1
|
Shelley BA, Pandey B, Sarwar A, Douches D, Collins P, Qu X, Pasche J, Clarke CR. The Role of Soil Abundance of TxtAB in Potato Common Scab Disease Severity. PHYTOPATHOLOGY 2024; 114:1176-1185. [PMID: 38079373 DOI: 10.1094/phyto-09-23-0347-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Common scab is an economically costly soilborne disease of potato endemic in many potato-growing regions. The disease is caused by species of Streptomyces bacteria that produce the phytotoxin thaxtomin A. The primary disease management tool available to growers is planting resistant cultivars, but no cultivar is fully resistant to common scab, and partially resistant cultivars are often not the preferred choice of growers because of agronomic or market considerations. Therefore, growers would benefit from knowledge of the presence and severity of common scab infestations in field soils to make informed planting decisions. We implemented a quantitative PCR diagnostic assay to enable field detection and quantification of all strains of Streptomyces that cause common scab in the United States through amplification of thaxtomin A biosynthetic genes. Greenhouse trials confirmed that pathogen abundance was highly correlated with disease severity for five distinct phytopathogenic Streptomyces species, although the degree of disease severity was dependent on the pathogen species. Correlations between the abundance of the thaxtomin biosynthetic genes from field soil with disease on tubers at field sites across four U.S. states and across 2 years were not as strong as correlations observed in greenhouse assays. We also developed an effective droplet digital PCR diagnostic assay that also has potential for field quantification of thaxtomin biosynthetic genes. Further improvement of the PCR assays and added modeling of other environmental factors that impact disease outcome, such as soil composition, can aid growers in making informed planting decisions.
Collapse
Affiliation(s)
- Brett A Shelley
- U.S. Department of Agriculture-Agricultural Research Service, Genetic Improvement for Fruits and Vegetables Lab, 10300 Baltimore Avenue, Beltsville, MD 20705
| | - Binod Pandey
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - Arslan Sarwar
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - David Douches
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Paul Collins
- U.S. Department of Agriculture-Agricultural Research Service, Genetic Improvement for Fruits and Vegetables Lab, 10300 Baltimore Avenue, Beltsville, MD 20705
| | - Xinshun Qu
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802
| | - Julie Pasche
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - Christopher R Clarke
- U.S. Department of Agriculture-Agricultural Research Service, Genetic Improvement for Fruits and Vegetables Lab, 10300 Baltimore Avenue, Beltsville, MD 20705
| |
Collapse
|
2
|
Zhang S, Zhang C, Wu J, Liu S, Zhang R, Handique U. Isolation, characterization and application of noble bacteriophages targeting potato common scab pathogen Streptomyces stelliscabiei. Microbiol Res 2024; 283:127699. [PMID: 38520838 DOI: 10.1016/j.micres.2024.127699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
Bacteriophages have emerged as promising alternatives to pesticides for controlling bacterial pathogens in crops. Among these pathogens, Streptomyces stelliscabiei (syn. S. stelliscabiei) is a primary causative agent of potato common scab (PCS), resulting in substantial global economic losses. The traditional management methods for PCS face numerous challenges, highlighting the need for effective and environmentally friendly control strategies. In this study, we successfully isolated three novel bacteriophages, namely Psst1, Psst2, and Psst4, which exhibited a broad host range encompassing seven S. stelliscabiei strains. Morphological analysis revealed their distinct features, including an icosahedral head and a non-contractile tail. These phages demonstrated stability across a broad range of temperatures (20-50°C), pH (pH 3-11), and UV exposure time (80 min). Genome sequencing revealed double-stranded DNA phage with open reading frames encoding genes for phage structure, DNA packaging and replication, host lysis and other essential functions. These phages lacked genes for antibiotic resistance, virulence, and toxicity. Average nucleotide identity, phylogenetic, and comparative genomic analyses classified the three phages as members of the Rimavirus genus, with Psst1 and Psst2 representing novel species. All three phages efficiently lysed S. stelliscabiei in the liquid medium and alleviated scab symptom development and reduced pathogen abundance on potato slices. Furthermore, phage treatments of radish seedlings alleviated the growth inhibition caused by S. stelliscabiei with no disease symptoms. In soil potted experiments, phages significantly reduced disease incidence by 40%. This decrease is attributed to a reduction in pathogen density and the selection of S. stelliscabiei strains with reduced virulence and slower growth rates in natural environments. Our study is the first to report the isolation of three novel phages that infect S. stelliscabiei as a host bacterium. These phages exhibit a broad host range, and demonstrate stability under a variety of environmental conditions. Additionally, they demonstrate biocontrol efficacy against bacterial infections in potato slices, radish seedlings, and potted experiments, underscoring their significant potential as biocontrol agents for the effective management of PCS.
