|
2
|
Mukherjee P, Dutta J, Roy M, Thakur TK, Mitra A. Plant growth-promoting rhizobacterial secondary metabolites in augmenting heavy metal(loid) phytoremediation: An integrated green in situ ecorestorative technology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55851-55894. [PMID: 39251536 DOI: 10.1007/s11356-024-34706-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/17/2022] [Indexed: 09/11/2024]
Abstract
In recent times, increased geogenic and human-centric activities have caused significant heavy metal(loid) (HM) contamination of soil, adversely impacting environmental, plant, and human health. Phytoremediation is an evolving, cost-effective, environment-friendly, in situ technology that employs indigenous/exotic plant species as natural purifiers to remove toxic HM(s) from deteriorated ambient soil. Interestingly, the plant's rhizomicrobiome is pivotal in promoting overall plant nutrition, health, and phytoremediation. Certain secondary metabolites produced by plant growth-promoting rhizobacteria (PGPR) directly participate in HM bioremediation through chelation/mobilization/sequestration/bioadsorption/bioaccumulation, thus altering metal(loid) bioavailability for their uptake, accumulation, and translocation by plants. Moreover, the metallotolerance of the PGPR and the host plant is another critical factor for the successful phytoremediation of metal(loid)-polluted soil. Among the phytotechniques available for HM remediation, phytoextraction/phytoaccumulation (HM mobilization, uptake, and accumulation within the different plant tissues) and phytosequestration/phytostabilization (HM immobilization within the soil) have gained momentum in recent years. Natural metal(loid)-hyperaccumulating plants have the potential to assimilate increased levels of metal(loid)s, and several such species have already been identified as potential candidates for HM phytoremediation. Furthermore, the development of transgenic rhizobacterial and/or plant strains with enhanced environmental adaptability and metal(loid) uptake ability using genetic engineering might open new avenues in PGPR-assisted phytoremediation technologies. With the use of the Geographic Information System (GIS) for identifying metal(loid)-impacted lands and an appropriate combination of normal/transgenic (hyper)accumulator plant(s) and rhizobacterial inoculant(s), it is possible to develop efficient integrated phytobial remediation strategies in boosting the clean-up process over vast regions of HM-contaminated sites and eventually restore ecosystem health.
Collapse
Affiliation(s)
- Pritam Mukherjee
- Department of Oceanography, Techno India University, West Bengal, EM 4/1 Sector V, Salt Lake, Kolkata, 700091, West Bengal, India.
| | - Joystu Dutta
- Department of Environmental Science, University Teaching Department, Sant Gahira Guru University, Ambikapur, 497001, Chhattisgarh, India
| | - Madhumita Roy
- Department of Microbiology, Bose Institute, P-1/12, CIT Road, Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Tarun Kumar Thakur
- Department of Environmental Science, Indira Gandhi National Tribal University, Amarkantak, 484886, Madhya Pradesh, India
| | - Abhijit Mitra
- Department of Marine Science, University of Calcutta, 35 B. C. Road, Kolkata, 700019, West Bengal, India
| |
Collapse
|
3
|
Liu Y, Mao J, Xu Y, Ren J, Wang M, Wang S, Liu S, Wang R, Wang L, Wang L, Qiao Z, Cao X. Effects of Rehydration on Bacterial Diversity in the Rhizosphere of Broomcorn Millet ( Panicum miliaceum L.) after Drought Stress at the Flowering Stage. Microorganisms 2024; 12:1534. [PMID: 39203376 PMCID: PMC11356517 DOI: 10.3390/microorganisms12081534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
This study aimed to elucidate responses of the bacterial structure and diversity of the rhizosphere in flowering broomcorn millet after rehydration following drought stress. In this study, the broomcorn millet varieties 'Hequ red millet' (A1) and 'Yanshu No.10' (A2), known for their different drought tolerance levels, were selected as experimental materials. The plants were subjected to rehydration after drought stress at the flowering stage, while normal watering (A1CK and A2CK) served as the control. Soil samples were collected at 10 days (A11, A21, A1CK1, and A2CK1) and 20 days (A12, A22, A1CK2, and A2CK2) after rehydration. High-throughput sequencing technology was employed to investigate the variations in bacterial community structure, diversity, and metabolic functions in the rhizosphere of the broomcorn millet at different time points following rehydration. The findings indicated that the operational taxonomic units (OTUs) of bacteria in the rhizosphere of broomcorn millet were notably influenced by the duration of treatment, with a significant decrease in OTUs observed after 20 days of rehydration. However, bacterial Alpha diversity was not significantly impacted by rehydration following drought stress. The bacterial community in the rhizosphere of broomcorn millet was mainly composed of Actinobacteria and Proteobacteria. After rewatering for 10 to 20 days after drought stress, the abundance of Sphingomonas and Aeromicrobium in the rhizosphere soil of the two varieties of broomcorn millet decreased gradually. Compared with Yanshu No.10, the abundance of Pseudarthrobacter in the rhizosphere of Hequ red millet gradually increased. A Beta diversity analysis revealed variations in the dissimilarities of the bacterial community which corresponded to different rehydration durations. The relative abundance of bacterial metabolic functions in the rhizosphere of broomcorn millet was lower after 20 days of rehydration, compared to measurements after 10 days of rehydration. This observation might be attributed to the exchange of materials between broomcorn millet and microorganisms during the initial rehydration stage to repair the effects of drought, as well as to the enrichment of numerous microorganisms to sustain the stability of the community structure. This study helps to comprehend the alterations to the bacterial structure and diversity in the rhizosphere of broomcorn millet following drought stress and rehydration. It sheds light on the growth status of broomcorn millet and its rhizosphere microorganisms under real environmental influences, thereby enhancing research on the drought tolerance mechanisms of broomcorn millet.
Collapse
Affiliation(s)
- Yuhan Liu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; (Y.L.); (J.M.); (Y.X.); (J.R.); (M.W.); (S.W.); (S.L.)
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.W.); (L.W.)
- Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Taiyuan 030031, China
| | - Jiao Mao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; (Y.L.); (J.M.); (Y.X.); (J.R.); (M.W.); (S.W.); (S.L.)
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.W.); (L.W.)
- Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Taiyuan 030031, China
| | - Yuanmeng Xu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; (Y.L.); (J.M.); (Y.X.); (J.R.); (M.W.); (S.W.); (S.L.)
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.W.); (L.W.)
- Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Taiyuan 030031, China
| | - Jiangling Ren
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; (Y.L.); (J.M.); (Y.X.); (J.R.); (M.W.); (S.W.); (S.L.)
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.W.); (L.W.)
- Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Taiyuan 030031, China
| | - Mengyao Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; (Y.L.); (J.M.); (Y.X.); (J.R.); (M.W.); (S.W.); (S.L.)
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.W.); (L.W.)
- Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Taiyuan 030031, China
| | - Shu Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; (Y.L.); (J.M.); (Y.X.); (J.R.); (M.W.); (S.W.); (S.L.)
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.W.); (L.W.)
- Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Taiyuan 030031, China
| | - Sichen Liu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; (Y.L.); (J.M.); (Y.X.); (J.R.); (M.W.); (S.W.); (S.L.)
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.W.); (L.W.)
- Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Taiyuan 030031, China
| | - Ruiyun Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.W.); (L.W.)
- Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Taiyuan 030031, China
| | - Lun Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.W.); (L.W.)
- Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Taiyuan 030031, China
| | - Liwei Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Zhijun Qiao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; (Y.L.); (J.M.); (Y.X.); (J.R.); (M.W.); (S.W.); (S.L.)
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.W.); (L.W.)
- Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Taiyuan 030031, China
| | - Xiaoning Cao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; (Y.L.); (J.M.); (Y.X.); (J.R.); (M.W.); (S.W.); (S.L.)
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.W.); (L.W.)
- Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Taiyuan 030031, China
| |
Collapse
|
4
|
Jung Y, Chhetri G, Kim I, So Y, Park S, Woo H, Seo T. Lysobacter stagni sp. nov. and Limnohabitans lacus sp. nov., isolated from a pond. Int J Syst Evol Microbiol 2024; 74. [PMID: 38805031 DOI: 10.1099/ijsem.0.006400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Two Gram-negative bacteria, designated as strains LF1T and HM2-2T, were isolated from an artificial pond in a honey farm at Hoengseong-gun, Gangwon-do, Republic of Korea. The 16S rRNA sequence analysis results revealed that strain LF1T belonged to the genus Lysobacter and had the highest sequence similarity to Lysobacter niastensis GH41-7T (99.0 %), Lysobacter panacisoli CJ29T (98.9 %), and Lysobacter prati SYSU H10001T (98.2 %). Its growth occurred at 20-37 °C, at pH 5.0-12.0, and in the presence of 0-2% NaCl. The major fatty acids were iso-C15 : 0, iso-C16 : 0, and summed feature 9 (iso-C17 : 1 ω9c and/or C16 : 0 10-methyl). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. The DNA G+C content was 67.5 mol%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain LF1T and species of the genus Lysobacter were 79.1-84.4% and 22.0-27.5 %, respectively. The 16S rRNA sequence analysis results revealed that strain HM2-2T belonged to the genus Limnohabitans and was most closely related to Limnohabitans planktonicus II-D5T (98.9 %), Limnohabitans radicicola JUR4T (98.4%), and Limnohabitans parvus II-B4T (98.4 %). Its growth occurred at 10-35 °C, at pH 5.0-11.0, and in the presence of 0-2% NaCl. The major fatty acids were C16 : 0 and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c). The major polar lipid was phosphatidylethanolamine. The DNA G+C content was 59.9 mol%. The ANI and dDDH values between strain HM2-2T and its closely related strains were 75.1-83.0% and 20.4-26.4 %, respectively. Phenotypic, genomic, and phylogenetic data revealed that strains LF1T and HM2-2T represent novel species in the genera Lysobacter and Limnohabitans, for which the names Lysobacter stagni sp. nov. and Limnohabitans lacus sp. nov. are proposed, respectively. The type strain of Lys. stagni is LF1T (=KACC 23251T=TBRC 17648T), and that of Lim. lacus is HM2-2T (=KACC 23250T=TBRC 17649T).
Collapse
Affiliation(s)
- Yonghee Jung
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Geeta Chhetri
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Inhyup Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Yoonseop So
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Sunho Park
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Haejin Woo
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Taegun Seo
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| |
Collapse
|
5
|
Kudryakova I, Afoshin A, Tarlachkov S, Leontyevskaya E, Suzina N, (Vasilyeva) NL. Lysobacter gummosus 10.1.1, a Producer of Antimicrobial Agents. Microorganisms 2023; 11:2853. [PMID: 38137997 PMCID: PMC10745450 DOI: 10.3390/microorganisms11122853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
This work investigated the antimicrobial potential of Lysobacter gummosus 10.1.1. The culture fluid of the strain was found to contain antimicrobial agents active against Staphylococcus aureus, Micrococcus luteus, and Bacillus cereus. L. gummosus was first shown to be capable of forming outer membrane vesicles, which have a bacteriolytic effect against not only Gram-positive bacteria but also against the Gram-negative pathogen Pseudomonas aeruginosa. Transcriptomic analysis revealed the genes of almost all known bacteriolytic enzymes of Lysobacter, as well as the genes of enzymes with putative bacteriolytic activity. Also identified were genes involved in the biosynthesis of a number of secondary metabolites for which antimicrobial activities are known. This research is indicative of the relevance of isolating and studying L. gummosus antimicrobial agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Natalia Leontyevskaya (Vasilyeva)
- Laboratory of Microbial Cell Surface Biochemistry, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC PSCBR, Russian Academy of Sciences, 5 Prosp. Nauki, Pushchino 142290, Russia; (I.K.); (A.A.); (S.T.); (E.L.); (N.S.)
| |
Collapse
|
6
|
Tu CK, Wang PH, Lee MH. Endophytic Bacterium Lysobacter firmicutimachus Strain 5-7 Is a Promising Biocontrol Agent Against Rice Seedling Disease Caused by Pythium arrhenomanes in Nursery Trays. PLANT DISEASE 2023; 107:1075-1086. [PMID: 36096100 DOI: 10.1094/pdis-05-22-1195-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rice root rot disease caused by Pythium spp. is a highly destructive disease in rice nurseries. Biocontrol with endophytic bacteria was developed in this study to control rice seedling diseases. An in planta screening assay revealed that two bacterial endophytes, strains 5-7 and 6-4, displayed strong protection of rice seedlings from attack by Pythium arrhenomanes. Phylogenetic analysis indicated that strain 5-7 is Lysobacter firmicutimachus, while strain 6-4 belongs to the Kitasatospora genus. To quickly evaluate the disease severity of the root system damaged by Pythium spp. in nursery trays, a root surface area measurement assay was developed. By using this measurement, the control efficacy in nursery trays was evaluated, and L. firmicutimachus 5-7 showed promising biocontrol activity against Pythium disease. In a field trial, the two endophytes exhibited significant disease control efficacy on rice brown spot disease caused by Bipolaris oryzae naturally occurring in a commercial nursery field. The two endophytes exhibited multiple enzymatic activities and broad-spectrum antagonistic activities against multiple rice pathogens. The two endophytes colonized the root surface and inside of the root. L. firmicutimachus 5-7 primarily colonized the intercellular space and aerenchyma. Antibiosis is the major mechanism used by strain 5-7 to cause Bipolaris hyphal swelling and inhibit Pythium zoospore germination and sporangium formation, while a hyperparasitism-like phenomenon was found in the interaction of strain 6-4 with Pythium and Bipolaris hyphae. In conclusion, we report the promising biocontrol agent L. firmicutimachus 5-7 and the potential biocontrol agent Kitasatospora sp. 6-4 for disease control of rice seedlings in commercial nursery trays and their possible mechanisms of action.
Collapse
Affiliation(s)
- Chi-Kuan Tu
- Department of Plant Pathology and Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40277, Taiwan
| | - Pei-Han Wang
- Department of Plant Pathology and Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40277, Taiwan
| | - Miin-Huey Lee
- Department of Plant Pathology and Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40277, Taiwan
| |
Collapse
|
7
|
Drenker C, El Mazouar D, Bücker G, Weißhaupt S, Wienke E, Koch E, Kunz S, Reineke A, Rondot Y, Linkies A. Characterization of a Disease-Suppressive Isolate of Lysobacter enzymogenes with Broad Antagonistic Activity against Bacterial, Oomycetal and Fungal Pathogens in Different Crops. PLANTS (BASEL, SWITZERLAND) 2023; 12:682. [PMID: 36771766 PMCID: PMC9920595 DOI: 10.3390/plants12030682] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Although synthetic pesticides play a major role in plant protection, their application needs to be reduced because of their negative impact on the environment. This applies also to copper preparations, which are used in organic farming. For this reason, alternatives with less impact on the environment are urgently needed. In this context, we evaluated eight isolates of the genus Lysobacter (mainly Lysobacter enzymogenes) for their activity against plant pathogens. In vitro, the investigated Lysobacter isolates showed broad antagonistic activity against several phytopathogenic fungi, oomycetes and bacteria. Enzyme assays revealed diverse activities for the tested isolates. The most promising L. enzymogenes isolate (LEC) was used for further detailed analyses of its efficacy and effective working concentrations. The experiments included in vitro spore and sporangia germination tests and leaf disc assays as well as ad planta growth chamber trials against Alternaria solani and Phytophthora infestans on tomato plants, Pseudoperonospora cubensis on cucumbers and Venturia inaequalis on young potted apple trees. When applied on leaves, dilutions of a culture suspension of LEC had a concentration-dependent, protective effect against the tested pathogens. In all pathosystems tested, the effective concentrations were in the range of 2.5-5% and similarly efficacious to common plant protection agents containing copper hydroxide, wettable sulphur or fenhexamid. Thus, the isolate of L. enzymogenes identified in this study exhibits a broad activity against common plant pathogens and is therefore a promising candidate for the development of a microbial biocontrol agent.
Collapse
Affiliation(s)
- Christian Drenker
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biological Control, 69221 Dossenheim, Germany
| | - Doris El Mazouar
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biological Control, 69221 Dossenheim, Germany
| | - Gerrit Bücker
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biological Control, 69221 Dossenheim, Germany
- Department of Crop Protection, Hochschule Geisenheim University, 65366 Geisenheim, Germany
| | | | | | - Eckhard Koch
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biological Control, 69221 Dossenheim, Germany
| | | | - Annette Reineke
- Department of Crop Protection, Hochschule Geisenheim University, 65366 Geisenheim, Germany
| | - Yvonne Rondot
- Department of Crop Protection, Hochschule Geisenheim University, 65366 Geisenheim, Germany
| | - Ada Linkies
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biological Control, 69221 Dossenheim, Germany
| |
Collapse
|
8
|
Wolfgang A, Temme N, Tilcher R, Berg G. Understanding the sugar beet holobiont for sustainable agriculture. Front Microbiol 2023; 14:1151052. [PMID: 37138624 PMCID: PMC10149816 DOI: 10.3389/fmicb.2023.1151052] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
The importance of crop-associated microbiomes for the health and field performance of plants has been demonstrated in the last decades. Sugar beet is the most important source of sucrose in temperate climates, and-as a root crop-yield heavily depends on genetics as well as on the soil and rhizosphere microbiomes. Bacteria, fungi, and archaea are found in all organs and life stages of the plant, and research on sugar beet microbiomes contributed to our understanding of the plant microbiome in general, especially of microbiome-based control strategies against phytopathogens. Attempts to make sugar beet cultivation more sustainable are increasing, raising the interest in biocontrol of plant pathogens and pests, biofertilization and -stimulation as well as microbiome-assisted breeding. This review first summarizes already achieved results on sugar beet-associated microbiomes and their unique traits, correlating to their physical, chemical, and biological peculiarities. Temporal and spatial microbiome dynamics during sugar beet ontogenesis are discussed, emphasizing the rhizosphere formation and highlighting knowledge gaps. Secondly, potential or already tested biocontrol agents and application strategies are discussed, providing an overview of how microbiome-based sugar beet farming could be performed in the future. Thus, this review is intended as a reference and baseline for further sugar beet-microbiome research, aiming to promote investigations in rhizosphere modulation-based biocontrol options.
Collapse
Affiliation(s)
- Adrian Wolfgang
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Nora Temme
- KWS SAAT SE & Co. KGaA, Einbeck, Germany
| | | | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Microbiome Biotechnology Department, Leibniz-Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- *Correspondence: Gabriele Berg
| |
Collapse
|
9
|
Xu S, Zhang Z, Xie X, Shi Y, Chai A, Fan T, Li B, Li L. Comparative genomics provides insights into the potential biocontrol mechanism of two Lysobacter enzymogenes strains with distinct antagonistic activities. Front Microbiol 2022; 13:966986. [PMID: 36033849 PMCID: PMC9410377 DOI: 10.3389/fmicb.2022.966986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Lysobacter enzymogenes has been applied as an abundant beneficial microorganism to control plant disease; however, most L. enzymogenes strains have been mainly reported to control fungal diseases, not bacterial diseases. In this study, two L. enzymogenes strains were characterized, of which CX03 displayed a broad spectrum of antagonistic activities toward multiple bacteria, while CX06 exhibited a broad spectrum of antagonistic activities toward diverse fungi and oomycete, and the whole genomes of the two strains were sequenced and compared. The genome annotation showed that the CX03 genome comprised a 5,947,018 bp circular chromosome, while strain CX06 comprised a circular 6,206,196 bp chromosome. Phylogenetic analysis revealed that CX03 had a closer genetic relationship with L. enzymogenes ATCC29487T and M497-1, while CX06 was highly similar to L. enzymogenes C3. Functional gene annotation analyses of the two L. enzymogenes strains showed that many genes or gene clusters associated with the biosynthesis of different secondary metabolites were found in strains CX03 and CX06, which may be responsible for the different antagonistic activities against diverse plant pathogens. Moreover, comparative genomic analysis revealed the difference in bacterial secretory systems between L. enzymogenes strains CX03 and CX06. In addition, numerous conserved genes related to siderophore biosynthesis, quorum sensing, two-component systems, flagellar biosynthesis and chemotaxis were also identified in the genomes of strains CX03 and CX06. Most reported L. enzymogenes strains were proven mainly to suppress fungi, while CX03 exhibited direct inhibitory activities toward plant bacterial pathogens and showed an obvious role in managing bacterial disease. This study provides a novel understanding of the biocontrol mechanisms of L. enzymogenes, and reveals great potential for its application in plant disease control.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Lysobacter chinensis sp. nov., a cellulose-degrading strain isolated from cow dung compost. Antonie Van Leeuwenhoek 2022; 115:1031-1040. [PMID: 35699855 DOI: 10.1007/s10482-022-01755-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022]
Abstract
A novel bacterial strain, TLK-CK17T, was isolated from cow dung compost sample. The strain was Gram-staining negative, non-gliding rods, aerobic, and displayed growth at 15-40 °C (optimally, 35 °C), with 0-5.0% (w/v) NaCl (optimally, 0.5) and at pH 6.5-8.5 (optimally, 7.0-7.5). The assembled genome of strain TLK-CK17T has a total length of 4.3 Mb with a G + C content of 68.2%. According to the genome analysis, strain TLK-CK17T encodes quite a few glycoside hydrolases that may play a role in the degradation of accumulated plant biomass in compost. On the basis 16S rRNA gene sequence analysis, strain TLK-CK17T showed the highest sequence similarity (98.9%) with L. penaei GDMCC 1.1817 T, followed by L. maris KCTC 42381 T (98.3%). Cells contained iso-C16:0, iso-C15:0, and summed feature 9 (comprising C17:1 ω9c and/or 10-methyl C16:0), as its major cellular fatty acids (> 10.0%) and ubiquinone-8 as the exclusively respiratory quinone. Diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol prevailed among phospholipids. Based on the phenotypic, genomic and phylogenetic data, strain TLK-CK17T represents a novel species of the genus Lysobacter, for which the name Lysobacter chinensis sp. nov. is proposed, and the type strain is TLK-CK17T (= CCTCC AB2021257T = KCTC 92122 T).