Collapse
Affiliation(s)
- Shihe Zhang
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot 010021, China
| | - Cheligeer Zhang
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot 010021, China
| | - Jian Wu
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot 010021, China
| | - Simiao Liu
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot 010021, China
| | - Ruofang Zhang
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot 010021, China
| | - Utpal Handique
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
3
|
Karagoz K, Dadasoglu F, Alaylar B, Kotan R. Evaluation of molecular typing methods for some scab-causing Streptomyces strains from Turkey. World J Microbiol Biotechnol 2024; 40:122. [PMID: 38441818 PMCID: PMC10914884 DOI: 10.1007/s11274-024-03914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024]
Abstract
This study was conducted for identifying phylogenetic relationships between 15 scab-causing Streptomyces species including S. bottropensis, S. europaeiscabiei, S. scabiei, S. stelliscabiei and, other 11 Streptomyces sp. All of the strains were originally isolated from symptomatic potatoes in Erzurum Province, The Eastern Anatolia Region of Turkey. Some morphological and biochemical properties of the strains were defined in our former research. Then, 16 s rRNA regions of them were sequenced. After the sequence data assembly, phylogenetic analyzes were performed. The phylogenetic analyses revealed that the strains are involved in the same major group and, substantially similar to reference strains. Additionally, some subgroup formations were also recorded. Moreover, Repetitive element-based PCR (Rep-PCR), Enterobacterial repetitive intergenic consensus (ERIC-PCR), and BOX-PCR fingerprinting molecular typing methods were used for as molecular typing methods. According to our knowledge, this is the first report on phylogenetic relationships of scab-causing Streptomyces species from Turkey. However, the identification of most pathogenic strains remained at the species level.
Collapse
Affiliation(s)
- Kenan Karagoz
- Faculty of Science and Literature, Department of Molecular Biology and Genetics, Agri Ibrahim Cecen University, 04100, Agri, Turkey.
| | - Fatih Dadasoglu
- Agricultural Faculty, Department of Plant Protection, Ataturk University, 25240, Erzurum, Turkey
| | - Burak Alaylar
- Faculty of Science and Literature, Department of Molecular Biology and Genetics, Agri Ibrahim Cecen University, 04100, Agri, Turkey
| | - Recep Kotan
- Agricultural Faculty, Department of Plant Protection, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
4
|
Weisberg AJ, Pearce E, Kramer CG, Chang JH, Clarke CR. Diverse mobile genetic elements shaped the evolution of Streptomyces virulence. Microb Genom 2023; 9. [PMID: 37930748 DOI: 10.1099/mgen.0.001127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Mobile genetic elements can innovate bacteria with new traits. In plant pathogenic Streptomyces, frequent and recent acquisition of integrative and conjugative or mobilizable genetic elements is predicted to lead to the emergence of new lineages that gained the capacity to synthesize Thaxtomin, a phytotoxin neccesary for induction of common scab disease on tuber and root crops. Here, we identified components of the Streptomyces-potato pathosystem implicated in virulence and investigated them as a nested and interacting system to reevaluate evolutionary models. We sequenced and analysed genomes of 166 strains isolated from over six decades of sampling primarily from field-grown potatoes. Virulence genes were associated to multiple subtypes of genetic elements differing in mechanisms of transmission and evolutionary histories. Evidence is consistent with few ancient acquisition events followed by recurrent loss or swaps of elements carrying Thaxtomin A-associated genes. Subtypes of another genetic element implicated in virulence are more distributed across Streptomyces. However, neither the subtype classification of genetic elements containing virulence genes nor taxonomic identity was predictive of pathogenicity on potato. Last, findings suggested that phytopathogenic strains are generally endemic to potato fields and some lineages were established by historical spread and further dispersed by few recent transmission events. Results from a hierarchical and system-wide characterization refine our understanding by revealing multiple mechanisms that gene and bacterial dispersion have had on shaping the evolution of a Gram-positive pathogen in agricultural settings.