Collapse
|
11
|
Zhou Y, Wang H, Xu S, Liu K, Qi H, Wang M, Chen X, Berg G, Ma Z, Cernava T, Chen Y. Bacterial-fungal interactions under agricultural settings: from physical to chemical interactions. STRESS BIOLOGY 2022; 2:22. [PMID: 37676347 PMCID: PMC10442017 DOI: 10.1007/s44154-022-00046-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/17/2022] [Indexed: 09/08/2023]
Abstract
Bacteria and fungi are dominant members of environmental microbiomes. Various bacterial-fungal interactions (BFIs) and their mutual regulation are important factors for ecosystem functioning and health. Such interactions can be highly dynamic, and often require spatiotemporally resolved assessments to understand the interplay which ranges from antagonism to mutualism. Many of these interactions are still poorly understood, especially in terms of the underlying chemical and molecular interplay, which is crucial for inter-kingdom communication and interference. BFIs are highly relevant under agricultural settings; they can be determinative for crop health. Advancing our knowledge related to mechanisms underpinning the interactions between bacteria and fungi will provide an extended basis for biological control of pests and pathogens in agriculture. Moreover, it will facilitate a better understanding of complex microbial community networks that commonly occur in nature. This will allow us to determine factors that are crucial for community assembly under different environmental conditions and pave the way for constructing synthetic communities for various biotechnological applications. Here, we summarize the current advances in the field of BFIs with an emphasis on agriculture.
Collapse
Affiliation(s)
- Yaqi Zhou
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Hongkai Wang
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Sunde Xu
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Kai Liu
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Hao Qi
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Mengcen Wang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Xiaoyulong Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, 8010, Graz, Austria
- Leibniz-Institute for Agricultural Engineering and Bioeconomy, Potsdam, Germany
- University of Potsdam, Potsdam, Germany
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, 8010, Graz, Austria.
| | - Yun Chen
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Cui J, Zhu R, Wang X, Xu X, Ai C, He P, Liang G, Zhou W, Zhu P. Effect of high soil C/N ratio and nitrogen limitation caused by the long-term combined organic-inorganic fertilization on the soil microbial community structure and its dominated SOC decomposition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114155. [PMID: 34861507 DOI: 10.1016/j.jenvman.2021.114155] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/20/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
The application of organic fertilizers, such as straw and manure, is an efficient approach to maintain soil productivity. However, the effect of these organic fertilizers on soil microbial nutrient balance has not yet been established. In this study, the effects of the long-term combined organic-inorganic fertilization on microbial community were investigated by conducting a 30-year-long field test. Overall, the following five fertilizer groups were employed: inorganic NP fertilizer (NP), inorganic NK fertilizer (NK), inorganic NPK fertilizer (NPK), NPK + manure (MNPK), and NPK + straw (SNPK). The results indicated that the mean natural logarithm of the soil C:N:P acquisition enzyme ratio was 1.04:1.11:1.00 under organic-inorganic treatments, which showed a deviation from its overall mean ratio of 1:1:1. This indicates that microbial resources do not have a balance. Vector analysis (vector angle <45°) and threshold elemental ratio analysis (RC:N-TERC:N > 0) further demonstrated that the microbial metabolism was limited by Nitrogen (N) under SNPK and MNPK treatments. N limitation further influenced soil microbial community structure and its dominated SOC decomposition. Specifically, Microbial communities transformed into a more oligotrophic-dominant condition (fungal, Acidobacteria, Chloroflexi) from copiotrophic-dominant (Proteobacteria, Actinobacteria) condition with increasing N limitation. Lysobacter genus and Blastocatellaceae family, in the bacterial communities along with the Mortierella elongata species in fungal communities, were markedly associated with the N limitation, which could be the critical biomarker that represented N limitation. Both correlation analysis and partial least squares path modeling showed significant positive effects of N limitation on the ratio of bacterial functional genes (Cellulase/Amylase), involved in recalcitrant SOC degradation.
Collapse
Affiliation(s)
- Jiwen Cui
- Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Key Lab of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, 100081, PR China
| | - Ruili Zhu
- Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Key Lab of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, 100081, PR China
| | - Xiya Wang
- Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Key Lab of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, 100081, PR China
| | - Xinpeng Xu
- Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Key Lab of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, 100081, PR China
| | - Chao Ai
- Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Key Lab of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, 100081, PR China
| | - Ping He
- Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Key Lab of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, 100081, PR China
| | - Guoqing Liang
- Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Key Lab of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, 100081, PR China
| | - Wei Zhou
- Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Key Lab of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, 100081, PR China.
| | - Ping Zhu
- Jilin Academy of Agricultural Sciences, Gongzhuling, 130124, PR China.
| |
Collapse
|
13
|
Shen X, Wang B, Yang N, Zhang L, Shen D, Wu H, Dong Y, Niu B, Chou SH, Puopolo G, Fan J, Qian G. Lysobacter enzymogenes antagonizes soilborne bacteria using the type IV secretion system. Environ Microbiol 2021; 23:4673-4688. [PMID: 34227200 DOI: 10.1111/1462-2920.15662] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/03/2021] [Indexed: 12/23/2022]
Abstract
Soil microbiome comprises numerous microbial species that continuously interact with each other. Among the modes of diverse interactions, cell-cell killing may play a key role in shaping the microbiome composition. Bacteria deploy various secretion systems to fend off other microorganisms and Type IV Secretion System (T4SS) in pathogenic bacteria was shown to function as a contact-dependent, inter-bacterial killing system only recently. The present study investigated the role played by T4SS in the killing behaviour of the soilborne biocontrol bacterium Lysobacter enzymogenes OH11. Results showed that L. enzymogenes OH11 genome encompasses genes encoding all the components of T4SS and effectors potentially involved in inter-bacterial killing system. Generation of knock-out mutants revealed that L. enzymogenes OH11 uses T4SS as the main contact-dependent weapon against other soilborne bacteria. The T4SS-mediated killing behaviour of L. enzymogenes OH11 decreased the antibacterial and antifungal activity of two Pseudomonas spp. but at the same time, protected carrot from infection by Pectobacterium carotovorum. Overall, this study showed for the first time the involvement of T4SS in the killing behaviour of L. enzymogenes and its impact on the multiple interactions occurring in the soil microbiome.
Collapse
Affiliation(s)
- Xi Shen
- College of Plant Protection (Laboratory of Plant Immunity; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, China
| | - Bingxin Wang
- College of Plant Protection (Laboratory of Plant Immunity; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, China
| | - Nianda Yang
- College of Plant Protection (Laboratory of Plant Immunity; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, China
| | - Lulu Zhang
- College of Plant Protection (Laboratory of Plant Immunity; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, China
| | - Danyu Shen
- College of Plant Protection (Laboratory of Plant Immunity; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, China
| | - Huijun Wu
- College of Plant Protection (Laboratory of Plant Immunity; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Dong
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Ben Niu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Shan-Ho Chou
- Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Gerardo Puopolo
- Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all'Adige, 38098, Italy.,Center Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, San Michele all'Adige, 38098, Italy
| | - Jiaqin Fan
- College of Plant Protection (Laboratory of Plant Immunity; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, China
| | - Guoliang Qian
- College of Plant Protection (Laboratory of Plant Immunity; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
14
|
Becarelli S, Chicca I, La China S, Siracusa G, Bardi A, Gullo M, Petroni G, Levin DB, Di Gregorio S. A New Ciboria sp. for Soil Mycoremediation and the Bacterial Contribution to the Depletion of Total Petroleum Hydrocarbons. Front Microbiol 2021; 12:647373. [PMID: 34177829 PMCID: PMC8221241 DOI: 10.3389/fmicb.2021.647373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/26/2021] [Indexed: 11/24/2022] Open
Abstract
A Ciboria sp. strain (Phylum Ascomycota) was isolated from hydrocarbon-polluted soil of an abandoned oil refinery in Italy. The strain was able to utilize diesel oil as a sole carbon source for growth. Laboratory-scale experiments were designed to evaluate the use of this fungal strain for treatment of the polluted soil. The concentration of total petroleum hydrocarbons (TPH) in the soil was 8,538 mg/kg. Mesocosms containing the contaminated soil were inoculated with the fungal strain at 1 or 7%, on a fresh weight base ratio. After 90 days of incubation, the depletion of TPH contamination was of 78% with the 1% inoculant, and 99% with the 7% inoculant. 16S rDNA and ITS metabarcoding of the bacterial and fungal communities was performed in order to evaluate the potential synergism between fungi and bacteria in the bioremediation process. The functional metagenomic prediction indicated Arthrobacter, Dietzia, Brachybacerium, Brevibacterium, Gordonia, Leucobacter, Lysobacter, and Agrobacterium spp. as generalist saprophytes, essential for the onset of hydrocarbonoclastic specialist bacterial species, identified as Streptomyces, Nocardoides, Pseudonocardia, Solirubrobacter, Parvibaculum, Rhodanobacter, Luteiomonas, Planomicrobium, and Bacillus spp., involved in the TPH depletion. The fungal metabolism accelerated the onset of specialist over generalist bacteria. The capacity of the Ciboria sp. to deplete TPH in the soil in treatment was also ascertained.
Collapse
Affiliation(s)
- Simone Becarelli
- Department of Biology, University of Pisa, Pisa, Italy.,BD Biodigressioni, Pisa, Italy
| | - Ilaria Chicca
- Department of Biology, University of Pisa, Pisa, Italy.,Department of Biosystem Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Salvatore La China
- Department of Life Sciences, University of Modena and Reggio-Emilia, Reggio Emilia, Italy
| | | | - Alessandra Bardi
- Department of Civil and Environmental Engineering, University of Florence, Florence, Italy
| | - Maria Gullo
- Department of Life Sciences, University of Modena and Reggio-Emilia, Reggio Emilia, Italy
| | | | - David Bernard Levin
- BD Biodigressioni, Pisa, Italy.,Department of Biosystem Engineering, University of Manitoba, Winnipeg, MB, Canada
| | | |
Collapse
|
15
|
Bacterial Endophytes: The Hidden Actor in Plant Immune Responses against Biotic Stress. PLANTS 2021; 10:plants10051012. [PMID: 34069509 PMCID: PMC8161118 DOI: 10.3390/plants10051012] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Bacterial endophytes constitute an essential part of the plant microbiome and are described to promote plant health by different mechanisms. The close interaction with the host leads to important changes in the physiology of the plant. Although beneficial bacteria use the same entrance strategies as bacterial pathogens to colonize and enter the inner plant tissues, the host develops strategies to select and allow the entrance to specific genera of bacteria. In addition, endophytes may modify their own genome to adapt or avoid the defense machinery of the host. The present review gives an overview about bacterial endophytes inhabiting the phytosphere, their diversity, and the interaction with the host. Direct and indirect defenses promoted by the plant-endophyte symbiont exert an important role in controlling plant defenses against different stresses, and here, more specifically, is discussed the role against biotic stress. Defenses that should be considered are the emission of volatiles or antibiotic compounds, but also the induction of basal defenses and boosting plant immunity by priming defenses. The primed defenses may encompass pathogenesis-related protein genes (PR family), antioxidant enzymes, or changes in the secondary metabolism.