Collapse
Affiliation(s)
- Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Emma Pearce
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Charles G Kramer
- USDA Agricultural Research Service, USDA Agricultural Research Service, Genetic Improvement for Fruits and Vegetables Lab, Beltsville, MD, USA
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Christopher R Clarke
- USDA Agricultural Research Service, USDA Agricultural Research Service, Genetic Improvement for Fruits and Vegetables Lab, Beltsville, MD, USA
| |
Collapse
|
5
|
Vitor L, Amaral DT, Corrêa DBA, Ferreira-Tonin M, Lucon ET, Appy MP, Tomaseto AA, Destéfano SAL. Streptomyces hilarionis sp. nov. and Streptomyces hayashii sp. nov., two new strains associated with potato scab in Brazil. Int J Syst Evol Microbiol 2023; 73. [PMID: 37319004 DOI: 10.1099/ijsem.0.005916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Two new actinobacteria, designated strains IBSBF 2807T and IBSBF 2953T, isolated from scab lesions on potato tubers grown in the southern Brazilian states of Rio Grande do Sul and Santa Catarina, respectively, were characterized and identified through a polyphasic approach. Phylogenetic analyses of 16S rRNA sequences revealed that these two strains belong to the genus Streptomyces. Multilocus sequence analysis using five concatenated genes, atpD, gyrB, recA, rpoB and trpB, allocated strains IBSBF 2807T and IBSBF 2953T in distinct branches of Streptomyces phytopathogenic strains. PCR-RFLP analysis of the atpD gene also confirmed that these strains differ from the type strains of Streptomyces associated with potato scab. The morphological, physiological and biochemical characterization, along with the overall genome-related index properties, indicated that these two strains could be distinguished from their closest phylogenetic relatives and each other. According to the data, IBSBF 2807T and IBSBF 2953T represent two new Streptomyces species related to potato scab. The proposed names for these strains are Streptomyces hilarionis sp. nov. (IBSBF 2807T=CBMAI 2674T=ICMP 24297T=MUM 22.66T) and Streptomyces hayashii sp. nov (IBSBF 2953T=CBMAI 2675T=ICMP 24301T=MUM 22.68T).
Collapse
Affiliation(s)
- Lucas Vitor
- Laboratório de Bacteriologia Vegetal, Centro Avançado de Pesquisa em Proteção de Plantas e Saúde Animal (CAPSA), Instituto Biológico, Campinas 13101-680, SP, Brazil
| | - Danilo Trabuco Amaral
- Departamento de Biologia, Centro de Ciências Humanas e Biológicas, Universidade Federal de São Carlos (UFSCar), Sorocaba, Brazil
- Programa de Pós Graduação em Biologia Comparada, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Daniele Bussioli Alves Corrêa
- Laboratório de Bacteriologia Vegetal, Centro Avançado de Pesquisa em Proteção de Plantas e Saúde Animal (CAPSA), Instituto Biológico, Campinas 13101-680, SP, Brazil
| | - Mariana Ferreira-Tonin
- Laboratório de Bacteriologia Vegetal, Centro Avançado de Pesquisa em Proteção de Plantas e Saúde Animal (CAPSA), Instituto Biológico, Campinas 13101-680, SP, Brazil
| | - Emanuel Torres Lucon
- Laboratório de Bacteriologia Vegetal, Centro Avançado de Pesquisa em Proteção de Plantas e Saúde Animal (CAPSA), Instituto Biológico, Campinas 13101-680, SP, Brazil
| | - Mariana Pereira Appy
- Laboratório de Bacteriologia Vegetal, Centro Avançado de Pesquisa em Proteção de Plantas e Saúde Animal (CAPSA), Instituto Biológico, Campinas 13101-680, SP, Brazil
| | - Alex Augusto Tomaseto
- Laboratório de Bacteriologia Vegetal, Centro Avançado de Pesquisa em Proteção de Plantas e Saúde Animal (CAPSA), Instituto Biológico, Campinas 13101-680, SP, Brazil
| | - Suzete Aparecida Lanza Destéfano
- Laboratório de Bacteriologia Vegetal, Centro Avançado de Pesquisa em Proteção de Plantas e Saúde Animal (CAPSA), Instituto Biológico, Campinas 13101-680, SP, Brazil
| |
Collapse
|
6
|
Haq IU, Mukhtar Z, Anwar-Ul-Haq M, Liaqat S. Deciphering host-pathogen interaction during Streptomyces spp. infestation of potato. Arch Microbiol 2023; 205:222. [PMID: 37149838 DOI: 10.1007/s00203-023-03560-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023]
Abstract
Potato crop, currently, is the staple food crop of about 1.3 billion global population. Potato is attaining even more admiration globally day by day owing to its public acceptability. However, potato sustainable production is distinctly challenged by multiple factors like diseases, pests and climate change etc. Among diseases, common scab is one of the prime threats to potato crop due to its soil-borne nature and versatility in phytotoxins' secretion. Common scab is caused multiple number of phytopathogenic streptomyces strains. Despite extensive research programs, researchers are still unable to identify a significant solution to this threat that is proliferating exceptional rate across the globe. To develop feasible remedies, adequate information regarding host-pathogen interaction should be available. This review possesses insights on existing pathogenic species, the evolution of novel pathogenic streptomyces spp. and phytotoxins produced by the pathogenic strains. Furthermore, which type of physiological, biochemical and genetic activities occur during pathogen's infestation of the host are also canvassed.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan.
- Ayub Agricultural Research Institute, Faisalabad, Pakistan.
| | - Zahid Mukhtar
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | | | - Sana Liaqat
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| |
Collapse
|
7
|
Sánchez de la Nieta R, Santamaría RI, Díaz M. Two-Component Systems of Streptomyces coelicolor: An Intricate Network to Be Unraveled. Int J Mol Sci 2022; 23:ijms232315085. [PMID: 36499414 PMCID: PMC9739842 DOI: 10.3390/ijms232315085] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Bacteria of the Streptomyces genus constitute an authentic biotech gold mine thanks to their ability to produce a myriad of compounds and enzymes of great interest at various clinical, agricultural, and industrial levels. Understanding the physiology of these organisms and revealing their regulatory mechanisms is essential for their manipulation and application. Two-component systems (TCSs) constitute the predominant signal transduction mechanism in prokaryotes, and can detect a multitude of external and internal stimuli and trigger the appropriate cellular responses for adapting to diverse environmental conditions. These global regulatory systems usually coordinate various biological processes for the maintenance of homeostasis and proper cell function. Here, we review the multiple TCSs described and characterized in Streptomyces coelicolor, one of the most studied and important model species within this bacterial group. TCSs are involved in all cellular processes; hence, unravelling the complex regulatory network they form is essential for their potential biotechnological application.
Collapse
|
8
|
Nguyen HP, Shelley BA, Mowery J, Clarke CR. Description of Streptomyces griseiscabiei sp. nov. and reassignment of Streptomyces sp. strain NRRL B-16521 to Streptomyces acidiscabies. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Streptomyces
strain NRRL B-2795T (DSM 112329T=NRRL B-2795T) is described as the type strain of Streptomyces griseiscabiei sp. nov. using whole-genome average nucleotide identity and multilocus sequence analyses in addition to phenotypic characterization of carbon source utilization, spore chain morphology, melanin production, salt tolerance, pH tolerance, plant pathogenicity and antibiotic resistance. This strain was previously classified as
Streptomyces scabiei
but suggested as a potential novel species. A second
Streptomyces
strain, NRRL B-16521, previously named
Streptomyces scabiei
, and also previously suggested as a potential novel species, is assigned to
Streptomyces acidiscabies
based on whole-genome average nucleotide identity. Morphological and biochemical characterizations also support this designation for NRRL B-16521. Both
Streptomyces
sp. strain NRRL B-2795T and NRRL B-16521 cause common scab on multiple cultivars of potato.