Collapse
|
16
|
Kang BR, Song YS, Jung WJ. Differential expression of bio-active metabolites produced by chitosan polymers-based Bacillus amyloliquefaciens fermentation. Carbohydr Polym 2021; 260:117799. [PMID: 33712147 DOI: 10.1016/j.carbpol.2021.117799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 11/29/2022]
Abstract
Bacillus amyloliquefaciens strain PPL shows a potential for the control of phytopathogenic fungi. In the present study, upon growing the strain PPL on various forms of chitosan (0.5 % powder, 0.1 % soluble, and 0.15 % colloidal) as the carbon source, the antifungal activity on tomato Fusarium wilt correlated with the activity of chitosanase and β-1,3-glucanase. The colloidal substrate-based strain PPL fermentation displayed the highest degree of spore germination inhibition (79.5 %) and biocontrol efficiency (76.0 %) in tomato by increased biofilm formation. The colloidal culture upregulated the expression of chitosanase gene (5.9-fold), and the powder attributed to the expression of cyclic lipopeptides-genes (2.5-5.7 fold). Moreover, the three chitosan cultures induced the morphological changes of Fusarium oxysporum. These results suggest that the choice of growth substrate synergistically affects the production of secondary metabolites by PPL strain, and consequently its antifungal activity.
Collapse
Affiliation(s)
- Beom Ryong Kang
- Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong-Su Song
- Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Woo-Jin Jung
- Department of Agricultural Chemistry, Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
17
|
Vandana UK, Rajkumari J, Singha LP, Satish L, Alavilli H, Sudheer PD, Chauhan S, Ratnala R, Satturu V, Mazumder PB, Pandey P. The Endophytic Microbiome as a Hotspot of Synergistic Interactions, with Prospects of Plant Growth Promotion. BIOLOGY 2021; 10:101. [PMID: 33535706 PMCID: PMC7912845 DOI: 10.3390/biology10020101] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022]
Abstract
The plant root is the primary site of interaction between plants and associated microorganisms and constitutes the main components of plant microbiomes that impact crop production. The endophytic bacteria in the root zone have an important role in plant growth promotion. Diverse microbial communities inhabit plant root tissues, and they directly or indirectly promote plant growth by inhibiting the growth of plant pathogens, producing various secondary metabolites. Mechanisms of plant growth promotion and response of root endophytic microorganisms for their survival and colonization in the host plants are the result of complex plant-microbe interactions. Endophytic microorganisms also assist the host to sustain different biotic and abiotic stresses. Better insights are emerging for the endophyte, such as host plant interactions due to advancements in 'omic' technologies, which facilitate the exploration of genes that are responsible for plant tissue colonization. Consequently, this is informative to envisage putative functions and metabolic processes crucial for endophytic adaptations. Detection of cell signaling molecules between host plants and identification of compounds synthesized by root endophytes are effective means for their utilization in the agriculture sector as biofertilizers. In addition, it is interesting that the endophytic microorganism colonization impacts the relative abundance of indigenous microbial communities and suppresses the deleterious microorganisms in plant tissues. Natural products released by endophytes act as biocontrol agents and inhibit pathogen growth. The symbiosis of endophytic bacteria and arbuscular mycorrhizal fungi (AMF) affects plant symbiotic signaling pathways and root colonization patterns and phytohormone synthesis. In this review, the potential of the root endophytic community, colonization, and role in the improvement of plant growth has been explained in the light of intricate plant-microbe interactions.
Collapse
Affiliation(s)
- Udaya Kumar Vandana
- Department of Biotechnology, Assam University Silchar, Assam 788011, India; (U.K.V.); (P.B.M.)
| | - Jina Rajkumari
- Department of Microbiology, Assam University Silchar, Assam 788011, India; (J.R.); (L.P.S.)
| | - L. Paikhomba Singha
- Department of Microbiology, Assam University Silchar, Assam 788011, India; (J.R.); (L.P.S.)
| | - Lakkakula Satish
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Hemasundar Alavilli
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea Molecular Medicine and Nutrition Research Institute, Korea University, Seoul 02841, Korea;
| | - Pamidimarri D.V.N. Sudheer
- Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur 493225, India; (P.D.V.N.S.); (S.C.)
| | - Sushma Chauhan
- Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur 493225, India; (P.D.V.N.S.); (S.C.)
| | - Rambabu Ratnala
- TATA Institute for Genetics and Society, Bangalore 560065, India;
| | - Vanisri Satturu
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad 500030, India;
| | - Pranab Behari Mazumder
- Department of Biotechnology, Assam University Silchar, Assam 788011, India; (U.K.V.); (P.B.M.)
| | - Piyush Pandey
- Department of Microbiology, Assam University Silchar, Assam 788011, India; (J.R.); (L.P.S.)
| |
Collapse
|
18
|
Zhao Y, Jiang T, Xu H, Xu G, Qian G, Liu F. Characterization of Lysobacter spp. strains and their potential use as biocontrol agents against pear anthracnose. Microbiol Res 2020; 242:126624. [PMID: 33189074 DOI: 10.1016/j.micres.2020.126624] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
Colletotrichum fructicola, is an important fungal pathogen that has been reported to cause pear (Pyrus) anthracnose in China, resulting in substantial economic losses due to severe defoliation and decreased fruit quality and yield. In the search for novel strategies to control pear anthracnose, Lysobacter strains have drawn a great deal of attention due to their high-level production of extracellular enzymes and bioactive metabolites. In the present study, we compared four Lysobacter strains including Lysobacter enzymogenes OH11, Lysobacter antibioticus OH13, Lysobacter gummosus OH17 and Lysobacter brunescens OH23 with respect to their characteristics and activity against pear anthracnose caused by C. fructicola. The results showed that the evaluated Lysobacter species presented various colony morphologies when cultured on different media and were proficient in producing protease, chitinase, cellulase and glucanase, with L. enzymogenes OH11 showing typical twitching motility. L. enzymogenes OH11 and L. gummosus OH17 showed potent activity against the tested fungi and oomycetes. L. gummosus OH17 produced HSAF (heat-stable antifungal factor) which was demonstrated to be a major antifungal factor in L. enzymogenes OH11 and C3. Furthermore, L. antibioticus OH13 and L. brunescens OH23 exhibited strong antibacterial activity, especially against Xanthomonas species. Cultures of L. enzymogenes OH11 protected pear against anthracnose caused by C. fructicola, and the in vivo results indicated that treatment with an L. enzymogenes OH11 culture could decrease the diameter of lesions in pears by 35 % and reduce the severity of rot symptoms compared to that observed in the control. In the present study, we systemically compared four Lysobacter strains and demonstrated that they have strong antagonistic activity against a range of pathogens, demonstrating their promise in the development of biological control agents.
Collapse
Affiliation(s)
- Yangyang Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, PR China
| | - Tianping Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, PR China; College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Huiyong Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, PR China
| | - Gaoge Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, PR China
| | - Guoliang Qian
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, PR China; Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
19
|
Chen DM, Yang HJ, Huang JG, Yuan L. Lysobacter enzymogenes LE16 autolysates have potential as biocontrol agents-Lysobacter sp. autolysates as biofungicide. J Appl Microbiol 2020; 129:1684-1692. [PMID: 32588501 DOI: 10.1111/jam.14752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 01/06/2023]
Abstract
AIMS Biological techniques can manage plant diseases safely and in environmentally friendly ways, but their efficacy needs improvement. It is of the utmost importance to search for powerful microbes for the effective control of plant diseases. METHODS AND RESULTS Unheated self-digestive solutions (SDS) that were heated at 100°C for 30 min(H-SDS) or stored for 12 months at room temperature (S-SDS) were prepared from Lysobacter enzymogenes LE16 broth culture to study their potential as biocontrol agents. This bacterium produced protease, phosphatase, lysozyme and siderophores in pure culture as well as 12 secondary metabolites including novel antibiotics lysobactin, WAP-8294A2 and mupirocin determined based on the antiSMASH 5.0.0 blast database. A poison plate assay revealed the antagonistic activities of SDS, H-SDS and S-SDS against an animal pathogenic bacterium Staphylococcus aureus, a phytopathogenic bacterium Pseudomonas syringae pv. tabaci, and numerous plant pathogenic fungi and oomycetes, including Colletotrichum gloeosporioides, Penicillium italicum, Alternaria alternate, Rhizoctonia solani, Didymella bryoniae, Sclerotinia sclerotiorum, Phytophthora nicotianae and Phytophthora capsici. The greenhouse experiment showed that SDS was highly effective in controlling pepper blight disease, which is caused by P. capsici. Compared with only pathogen inoculation, the application of SDS to the soil in preventive or curative treatments significantly reduced the disease incidence and index with relatively high control efficacy of 86·2-93·1%. CONCLUSIONS SDS enriched lytic enzymes, siderophores and antibiotics, has a wide antimicrobial spectrum, and shows potential as a new, safe and effective biocontrol agent against plant diseases. SIGNIFICANCE AND IMPACT OF THE STUDY Autolysates of the new biocontrol bacterium L. enzymogenes LE16 demonstrated the potential for industrial production and commercial use as a promising biocontrol agent in agriculture.
Collapse
Affiliation(s)
- D M Chen
- College of Resources and Environment, Southwest University, Chongqing, China
| | - H J Yang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - J G Huang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - L Yuan
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Yu M, Zhang G, Jiang J, Du L, Zhao Y. Lysobacter enzymogenes Employs Diverse Genes for Inhibiting Hypha Growth and Spore Germination of Soybean Fungal Pathogens. PHYTOPATHOLOGY 2020; 110:593-602. [PMID: 31774360 DOI: 10.1094/phyto-09-19-0356-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lysobacter enzymogenes strain C3 (LeC3) is a potential biocontrol agent for plant diseases caused by fungi and oomycetes. Understanding the interaction between LeC3 and soybean pathogens at the molecular level could help improve its biocontrol efficacy. In this study, we obtained mutants with decreased abilities in inhibiting hypha growth of the white mold pathogen Sclerotinia sclerotiorum. Insertion sites for 50 mutants, which no longer inhibited S. sclerotiorum hypha growth in dual cultural assay, were determined and seven mutants were selected for further characterization. These seven mutants also completely lost their abilities in suppressing spore germination of Fusarium virguliforme, the causal agent of soybean sudden death syndrome. Furthermore, mutation of the seven genes, which encode diguanylate cyclase, transcriptional regulators from the TetR family, hemolysin III family channel protein, type IV secretion system VirB10 protein, phenol hydroxylase, and phosphoadenosine phosphosulfate reductase, respectively, led to reduced production or secretion of four extracellular enzymes and heat-stable antifungal factor (HSAF). These results suggest that these seven genes play important roles in L. enzymogenes in suppressing hypha growth and spore germination of fungal pathogens, probably by influencing production or secretion of extracellular enzymes and HSAF.
Collapse
Affiliation(s)
- Menghao Yu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Guiying Zhang
- Department of Plant Protection, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jiasong Jiang
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, U.S.A
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, U.S.A
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| |
Collapse
|
21
|
Subrahmanyam G, Kumar A, Sandilya SP, Chutia M, Yadav AN. Diversity, Plant Growth Promoting Attributes, and Agricultural Applications of Rhizospheric Microbes. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2020. [DOI: 10.1007/978-3-030-38453-1_1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Kim YT, Monkhung S, Lee YS, Kim KY. Effects of Lysobacter antibioticus HS124, an effective biocontrol agent against Fusarium graminearum, on crown rot disease and growth promotion of wheat. Can J Microbiol 2019; 65:904-912. [PMID: 31479614 DOI: 10.1139/cjm-2019-0285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lysobacter antibioticus HS124 inhibited mycelial growth of Fusarium graminearum (74.66%) under the dual culture method. Microscopic investigation clearly showed that amendment with different concentrations (10%, 30%, and 50%) of HS124 bacterial culture filtrate on potato dextrose agar plates caused abnormal hyphal structures, including swelling and distortion. Its inhibition toward mycelial growth of F. graminearum was increased with increasing concentration of n-butanol crude extract of HS124. The highest inhibition (43.14%) was detected at a crude concentration of 10 mg/disc, whereas the lowest inhibition (21.57%) was observed at 2 mg/disc. Although mycelial growth of F. graminearum was promoted by volatile organic compounds (VOCs) produced by HS124 as compared with the control, these VOCs clearly decreased fungal pigmentation resulting in a reduction of fungal sporulation. Microscopic investigation revealed hyphal deformation of F. graminearum due to VOCs. These compounds also had a negative effect on spore germination of F. graminearum. In vivo evaluations demonstrated that HS124 inoculation of wheat plants reduced crown rot disease incidence by 73.70% as compared with the control. HS124 inoculation of wheat plants also promoted most of the growth characteristics compared with the control or fungicide-treated plants. Our results provide strong evidence that HS124 could control F. graminearum infections and promote growth of wheat plants as part of management strategies for crown rot disease.
Collapse
Affiliation(s)
- Yun-Tae Kim
- Future Agricultural Strategy Institute, 43-52, Ogong-ro Wansan-gu, Junju-si, Jeollabuk-do 54671, Republic of Korea
| | - Sararat Monkhung
- Crop Production Technology Program, Faculty of Animal Science and Agricultural Technology, Silpakorn University, Phetchaburi Information Technology Campus, Phetchaburi 76120, Thailand
| | - Yong Seong Lee
- Department of Research and Development, Sunchang Agriculture Technology Centre, Sunchang 56025, Republic of Korea
| | - Kil Yong Kim
- Department of Agricultural and Biological Chemistry, Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
23
|
Mustafa S, Kabir S, Shabbir U, Batool R. Plant growth promoting rhizobacteria in sustainable agriculture: from theoretical to pragmatic approach. Symbiosis 2019. [DOI: 10.1007/s13199-019-00602-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
In-Vitro Inhibition of Pythium ultimum, Fusarium graminearum, and Rhizoctonia solani by a Stabilized Lactoperoxidase System alone and in Combination with Synthetic Fungicides. AGRONOMY-BASEL 2017. [DOI: 10.3390/agronomy7040078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Advances in enzyme stabilization and immobilization make the use of enzymes for industrial applications increasingly feasible. The lactoperoxidase (LPO) system is a naturally occurring enzyme system with known antimicrobial activity. Stabilized LPO and glucose oxidase (GOx) enzymes were combined with glucose, potassium iodide, and ammonium thiocyanate to create an anti-fungal formulation, which inhibited in-vitro growth of the plant pathogenic oomycete Pythium ultimum, and the plant pathogenic fungi Fusarium graminearum and Rhizoctonia solani. Pythium ultimum was more sensitive than F. graminearum and R. solani, and was killed at LPO and GOx concentrations of 20 nM and 26 nM, respectively. Rhizoctonia solani and F. graminearum were 70% to 80% inhibited by LPO and GOx concentrations of 242 nM and 315 nM, respectively. The enzyme system was tested for compatibility with five commercial fungicides as co-treatments. The majority of enzyme + fungicide co-treatments resulted in additive activity. Synergism ranging from 7% to 36% above the expected additive activity was observed when P. ultimum was exposed to the enzyme system combined with Daconil® (active ingredient (AI): chlorothalonil 29.6%, GardenTech, Lexington, KY, USA), tea tree oil, and mancozeb at select fungicide concentrations. Antagonism was observed when the enzyme system was combined with Tilt® (AI: propiconazole 41.8%, Syngenta, Basel, Switzerland) at one fungicide concentration, resulting in activity 24% below the expected additive activity at that concentration.
Collapse
|
25
|
Puopolo G, Tomada S, Pertot I. The impact of the omics era on the knowledge and use of Lysobacter species to control phytopathogenic micro-organisms. J Appl Microbiol 2017; 124:15-27. [PMID: 28992371 DOI: 10.1111/jam.13607] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 01/19/2023]
Abstract
Omics technologies have had a tremendous impact on underinvestigated genera of plant disease biocontrol agents such as Lysobacter. Strong evidence of the association between Lysobacter spp. and the rhizosphere has been obtained through culture-independent methods, which has also contributed towards highlighting the relationship between Lysobacter abundance and soil suppressiveness. It is conceivable that the role played by Lysobacter spp. in soil suppressiveness is related to their ability to produce an impressive array of lytic enzymes and antibiotics. Indeed, genomics has revealed that biocontrol Lysobacter strains share a vast number of genes involved in antagonism activities, and the molecular pathways underlying how Lysobacter spp. interact with the environment and other micro-organisms have been depicted through transcriptomic analysis. Furthermore, omics technologies shed light on the regulatory pathways governing cell motility and the biosynthesis of antibiotics. Overall, the results achieved so far through omics technologies confirm that the genus Lysobacter is a valuable source of novel biocontrol agents, paving the way for studies aimed at making their application in field conditions more reliable.
Collapse
Affiliation(s)
- G Puopolo
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy
| | - S Tomada
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy.,Department of Agricultural, Food, Environmental and Animal Sciences, PhD School in Agricultural Science and Biotechnology, University of Udine, Udine, Italy
| | - I Pertot
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all'Adige, Italy.,Center Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy
| |
Collapse
|
26
|
Zhang W, Huffman J, Li S, Shen Y, Du L. Unusual acylation of chloramphenicol in Lysobacter enzymogenes, a biocontrol agent with intrinsic resistance to multiple antibiotics. BMC Biotechnol 2017; 17:59. [PMID: 28676112 PMCID: PMC5496308 DOI: 10.1186/s12896-017-0377-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/20/2017] [Indexed: 02/07/2023] Open
Abstract
Background The environmental gliding bacteria Lysobacter are emerging as a new group of biocontrol agents due to their prolific production of lytic enzymes and potent antibiotic natural products. These bacteria are intrinsically resistant to many antibiotics, but the mechanisms behind the antibiotic resistance have not been investigated. Results Previously, we have used chloramphenicol acetyltransferase gene (cat) as a selection marker in genetic manipulation of natural product biosynthetic genes in Lysobacter, because chloramphenicol is one of the two common antibiotics that Lysobacter are susceptible to. Here, we found L. enzymogenes, the most studied species of this genus, could still grow in the presence of a low concentration of chloramphenicol. Three chloramphenicol derivatives (1–3) with an unusual acylation pattern were identified in a cat-containing mutant of L. enzymogenes and in the wild type. The compounds included chloramphenicol 3'-isobutyrate (1), a new compound chloramphenicol 1'-isobutyrate (2), and a rare chloramphenicol 3'-isovalerate (3). Furthermore, a mutation of a global regulator gene (clp) or a Gcn5-related N-acetyltransferase (GNAT) gene in L. enzymogenes led to nearly no growth in media containing chloramphenicol, whereas a complementation of clp restored the chloramphenicol acylation as well as antibiotic HSAF production in the clp mutant. Conclusions The results indicated that L. enzymogenes contains a pool of unusual acyl donors for enzymatic modification of chloramphenicol that confers the resistance, which may involve the Clp-GNAT regulatory system. Because Lysobacter are ubiquitous inhabitants of soil and water, the finding may have important implications in understanding microbial competitions and bioactive natural product regulation. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0377-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuel, Chinese Academy of Sciences, Qingdao Institute of Bioenergy and Bioprocess Technology, 266101, Qingdao, China.,Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA
| | - Justin Huffman
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA
| | - Shengying Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuel, Chinese Academy of Sciences, Qingdao Institute of Bioenergy and Bioprocess Technology, 266101, Qingdao, China
| | - Yuemao Shen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, USA. .,State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| |
Collapse
|
27
|
M T. Antagonistic features displayed by Plant Growth Promoting Rhizobacteria (PGPR): A Review. ACTA ACUST UNITED AC 2017. [DOI: 10.29328/journal.jpsp.1001004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
28
|
Xu H, Chen H, Shen Y, Du L, Chou SH, Liu H, Qian G, Liu F. Direct Regulation of Extracellular Chitinase Production by the Transcription Factor LeClp in Lysobacter enzymogenes OH11. PHYTOPATHOLOGY 2016; 106:971-7. [PMID: 27385597 DOI: 10.1094/phyto-01-16-0001-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Lysobacter enzymogenes is a gram-negative bacterial biological control agent that produces abundant extracellular enzymes capable of degrading the cell walls of fungal pathogens. In strain OH11, an isolate from China, the global regulator LeClp controls the production of extracellular chitinase by regulating the transcription of the chitinase-encoding gene chiA. Using a combination of bioinformatic, genetic, and biochemical methods, we show that LeClp regulates chiA transcription by directly binding to the chiA promoter region. Although LeClp appears to be important in this role, it is not the sole regulator of chiA transcription. Furthermore, the sequence analysis of putative LeClp binding sites indicated that the LeClp homolog could be involved in the regulation of extracellular chitinase production in diverse Lysobacter spp. by a mechanism similar to that in L. enzymogenes. Our findings present new insights into the molecular mechanism of LeClp in controlling extracellular chitinase activity, providing a fundamental road to elucidate how LeClp regulates the production of other extracellular lytic enzymes in L. enzymogenes.