Collapse
Affiliation(s)
- Hien P. Nguyen
- Genetic Improvement for Fruits and Vegetables Lab, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Brett A. Shelley
- Genetic Improvement for Fruits and Vegetables Lab, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Joseph Mowery
- Electron and Confocal Microscopy Unit, Beltsville Agricultural Research Center, Agricultural Research Service, USDA , Beltsville, MD 20705, USA
| | - Christopher R. Clarke
- Genetic Improvement for Fruits and Vegetables Lab, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| |
Collapse
|
9
|
Zhao J, Zhou Z, Bai X, Zhang D, Zhang L, Wang J, Wu B, Zhu J, Yang Z. A novel of new class II bacteriocin from Bacillus velezensis HN-Q-8 and its antibacterial activity on Streptomyces scabies. Front Microbiol 2022; 13:943232. [PMID: 35966655 PMCID: PMC9372549 DOI: 10.3389/fmicb.2022.943232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Potato common scab is a main soil-borne disease of potato that can significantly reduce its quality. At present, it is still a challenge to control potato common scab in the field. To address this problem, the 972 family lactococcin (Lcn972) was screened from Bacillus velezensis HN-Q-8 in this study, and an Escherichia coli overexpression system was used to obtain Lcn972, which showed a significant inhibitory effect on Streptomyces scabies, with a minimum inhibitory concentration of 10.58 μg/mL. The stability test showed that Lcn972 is stable against UV radiation and high temperature. In addition, long-term storage at room temperature and 4°C had limited effects on its activity level. The antibacterial activity of Lcn972 was enhanced by Cu2+ and Ca2+, but decreased by protease K. The protein was completely inactivated by Fe2+. Cell membrane staining showed that Lcn972 damaged the cell membrane integrity of S. scabies. Scanning electron microscope (SEM) and transmission electron microscope (TEM) observations revealed that the hyphae of S. scabies treated with Lcn972 were deformed and adhered, the cell membrane was incomplete, the cytoplasm distribution was uneven, and the cell appeared hollow inside, which led to the death of S. scabies. In conclusion, we used bacteriocin for controlling potato common scab for the first time in this study, and it provides theoretical support for the further application of bacteriocin in the control of plant diseases.
Collapse
Affiliation(s)
- Jing Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China
| | - Zhijun Zhou
- Experimental Training Center of Hebei Agricultural University, Baoding, China
| | - Xuefei Bai
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China
| | - Dai Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China
| | - Likui Zhang
- College of Environmental Science, Yangzhou University, Yangzhou, China
| | - Jinhui Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China
| | - Beibei Wu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China
| | - Jiehua Zhu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China
- *Correspondence: Jiehua Zhu,
| | - Zhihui Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Baoding, China
- Zhihui Yang,
| |
Collapse
|
10
|
Nigericin and Geldanamycin Are Phytotoxic Specialized Metabolites Produced by the Plant Pathogen
Streptomyces
sp. 11-1-2. Microbiol Spectr 2022; 10:e0231421. [PMID: 35225656 PMCID: PMC9045263 DOI: 10.1128/spectrum.02314-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plant pathogens use a variety of mechanisms, including the production of phytotoxic specialized metabolites, to establish an infection of host tissue. Although thaxtomin A is considered the key phytotoxin involved in the development of potato scab disease, there is increasing evidence that other phytotoxins can play a role in disease development in some instances.
Collapse
|
11
|
Wei Q, Li J, Yang S, Wang W, Min F, Guo M, Zhang S, Dong X, Hu L, Li Z, Wang X. Streptomyces rhizophilus Causes Potato Common Scab Disease. PLANT DISEASE 2022; 106:266-274. [PMID: 34615364 DOI: 10.1094/pdis-09-20-1902-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Common scab (CS) caused by Streptomyces spp. is a significant soilborne potato disease that results in tremendous economic losses globally. Identification of CS-associated species of the genus Streptomyces can enhance understanding of the genetic variation of these bacterial species and is necessary for the control of this epidemic disease. The present study isolated Streptomyces strain 6-2-1(1) from scabby potatoes in Keshan County, Heilongjiang Province, China. PCR analysis confirmed that the strain harbored the characteristic Streptomyces pathogenicity island (PAI) genes (txtA, txtAB, nec1, and tomA). Pathogenicity assays proved that the strain caused typical scab lesions on potato tuber surfaces and necrosis on radish seedlings and potato slices. Subsequently, the strain was systemically characterized at morphological, physiological, biochemical, and phylogenetic levels. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 6-2-1(1) shared 99.86% sequence similarity with Streptomyces rhizophilus JR-41T, isolated initially from bamboo in rhizospheric soil in Korea. PCR amplification followed by Sanger sequencing of the 16S rRNA gene of 164 scabby potato samples collected in Heilongjiang Province from 2019 to 2020 demonstrated that approximately 2% of the tested samples were infected with S. rhizophilus. Taken together, these results demonstrate that S. rhizophilus is capable of causing potato CS disease and may pose a potential challenge to potato production in Heilongjiang Province of China.
Collapse
Affiliation(s)
- Qi Wei
- Potato Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150016, China
| | - Jie Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shuai Yang
- Potato Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150016, China
| | - Wenzhong Wang
- Potato Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150016, China
| | - Fanxiang Min
- Potato Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150016, China
| | - Mei Guo
- Potato Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150016, China
| | - Shu Zhang
- Potato Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150016, China
| | - Xuezhi Dong
- Potato Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150016, China
| | - Linshuang Hu
- Potato Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150016, China
| | - Zhugang Li
- Institute of Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150016, China
| | - Xiaodan Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Cui L, Yang C, Jin M, Wei L, Yang L, Zhou J. Identification and biological characterization of a new pathogen that causes potato scab in Gansu Province, China. Microb Pathog 2021; 161:105276. [PMID: 34728371 DOI: 10.1016/j.micpath.2021.105276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
Potato scab caused by pathogenic Streptomyces is a serious soil-borne disease on potato. In this study, a new Streptomyces strain 5A-1 was isolated from potato samples in China. Based on morphological characteristics, 16S rDNA gene sequence analyses, it was identified as Streptomyces griseoplanus (Streptacidiphilus griseoplanus), pathogenicity of which was measured by the methods of small potato chips, radish slices and potato pot trial inoculation. Moreover, the pathogenic genes txtAB and tomA from the Streptomyces pathogenicity island (PAI) were detected. Determination of biological characteristics showed that the optimal temperature for the growth of S. griseoplanus strain 5A-1 was 25 °C, the optimal light condition was darkness, the optimal pH value was 8.5 and the most preferred carbon source and nitrogen source is glucose and aspartate, respectively. To our knowledge, it is the first report for S. griseoplanus, as a new pathogen, to cause potato scab.
Collapse
Affiliation(s)
- Lingxiao Cui
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Chengde Yang
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Mengjun Jin
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lijuan Wei
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Liping Yang
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jingjiang Zhou
- Laboratory of Biocontrol Engineering of Crop Pests and Diseases in Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China; State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxin District, Guiyang, 550025, China
| |
Collapse
|
13
|
da Silva Pereira G, Mollinari M, Qu X, Thill C, Zeng ZB, Haynes K, Yencho GC. Quantitative Trait Locus Mapping for Common Scab Resistance in a Tetraploid Potato Full-Sib Population. PLANT DISEASE 2021; 105:3048-3054. [PMID: 33728960 DOI: 10.1094/pdis-10-20-2270-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Despite the negative impact of common scab (Streptomyces spp.) on the potato industry, little is known about the genetic architecture of resistance to this bacterial disease in the crop. We evaluated a mapping population (∼150 full sibs) derived from a cross between two tetraploid potatoes ('Atlantic' × B1829-5) in three environments (MN11, PA11, ME12) under natural common scab pressure. Three measures to common scab reaction, namely percentage of scabby tubers and disease area and lesion indices, were found to be highly correlated (>0.76). Because of the large environmental effect, heritability values were zero for all three traits in MN11, but moderate to high in PA11 and ME12 (∼0.44 to 0.79). We identified a single quantitative trait locus (QTL) for lesion index in PA11, ME12, and joint analyses on linkage group 3, explaining ∼22 to 30% of the total variation. The identification of QTL haplotypes and candidate genes contributing to disease resistance can support genomics-assisted breeding approaches in the crop.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
| | - Marcelo Mollinari
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, U.S.A
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, U.S.A
| | - Xinshun Qu
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Christian Thill
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Zhao-Bang Zeng
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, U.S.A
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, U.S.A
| | - Kathleen Haynes
- Genetic Improvement of Fruits and Vegetables Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705, U.S.A
| | - G Craig Yencho
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, U.S.A
| |
Collapse
|
14
|
Major Streptomyces species associated with fissure scab of potato in South Africa including description of Streptomyces solaniscabiei sp. nov. Antonie van Leeuwenhoek 2021; 114:2033-2046. [PMID: 34585318 DOI: 10.1007/s10482-021-01659-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Streptomyces species are the causal agents of several scab diseases on potato tubers. A new type of scab symptom, caused by Streptomyces species, was observed in South Africa from 2010 onwards. The disease was initially thought to be caused by a single Streptomyces species, however, subsequent isolations from similar symptoms on other potato tubers revealed diversity of the Streptomyces isolates. The objective of this study was to characterise these isolates in order to determine what are the major species involved in the disease. This was done by sequencing and phylogenetic analyses of the 16S rDNA as well as five housekeeping genes, investigation of growth on different culture media, standard phenotypic tests and scanning electron microscopy of culture morphology. The presence of the pathogenicity island (PAI) present in plant pathogenic Streptomyces species was also investigated. The genomes of eight isolates, selected from the three main clades identified, were sequenced and annotated to further clarify species boundaries. Three isolates of each of the three main clades were also inoculated onto susceptible potato cultivars in order to establish the pathogenicity of the species. The results of the phylogenetic and genome analyses revealed that there are three main species involved, namely, Streptomyces werraensis, Streptomyces pseudogriseolus and a novel Streptomyces species that is described here as Streptomyces solaniscabiei sp. nov., with strain FS70T (= PPPPB BD 2226T = LMG 32103T) as the type strain. The glasshouse trial results showed that all three of the Streptomyces species are capable of producing fissure scab symptoms. None of the Streptomyces isolates from fissure scab contained the full PAI and the mechanism of disease initiation still needs to be determined. Genomic comparisons also indicated that S. gancidicus Suzuki 1957 (Approved Lists 1980) is a later heterotypic synonym of S. pseudogriseolus Okami and Umezawa 1955 (Approved Lists 1980).