Collapse
Affiliation(s)
- Huiyong Xu
- First, second, sixth, seventh, and eighth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China and Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; third author: Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, 250100 Jinan, P.R. China; fourth author: Department of Chemistry, University of Nebraska-Lincoln, Lincoln 68588; fifth author: Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC; and eighth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Hongfu Chen
- First, second, sixth, seventh, and eighth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China and Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; third author: Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, 250100 Jinan, P.R. China; fourth author: Department of Chemistry, University of Nebraska-Lincoln, Lincoln 68588; fifth author: Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC; and eighth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Yuemao Shen
- First, second, sixth, seventh, and eighth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China and Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; third author: Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, 250100 Jinan, P.R. China; fourth author: Department of Chemistry, University of Nebraska-Lincoln, Lincoln 68588; fifth author: Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC; and eighth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Liangcheng Du
- First, second, sixth, seventh, and eighth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China and Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; third author: Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, 250100 Jinan, P.R. China; fourth author: Department of Chemistry, University of Nebraska-Lincoln, Lincoln 68588; fifth author: Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC; and eighth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Shan-Ho Chou
- First, second, sixth, seventh, and eighth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China and Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; third author: Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, 250100 Jinan, P.R. China; fourth author: Department of Chemistry, University of Nebraska-Lincoln, Lincoln 68588; fifth author: Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC; and eighth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Hongxia Liu
- First, second, sixth, seventh, and eighth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China and Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; third author: Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, 250100 Jinan, P.R. China; fourth author: Department of Chemistry, University of Nebraska-Lincoln, Lincoln 68588; fifth author: Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC; and eighth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Guoliang Qian
- First, second, sixth, seventh, and eighth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China and Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; third author: Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, 250100 Jinan, P.R. China; fourth author: Department of Chemistry, University of Nebraska-Lincoln, Lincoln 68588; fifth author: Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC; and eighth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Fengquan Liu
- First, second, sixth, seventh, and eighth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China and Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; third author: Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University, 250100 Jinan, P.R. China; fourth author: Department of Chemistry, University of Nebraska-Lincoln, Lincoln 68588; fifth author: Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC; and eighth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| |
Collapse
|
29
|
Kudryakova IV, Shishkova NA, Vasilyeva NV. Outer membrane vesicles of Lysobacter sp. XL1: biogenesis, functions, and applied prospects. Appl Microbiol Biotechnol 2016; 100:4791-801. [DOI: 10.1007/s00253-016-7524-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/31/2016] [Accepted: 04/05/2016] [Indexed: 12/26/2022]
|
30
|
Puopolo G, Tomada S, Sonego P, Moretto M, Engelen K, Perazzolli M, Pertot I. The Lysobacter capsici AZ78 Genome Has a Gene Pool Enabling it to Interact Successfully with Phytopathogenic Microorganisms and Environmental Factors. Front Microbiol 2016; 7:96. [PMID: 26903975 PMCID: PMC4742617 DOI: 10.3389/fmicb.2016.00096] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/18/2016] [Indexed: 01/26/2023] Open
Abstract
Lysobacter capsici AZ78 has considerable potential for biocontrol of phytopathogenic microorganisms. However, lack of information about genetic cues regarding its biological characteristics may slow down its exploitation as a biofungicide. In order to obtain a comprehensive overview of genetic features, the L. capsici AZ78 genome was sequenced, annotated and compared with the phylogenetically related pathogens Stenotrophomonas malthophilia K729a and Xanthomonas campestris pv. campestris ATCC 33913. Whole genome comparison, supported by functional analysis, indicated that L. capsici AZ78 has a larger number of genes responsible for interaction with phytopathogens and environmental stress than S. malthophilia K729a and X. c. pv. campestris ATCC 33913. Genes involved in the production of antibiotics, lytic enzymes and siderophores were specific for L. capsici AZ78, as well as genes involved in resistance to antibiotics, environmental stressors, fungicides and heavy metals. The L. capsici AZ78 genome did not encompass genes involved in infection of humans and plants included in the S. malthophilia K729a and X. c. pv. campestris ATCC 33913 genomes, respectively. The L. capsici AZ78 genome provides a genetic framework for detailed analysis of other L. capsici members and the development of novel biofungicides based on this bacterial strain.
Collapse
Affiliation(s)
- Gerardo Puopolo
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach San Michele all'Adige, Italy
| | - Selena Tomada
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund MachSan Michele all'Adige, Italy; Department of Agricultural and Environmental Science (DISA), PhD School of Agricultural Science and Biotechnology, University of UdineUdine, Italy
| | - Paolo Sonego
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach San Michele all'Adige, Italy
| | - Marco Moretto
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach San Michele all'Adige, Italy
| | - Kristof Engelen
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach San Michele all'Adige, Italy
| | - Michele Perazzolli
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach San Michele all'Adige, Italy
| | - Ilaria Pertot
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach San Michele all'Adige, Italy
| |
Collapse
|
31
|
de Bruijn I, Cheng X, de Jager V, Expósito RG, Watrous J, Patel N, Postma J, Dorrestein PC, Kobayashi D, Raaijmakers JM. Comparative genomics and metabolic profiling of the genus Lysobacter. BMC Genomics 2015; 16:991. [PMID: 26597042 PMCID: PMC4657364 DOI: 10.1186/s12864-015-2191-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 11/03/2015] [Indexed: 11/10/2022] Open
Abstract
Background Lysobacter species are Gram-negative bacteria widely distributed in soil, plant and freshwater habitats. Lysobacter owes its name to the lytic effects on other microorganisms. To better understand their ecology and interactions with other (micro)organisms, five Lysobacter strains representing the four species L. enzymogenes, L. capsici, L. gummosus and L. antibioticus were subjected to genomics and metabolomics analyses. Results Comparative genomics revealed a diverse genome content among the Lysobacter species with a core genome of 2,891 and a pangenome of 10,028 coding sequences. Genes encoding type I, II, III, IV, V secretion systems and type IV pili were highly conserved in all five genomes, whereas type VI secretion systems were only found in L. enzymogenes and L. gummosus. Genes encoding components of the flagellar apparatus were absent in the two sequenced L. antibioticus strains. The genomes contained a large number of genes encoding extracellular enzymes including chitinases, glucanases and peptidases. Various nonribosomal peptide synthase (NRPS) and polyketide synthase (PKS) gene clusters encoding putative bioactive metabolites were identified but only few of these clusters were shared between the different species. Metabolic profiling by imaging mass spectrometry complemented, in part, the in silico genome analyses and allowed visualisation of the spatial distribution patterns of several secondary metabolites produced by or induced in Lysobacter species during interactions with the soil-borne fungus Rhizoctonia solani. Conclusions Our work shows that mining the genomes of Lysobacter species in combination with metabolic profiling provides novel insights into the genomic and metabolic potential of this widely distributed but understudied and versatile bacterial genus. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2191-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene de Bruijn
- Department of Microbial Ecology, Netherlands Institute of Ecology, P.O. Box 50, Wageningen, 6700 AB, The Netherlands. .,Wageningen University and Research Centre, Laboratory of Phytopathology, P.O. Box 8025, Wageningen, 6700 EE, The Netherlands.
| | - Xu Cheng
- Wageningen University and Research Centre, Laboratory of Phytopathology, P.O. Box 8025, Wageningen, 6700 EE, The Netherlands.
| | - Victor de Jager
- Department of Microbial Ecology, Netherlands Institute of Ecology, P.O. Box 50, Wageningen, 6700 AB, The Netherlands.
| | - Ruth Gómez Expósito
- Department of Microbial Ecology, Netherlands Institute of Ecology, P.O. Box 50, Wageningen, 6700 AB, The Netherlands. .,Wageningen University and Research Centre, Laboratory of Phytopathology, P.O. Box 8025, Wageningen, 6700 EE, The Netherlands.
| | - Jeramie Watrous
- Departments of Pharmacology, Chemistry and Biochemistry; Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, San Diego, USA.
| | - Nrupali Patel
- Department of Plant Biology & Pathology, Cook College, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901-8520, USA.
| | - Joeke Postma
- Wageningen University and Research Centre, Plant Research International, PO Box 16, Wageningen, 6700 AA, The Netherlands.
| | - Pieter C Dorrestein
- Departments of Pharmacology, Chemistry and Biochemistry; Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, San Diego, USA.
| | - Donald Kobayashi
- Department of Plant Biology & Pathology, Cook College, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901-8520, USA.
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, P.O. Box 50, Wageningen, 6700 AB, The Netherlands.
| |
Collapse
|
32
|
Gómez Expósito R, Postma J, Raaijmakers JM, De Bruijn I. Diversity and Activity of Lysobacter Species from Disease Suppressive Soils. Front Microbiol 2015; 6:1243. [PMID: 26635735 PMCID: PMC4644931 DOI: 10.3389/fmicb.2015.01243] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/26/2015] [Indexed: 02/05/2023] Open
Abstract
The genus Lysobacter includes several species that produce a range of extracellular enzymes and other metabolites with activity against bacteria, fungi, oomycetes, and nematodes. Lysobacter species were found to be more abundant in soil suppressive against the fungal root pathogen Rhizoctonia solani, but their actual role in disease suppression is still unclear. Here, the antifungal and plant growth-promoting activities of 18 Lysobacter strains, including 11 strains from Rhizoctonia-suppressive soils, were studied both in vitro and in vivo. Based on 16S rRNA sequencing, the Lysobacter strains from the Rhizoctonia-suppressive soil belonged to the four species Lysobacter antibioticus, Lysobacter capsici, Lysobacter enzymogenes, and Lysobacter gummosus. Most strains showed strong in vitro activity against R. solani and several other pathogens, including Pythium ultimum, Aspergillus niger, Fusarium oxysporum, and Xanthomonas campestris. When the Lysobacter strains were introduced into soil, however, no significant and consistent suppression of R. solani damping-off disease of sugar beet and cauliflower was observed. Subsequent bioassays further revealed that none of the Lysobacter strains was able to promote growth of sugar beet, cauliflower, onion, and Arabidopsis thaliana, either directly or via volatile compounds. The lack of in vivo activity is most likely attributed to poor colonization of the rhizosphere by the introduced Lysobacter strains. In conclusion, our results demonstrated that Lysobacter species have strong antagonistic activities against a range of pathogens, making them an important source for putative new enzymes and antimicrobial compounds. However, their potential role in R. solani disease suppressive soil could not be confirmed. In-depth omics'-based analyses will be needed to shed more light on the potential contribution of Lysobacter species to the collective activities of microbial consortia in disease suppressive soils.
Collapse
Affiliation(s)
- Ruth Gómez Expósito
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands ; Laboratory of Phytopathology, Wageningen University and Research Centre Wageningen, Netherlands
| | - Joeke Postma
- Plant Research International, Wageningen University and Research Centre Wageningen, Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands
| | - Irene De Bruijn
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands
| |
Collapse
|
33
|
Zhou X, Qian G, Chen Y, Du L, Liu F, Yuen GY. PilG is Involved in the Regulation of Twitching Motility and Antifungal Antibiotic Biosynthesis in the Biological Control Agent Lysobacter enzymogenes. PHYTOPATHOLOGY 2015; 105:1318-1324. [PMID: 26360465 DOI: 10.1094/phyto-12-14-0361-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Lysobacter enzymogenes strain C3 is a gliding bacterium which produces the antifungal secondary metabolite heat-stable antifungal factor (HSAF) and type IV pilus (T4P) as important mechanisms in biological control activity against fungal pathogens. To date, the regulators that control HSAF biosynthesis and T4P-dependent twitching motility in L. enzymogenes are poorly explored. In the present study, we addressed the role of pilG in the regulation of these two traits in L. enzymogenes. PilG of L. enzymogenes was found to be a response regulator, commonly known as a component of a two-component transduction system. Mutation of pilG in strain C3 abolished its ability to display spreading colony phenotype and cell movement at the colony margin, which is indicative of twitching motility; hence, PilG positively regulates twitching motility in L. enzymogenes. Mutation of pilG also enhanced HSAF production and the transcription of its key biosynthetic gene hsaf pks/nrps, suggesting that PilG plays a negative regulatory role in HSAF biosynthesis. This finding represents the first demonstration of the regulator PilG having a role in secondary metabolite biosynthesis in bacteria. Collectively, our results suggest that key ecological functions (HSAF production and twitching motility) in L. enzymogenes strain C3 are regulated in opposite directions by the same regulatory protein, PilG.
Collapse
Affiliation(s)
- Xue Zhou
- First, second, third, and fifth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; fourth author: Department of Chemistry, University of Nebraska-Lincoln, 68588; fifth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China; and sixth author: Department of Plant Pathology, University of Nebraska-Lincoln
| | - Guoliang Qian
- First, second, third, and fifth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; fourth author: Department of Chemistry, University of Nebraska-Lincoln, 68588; fifth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China; and sixth author: Department of Plant Pathology, University of Nebraska-Lincoln
| | - Yuan Chen
- First, second, third, and fifth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; fourth author: Department of Chemistry, University of Nebraska-Lincoln, 68588; fifth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China; and sixth author: Department of Plant Pathology, University of Nebraska-Lincoln
| | - Liangcheng Du
- First, second, third, and fifth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; fourth author: Department of Chemistry, University of Nebraska-Lincoln, 68588; fifth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China; and sixth author: Department of Plant Pathology, University of Nebraska-Lincoln
| | - Fengquan Liu
- First, second, third, and fifth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; fourth author: Department of Chemistry, University of Nebraska-Lincoln, 68588; fifth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China; and sixth author: Department of Plant Pathology, University of Nebraska-Lincoln
| | - Gary Y Yuen
- First, second, third, and fifth authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education; fourth author: Department of Chemistry, University of Nebraska-Lincoln, 68588; fifth author: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China; and sixth author: Department of Plant Pathology, University of Nebraska-Lincoln
| |
Collapse
|
34
|
de Boer W, Hundscheid MPJ, Klein Gunnewiek PJA, de Ridder-Duine AS, Thion C, van Veen JA, van der Wal A. Antifungal Rhizosphere Bacteria Can increase as Response to the Presence of Saprotrophic Fungi. PLoS One 2015; 10:e0137988. [PMID: 26393509 PMCID: PMC4578881 DOI: 10.1371/journal.pone.0137988] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/24/2015] [Indexed: 01/26/2023] Open
Abstract
Knowledge on the factors that determine the composition of bacterial communities in the vicinity of roots (rhizosphere) is essential to understand plant-soil interactions. Plant species identity, plant growth stage and soil properties have been indicated as major determinants of rhizosphere bacterial community composition. Here we show that the presence of saprotrophic fungi can be an additional factor steering rhizosphere bacterial community composition and functioning. We studied the impact of presence of two common fungal rhizosphere inhabitants (Mucor hiemalis and Trichoderma harzianum) on the composition of cultivable bacterial communities developing in the rhizosphere of Carex arenaria (sand sedge) in sand microcosms. Identification and phenotypic characterization of bacterial isolates revealed clear shifts in the rhizosphere bacterial community composition by the presence of two fungal strains (M. hiemalis BHB1 and T. harzianum PvdG2), whereas another M. hiemalis strain did not show this effect. Presence of both M. hiemalis BHB1 and T. harzianum PvdG2 resulted in a significant increase of chitinolytic and (in vitro) antifungal bacteria. The latter was most pronounced for M. hiemalis BHB1, an isolate from Carex roots, which stimulated the development of the bacterial genera Achromobacter and Stenotrophomonas. In vitro tests showed that these genera were strongly antagonistic against M. hiemalis but also against the plant-pathogenic fungus Rhizoctonia solani. The most likely explanation for fungal-induced shifts in the composition of rhizosphere bacteria is that bacteria are being selected which are successful in competing with fungi for root exudates. Based on the results we propose that measures increasing saprotrophic fungi in agricultural soils should be explored as an alternative approach to enhance natural biocontrol against soil-borne plant-pathogenic fungi, namely by stimulating indigenous antifungal rhizosphere bacteria.
Collapse
Affiliation(s)
- Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands
- Department of Soil Quality, Wageningen University, Wageningen, 6708 PB, the Netherlands
| | - Maria P. J. Hundscheid
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands
| | | | - Annelies S. de Ridder-Duine
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands
| | - Cecile Thion
- School of Biological Science, University of Aberdeen, Aberdeen, AB24 3UU, United Kingdom
| | - Johannes A. van Veen
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands
- Insititute of Biology, Leiden University, Leiden, 2333 BE, the Netherlands
| | - Annemieke van der Wal
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands
- * E-mail:
| |
Collapse
|
35
|
Exploring the microbiota dynamics related to vegetable biomasses degradation and study of lignocellulose-degrading bacteria for industrial biotechnological application. Sci Rep 2015; 5:8161. [PMID: 25641069 PMCID: PMC4648445 DOI: 10.1038/srep08161] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/06/2015] [Indexed: 12/31/2022] Open
Abstract
The aims of this study were to evaluate the microbial diversity of different lignocellulosic biomasses during degradation under natural conditions and to isolate, select, characterise new well-adapted bacterial strains to detect potentially improved enzyme-producing bacteria. The microbiota of biomass piles of Arundo donax, Eucalyptus camaldulensis and Populus nigra were evaluated by high-throughput sequencing. A highly complex bacterial community was found, composed of ubiquitous bacteria, with the highest representation by the Actinobacteria, Proteobacteria, Bacteroidetes and Firmicutes phyla. The abundances of the major and minor taxa retrieved during the process were determined by the selective pressure produced by the lignocellulosic plant species and degradation conditions. Moreover, cellulolytic bacteria were isolated using differential substrates and screened for cellulase, cellobiase, xylanase, pectinase and ligninase activities. Forty strains that showed multienzymatic activity were selected and identified. The highest endo-cellulase activity was seen in Promicromonospora sukumoe CE86 and Isoptericola variabilis CA84, which were able to degrade cellulose, cellobiose and xylan. Sixty-two percent of bacterial strains tested exhibited high extracellular endo-1,4-ß-glucanase activity in liquid media. These approaches show that the microbiota of lignocellulosic biomasses can be considered an important source of bacterial strains to upgrade the feasibility of lignocellulose conversion for the ‘greener' technology of second-generation biofuels.
Collapse
|
36
|
Puopolo G, Cimmino A, Palmieri MC, Giovannini O, Evidente A, Pertot I. Lysobacter capsici AZ78 produces cyclo(L-Pro-L-Tyr), a 2,5-diketopiperazine with toxic activity against sporangia of Phytophthora infestans and Plasmopara viticola. J Appl Microbiol 2014; 117:1168-80. [PMID: 25066530 DOI: 10.1111/jam.12611] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/10/2014] [Accepted: 07/24/2014] [Indexed: 01/13/2023]
Abstract
AIMS To investigate low molecular weight compounds produced in vitro by Lysobacter capsici AZ78 and their toxic activity against sporangia of plant pathogenic oomycetes. METHODS AND RESULTS Assays carried out in vitro showed that L. capsici AZ78 drastically inhibits the growth of plant pathogenic oomycetes. Accordingly, the preventive application of culture filtrates of L. capsici AZ78 on grapevine and tomato plants reduced the infections, respectively, caused by Plasmopara (Pl.) viticola and Phytophthora infestans. The subsequent chemical analysis of the culture filtrates of L. capsici AZ78 by spectroscopic (essentially 1D and 2D (1)H NMR and (13)C NMR and ESI MS spectra) and optical methods led to the identification of the 2,5-diketopiperazine cyclo(L-Pro-L-Tyr) that inhibited the development of P. infestans sporangia in vitro and on tomato leaves. Furthermore, a genomic region with high sequence identity with genes coding for a hybrid polyketide synthase and nonribosomal peptide synthetase was detected in L. capsici AZ78. CONCLUSIONS Lysobacter capsici AZ78 produces cyclo(L-Pro-L-Tyr) in vitro that was effective in killing the sporangia of P. infestans and Pl. viticola in vitro. Moreover, this low molecular weight compound prevents the occurrence of late blight lesions when applied on tomato leaves. SIGNIFICANCE AND IMPACT OF THE STUDY The application of L. capsici AZ78 cells or its own culture filtrates effectively controls both P. infestans and Pl. viticola. Cyclo(L-Pro-L-Tyr) produced by L. capsici AZ78 is toxic against sporangia of both these oomycetes. These data enforce the potential in the use of Lysobacter members for the control of plant pathogenic oomycetes and provide the basis for the development of new low-impact fungicides based on cyclo(L-Pro-L-Tyr).
Collapse
Affiliation(s)
- G Puopolo
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach (FEM), S. Michele all'Adige (TN), Italy
| | | | | | | | | | | |
Collapse
|
37
|
Mathioni SM, Patel N, Riddick B, Sweigard JA, Czymmek KJ, Caplan JL, Kunjeti SG, Kunjeti S, Raman V, Hillman BI, Kobayashi DY, Donofrio NM. Transcriptomics of the rice blast fungus Magnaporthe oryzae in response to the bacterial antagonist Lysobacter enzymogenes reveals candidate fungal defense response genes. PLoS One 2013; 8:e76487. [PMID: 24098512 PMCID: PMC3789685 DOI: 10.1371/journal.pone.0076487] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 08/28/2013] [Indexed: 12/15/2022] Open
Abstract
Plants and animals have evolved a first line of defense response to pathogens called innate or basal immunity. While basal defenses in these organisms are well studied, there is almost a complete lack of understanding of such systems in fungal species, and more specifically, how they are able to detect and mount a defense response upon pathogen attack. Hence, the goal of the present study was to understand how fungi respond to biotic stress by assessing the transcriptional profile of the rice blast pathogen, Magnaporthe oryzae, when challenged with the bacterial antagonist Lysobacter enzymogenes. Based on microscopic observations of interactions between M. oryzae and wild-type L. enzymogenes strain C3, we selected early and intermediate stages represented by time-points of 3 and 9 hours post-inoculation, respectively, to evaluate the fungal transcriptome using RNA-seq. For comparative purposes, we also challenged the fungus with L. enzymogenes mutant strain DCA, previously demonstrated to be devoid of antifungal activity. A comparison of transcriptional data from fungal interactions with the wild-type bacterial strain C3 and the mutant strain DCA revealed 463 fungal genes that were down-regulated during attack by C3; of these genes, 100 were also found to be up-regulated during the interaction with DCA. Functional categorization of genes in this suite included those with roles in carbohydrate metabolism, cellular transport and stress response. One gene in this suite belongs to the CFEM-domain class of fungal proteins. Another CFEM class protein called PTH11 has been previously characterized, and we found that a deletion in this gene caused advanced lesion development by C3 compared to its growth on the wild-type fungus. We discuss the characterization of this suite of 100 genes with respect to their role in the fungal defense response.
Collapse
Affiliation(s)
- Sandra M. Mathioni
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Nrupali Patel
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Bianca Riddick
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
| | - James A. Sweigard
- DuPont Stine Haskell Research Center, Newark, Delaware, United States of America
| | - Kirk J. Czymmek
- Delaware Biotechnology Institute BioImaging Center, University of Delaware, Newark, Delaware, United States of America
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Jeffrey L. Caplan
- Delaware Biotechnology Institute BioImaging Center, University of Delaware, Newark, Delaware, United States of America
| | - Sridhara G. Kunjeti
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Saritha Kunjeti
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Vidhyavathi Raman
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Bradley I. Hillman
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Donald Y. Kobayashi
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Nicole M. Donofrio
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
38
|
Saraf M, Pandya U, Thakkar A. Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 2013; 169:18-29. [PMID: 24176815 DOI: 10.1016/j.micres.2013.08.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/07/2013] [Accepted: 08/10/2013] [Indexed: 11/30/2022]
Abstract
Soil borne fungal diseases pose serious constraints on agro-productivity. Biological control is non-hazardous strategy to control plant pathogens and improve crop productivity. PGPR (plant growth promoting rhizobacteria) have long been used as plant disease control agents. PGPR produced a wide range of secondary compounds that may act as signals--that is, allelochemicals that include metabolites, siderophores, antibiotics, volatile metabolites, enzymes and others. Their mode of action and molecular mechanisms provide a great awareness for their application for crop disease management. The present review highlights the role of PGPR strains, specifically referring to allelochemicals produced and molecular mechanisms. Further research to fine tune combinations of allelochemicals, plant-microbe-pathogen interaction will ultimately lead to better disease control.