Collapse
|
15
|
Handique U, Zhang R, Zhang Z, Feng Z, Sun Q, Wu J. First Report of Streptomyces stelliscabiei Causing Potato Common Scab in Guizhou Province, China. PLANT DISEASE 2021; 106:311. [PMID: 34420359 DOI: 10.1094/pdis-06-21-1242-pdn] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Potato (Solanum tuberosum L.) common scab can be caused by multiple pathogenic Streptomyces spp. worldwide. Potato tubers (cv. Favorita) with severe pitted common scab symptoms were observed at a small farm (2 hectares) during harvest in Anshun, Guizhou province in early May 2020. The disease incidence was around 10%, and symptomatic samples were collected to isolate the pathogen. Two isolates, ZR-IMU141 and ZR-IMU146 (Accession number MW995958 and MW995959 respectively), showed more than 99% sequence identity to S. stelliscabiei sequences (Accession No. HM018085). Five house-keeping genes for multi-locus sequence analyze (MLSA) of Streptomycetaceae were amplified, sequenced and uploaded to NCBI: atpD (MZ343164 and MZ343165), gyrB (MZ343162 and MZ343163), recA (MZ343166 and MZ343167), rpoB (MZ343168and MZ343169) and trpB (MZ343170 and MZ343171). All the genes show over 98% identity with S. stelliscabiei. Phylogenetic trees of 16S rRNA gene sequence and multi-locus sequence analysis (MLSA) were constructed. The two isolates contain pathogenicity genes txtAB, nec1, and tomA, which was confirmed by PCR. To complete Koch's postulates, 9 potato seedlings (cv. Favorita, 15 centimeters high), were transferred to new pots and inoculated with spore suspensions of ZR-IMU141 and ZR-IMU146 (104 CFU/ml), or water as a negative control. Two months later, potato tubers inoculated with either ZR-IMU141 or ZR-IMU146 exhibited typical symptoms of potato common scab, such as superficial or deep, raised, pitted, or polygonal lesions like the field symptoms, but the negative controls remained asymptomatic. The pathogens were reisolated from the lesions and confirmed identical to the original isolate by 16s rRNA gene sequences. To our knowledge, this is the first report of S. stelliscabiei causing potato common scab in Guizhou province, China. We believe that this report will draw attention to the study and management of the increased pool of scab pathogens in China.