Collapse
Affiliation(s)
- Meenu Saraf
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380013, Gujarat, India.
| | | | | |
Collapse
|
39
|
Abraham A, Narayanan SP, Philip S, Nair DG, Chandrasekharan A, Kochupurackal J. In silico characterization of a novel β-1,3-glucanase gene from Bacillus amyloliquefaciens--a bacterial endophyte of Hevea brasiliensis antagonistic to Phytophthora meadii. J Mol Model 2012; 19:999-1007. [PMID: 23108702 DOI: 10.1007/s00894-012-1645-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 10/11/2012] [Indexed: 11/25/2022]
Abstract
We report the molecular characterization of β-1,3-glucanase-producing Bacillus amyloliquefaciens-an endophyte of Hevea brasiliensis antagonistic to Phytophthora meadii. After cloning and sequencing, the β-1,3-glucanase gene was found to be 747 bp in length. A homology model of the β-1,3-glucanase protein was built from the amino acid sequence obtained upon translation of the gene. The target β-1,3-glucanase protein and the template protein, endo β-1,3-1,4-glucanase protein (PDB ID: 3o5s), were found to share 94% sequence identity and to have similar secondary and tertiary structures. In the modeled structure, three residues in the active site region of the template-Asn52, Ile157 and Val158-were substituted with Asp, Leu and Ala, respectively. Computer-aided docking studies of the substrate disaccharide (β-1, 3-glucan) with the target as well as with the template proteins showed that the two protein-substrate complexes were stabilized by three hydrogen bonds and by many van der Waals interactions. Although the binding energies and the number of hydrogen bonds were the same in both complexes, the orientations of the substrate in the active sites of the two proteins were different. These variations might be due to the change in the three amino acids in the active site region of the two proteins. The difference in substrate orientation in the active site could also affect the catalytic potential of the β-1,3 glucanase enzyme.
Collapse
Affiliation(s)
- Amith Abraham
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | | | | | | | | | | |
Collapse
|
40
|
Pseudomonas and other Microbes in Disease-Suppressive Soils. SUSTAINABLE AGRICULTURE REVIEWS 2012. [DOI: 10.1007/978-94-007-4113-3_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Selection of available suicide vectors for gene mutagenesis using chiA (a chitinase encoding gene) as a new reporter and primary functional analysis of chiA in Lysobacter enzymogenes strain OH11. World J Microbiol Biotechnol 2011; 28:549-57. [PMID: 22806850 DOI: 10.1007/s11274-011-0846-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 07/08/2011] [Indexed: 10/18/2022]
Abstract
Here, three different suicide vectors were evaluated for the possibility of performing gene mutagenesis in strain OH11 using the chiA gene (accession number: DQ888611) as a new reporter. Suicide vector pEX18GM was selected, and it was successfully applied for disruption and in-frame deletions in the chiA gene in strain OH11, which was confirmed by PCR amplification and Southern hybridization. The chiA-deletion mutant OH11-3 did not have the ability to produce chitinase on chitine selection medium. Interestingly, the chiA-deletion mutants displayed wild-type antimicrobial activity against Saccharomyces cerevisiae, Magnaporthe grisea, Phytophthora capsici, Rhizoctonia solani, Sclerotinia sclerotiorum and Pythium ultimum. Our data suggest that chitinase might not be a unique lytic enzyme in controlling S. cerevisiae, M. grisea, P. capsici, and P. ultimum. R. solani, S. sclerotiorum. Also, suicide vector pEX18GM might be explored as a potential tool for gene deletions in L. enzymogenes, which will facilitate the molecular study of mechanisms of biological control in L. enzymogenes.
Collapse
|
42
|
Li S, Calvo AM, Yuen GY, Du L, Harris SD. Induction of cell wall thickening by the antifungal compound dihydromaltophilin disrupts fungal growth and is mediated by sphingolipid biosynthesis. J Eukaryot Microbiol 2011; 56:182-7. [PMID: 21462551 DOI: 10.1111/j.1550-7408.2008.00384.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dihydromaltophilin (heat-stable antifungal factor [HSAF]) is an antifungal metabolite produced in Lysobacter enzymogenes biocontrol strain C3. This compound induces cell wall thickening in Aspergillus nidulans. Here we show that the cell wall thickening is a general response to HSAF in diverse fungal species. In the A. nidulans model, the thickened cell wall negatively affects hyphal growth. Growth of HSAF-pre-treated hyphae failed to resume at hyphal tips with thick cell wall and the actin cable could not re-polarize at the thickened region of the cell wall, even after the treated hyphae were transferred to drug-free medium. Moreover, HSAF-induced cell wall thickening is mediated by sphingolipid synthesis: HSAF failed to induce cell wall thickening in the absence of ceramide synthase BarA and the sphingolipid synthesis inhibitor myriocin was able to suppress HSAF-induced cell wall thickening. The thickened cell wall could be digested by chitinase suggesting that chitin contributes to the HSAF-induced thickening. Furthermore, HSAF treatment activated the transcription of two chitin synthase encoding genes chsB and chsC.
Collapse
Affiliation(s)
- Shaojie Li
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583, USA.
| | | | | | | | | |
Collapse
|
43
|
Fan J, Qian G, Chen T, Zhao Y, Liu F, Walcott RR, Hu B. The acyl-homoserine lactone (AHL)-type quorum sensing system affects growth rate, swimming motility and virulence in Acidovorax avenae subsp. citrulli. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0562-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Hayward A, Fegan N, Fegan M, Stirling G. Stenotrophomonas
and
Lysobacter
: ubiquitous plant‐associated
gamma‐
proteobacteria of developing significance in applied microbiology. J Appl Microbiol 2010; 108:756-770. [DOI: 10.1111/j.1365-2672.2009.04471.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- A.C. Hayward
- School of Chemistry and Molecular BioSciences, The University of Queensland, St Lucia, Qld, Australia
| | - N. Fegan
- Food Science Australia, Werribee, Vic, Australia
| | - M. Fegan
- School of Chemistry and Molecular BioSciences, The University of Queensland, St Lucia, Qld, Australia
| | | |
Collapse
|
45
|
Biocontrol ability of Lysobacter antibioticus HS124 against Phytophthora blight is mediated by the production of 4-hydroxyphenylacetic acid and several lytic enzymes. Curr Microbiol 2009; 59:608-15. [PMID: 19727949 DOI: 10.1007/s00284-009-9481-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 06/29/2009] [Accepted: 08/04/2009] [Indexed: 10/20/2022]
Abstract
Several rhizobacteria play a vital role in plant protection, plant growth promotion and the improvement of soil health. In this study, we have isolated a strain of Lysobacter antibioticus HS124 from rhizosphere and demonstrate its antifungal activity against various pathogens including Phytophthora capsici, a destructive pathogen of pepper plants. L. antibioticus HS124 produced lytic enzymes such as chitinase, beta-1,3-glucanase, lipase, protease, and an antibiotic compound. This antibiotic compound was purified by diaion HP-20, silica gel, sephadex LH-20 column chromatography and high performance liquid chromatography. The purified compound was identified as 4-hydroxyphenylacetic acid by gas chromatography-electron ionization (GC-EI) and gas chromatography-chemical ionization (GC-CI) mass spectrometry. This antibiotic exhibited destructive activity toward P. capsici hyphae. In vivo experiments utilizing green house grown pepper plants demonstrated the protective effect of L. antibioticus HS124 against P. capsici. The growth of pepper plants treated with L. antibioticus culture was enhanced, resulting in greater protection from fungal disease. Optimum growth and protection was found when cultures were grown in presence of Fe(III). Additionally, the activities of pathogenesis-related proteins such as chitinase and beta-1,3-glucanase decreased in roots, but increased in leaves with time after treatment compared to controls. Our results demonstrate L. antibioticus HS124 as a promising candidate for biocontrol of P. capsici in pepper plants.
Collapse
|
46
|
Kobayashi DY, Crouch JA. Bacterial/Fungal interactions: from pathogens to mutualistic endosymbionts. ANNUAL REVIEW OF PHYTOPATHOLOGY 2009; 47:63-82. [PMID: 19400650 DOI: 10.1146/annurev-phyto-080508-081729] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A fundamental issue in biology is the question of how bacteria initiate and maintain pathogenic relationships with eukaryotic hosts. Despite billions of years of coexistence, far less is known about bacterial/fungal interactions than the equivalent associations formed by either of these types of microorganisms with higher eukaryotes. This review highlights recent research advances in the field of bacterial/fungal interactions, and provides examples of the various forms such interactions may assume, ranging from simple antagonism and parasitism to more intimate associations of pathogenesis and endosymbiosis. Information derived from the associations of bacteria and fungi in the context of natural and agronomic ecosystems is emphasized, including interactions observed from biological control systems, endosymbiotic relationships, diseases of cultivated mushrooms, and model systems that expand our understanding of human disease. The benefits of studying these systems at the molecular level are also emphasized.
Collapse
Affiliation(s)
- Donald Y Kobayashi
- Department of Plant Biology & Pathology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520, USA.
| | | |
Collapse
|
47
|
Li S, Jochum CC, Yu F, Zaleta-Rivera K, Du L, Harris SD, Yuen GY. An antibiotic complex from Lysobacter enzymogenes strain C3: antimicrobial activity and role in plant disease control. PHYTOPATHOLOGY 2008; 98:695-701. [PMID: 18944294 DOI: 10.1094/phyto-98-6-0695] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Lysobacter enzymogenes C3 is a bacterial biological control agent that exhibits antagonism against multiple fungal pathogens. Its antifungal activity was attributed in part to lytic enzymes. In this study, a heat-stable antifungal factor (HSAF), an antibiotic complex consisting of dihydromaltophilin and structurally related macrocyclic lactams, was found to be responsible for antagonism by C3 against fungi and oomycetes in culture. HSAF in purified form exhibited inhibitory activity against a wide range of fungal and oomycetes species in vitro, inhibiting spore germination, and disrupting hyphal polarity in sensitive fungi. When applied to tall fescue leaves as a partially-purified extract, HSAF at 25 mug/ml and higher inhibited germination of conidia of Bipolaris sorokiniana compared with the control. Although application of HSAF at 12.5 mug/ml did not reduce the incidence of conidial germination, it inhibited appressorium formation and suppressed Bipolaris leaf spot development. Two mutant strains of C3 (K19 and DeltaNRPS) that were disrupted in different domains in the hybrid polyketide synthase-nonribosomal peptide synthetase gene for HSAF biosynthesis and had lost the ability to produce HSAF were compared with the wild-type strain for biological control efficacy against Bipolaris leaf spot on tall fescue and Fusarium head blight, caused by Fusarium graminearum, on wheat. Both mutant strains exhibited decreased capacity to reduce the incidence and severity of Bipolaris leaf spot compared with C3. In contrast, the mutant strains were as efficacious as the wild-type strain in reducing the severity of Fusarium head blight. Thus, HSAF appears to be a mechanism for biological control by strain C3 against some, but not all, plant pathogenic fungi.
Collapse
Affiliation(s)
- S Li
- Department of Plant Pathology, University of Nebraska, Lincoln 68583, USA
| | | | | | | | | | | | | |
Collapse
|