Collapse
Affiliation(s)
- Utpal Handique
- Inner Mongolia University, 12576, Inner Mongolia Potato Engineering & Technology Research Center, Hohhot Zhaojun Road 24 Mongolian No. ICP16002391 -1, Hohhot, Inner Mongolia, China, 010010;
| | - Ruofang Zhang
- Inner Mongolia University, 12576, Inner Mongolia Potato Engineering & Technology Research Center, Hohhot, Inner Mongolia, China;
| | - Zhxin Zhang
- Inner Mongolia University, 12576, Inner Mongolia Potato Engineering & Technology Research Center, Hohhot, Inner Mongolia, China;
| | - Zhiwen Feng
- Inner Mongolia University, 12576, Inner Mongolia Potato Engineering & Technology Research Center, Hohhot, Inner Mongolia, China;
| | - Qinghua Sun
- Inner Mongolia University, 12576, Inner Mongolia Potato Engineering & Technology Research Center, Hohhot, Inner Mongolia, China;
| | - Jian Wu
- Inner Mongolia University, 12576, Inner Mongolia Potato Engineering & Technology Research Center, Hohhot, Inner Mongolia, China;
| |
Collapse
|
16
|
Hudec C, Biessy A, Novinscak A, St-Onge R, Lamarre S, Blom J, Filion M. Comparative Genomics of Potato Common Scab-Causing Streptomyces spp. Displaying Varying Virulence. Front Microbiol 2021; 12:716522. [PMID: 34413844 PMCID: PMC8369830 DOI: 10.3389/fmicb.2021.716522] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022] Open
Abstract
Common scab of potato causes important economic losses worldwide following the development of necrotic lesions on tubers. In this study, the genomes of 14 prevalent scab-causing Streptomyces spp. isolated from Prince Edward Island, one of the most important Canadian potato production areas, were sequenced and annotated. Their phylogenomic affiliation was determined, their pan-genome was characterized, and pathogenic determinants involved in their virulence, ranging from weak to aggressive, were compared. 13 out of 14 strains clustered with Streptomyces scabiei, while the last strain clustered with Streptomyces acidiscabies. The toxicogenic and colonization genomic regions were compared, and while some atypical gene organizations were observed, no clear correlation with virulence was observed. The production of the phytotoxin thaxtomin A was also quantified and again, contrary to previous reports in the literature, no clear correlation was found between the amount of thaxtomin A secreted, and the virulence observed. Although no significant differences were observed when comparing the presence/absence of the main virulence factors among the strains of S. scabiei, a distinct profile was observed for S. acidiscabies. Several mutations predicted to affect the functionality of some virulence factors were identified, including one in the bldA gene that correlates with the absence of thaxtomin A production despite the presence of the corresponding biosynthetic gene cluster in S. scabiei LBUM 1485. These novel findings obtained using a large number of scab-causing Streptomyces strains are challenging some assumptions made so far on Streptomyces’ virulence and suggest that other factors, yet to be characterized, are also key contributors.
Collapse
Affiliation(s)
- Cindy Hudec
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Adrien Biessy
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| | - Amy Novinscak
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, Agassiz, BC, Canada
| | - Renée St-Onge
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Simon Lamarre
- Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Martin Filion
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| |
Collapse
|
17
|
Corrêa DBA, do Amaral DT, da Silva MJ, Destéfano SAL. Streptomyces brasiliscabiei, a new species causing potato scab in south Brazil. Antonie van Leeuwenhoek 2021; 114:913-931. [PMID: 33881637 DOI: 10.1007/s10482-021-01566-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/29/2021] [Indexed: 12/01/2022]
Abstract
This study aimed to characterize six Streptomyces strains associated with potato scab in south Brazil through polyphasic taxonomy involving morphology, pathogenicity and genetic features. These strains were compared with other potato-scab Streptomyces species mainly S. europaeiscabiei, S. scabiei and S. stelliscabiei. South-Brazilian Streptomyces strains were morphologically distinct from the type strains of S. scabiei (CFBP 4517T) and their genomospecies S. europaeiscabiei (CFBP 4497 T) and S. stelliscabiei (CFBP 4521T), producing a brown substrate mycelium with red borders and cream-grey brown aerial spores. Red-brown diffusible pigment on YME was also observed. The carbon sources L-Arabinose, D-Fructose, D-Glucose, D-Mannitol, meso-Inositol, Raffinose, Rhamnose, Sucrose, D-Xylose were tested for these strains. All strains were pathogenic causing symptoms of necrosis on radish and several potato cultivars commonly used in potato growing areas in Brazil. In greenhouse conditions, the strains caused scab disease and produced deep-pitted lesions covering large areas of the tuber. These results were correlated with presence of pathogenicity marker genes (txtAB, tomA or nec1) detected by PCR amplifications. In both phylogenetic analyses, 16S rRNA and MLSA, Streptomyces sp. Brazilian strains were closely related to S. europaeiscabiei, S. scabiei and S. stelliscabiei species, but they were allocated in separated branches supported by high bootstrap values and/or with low sequence similarity values. Sequencing of whole genome showed an 10,846,379 bp linear chromosome with high GC content (71.3%) consisting of 9179 putative genes, 3 rRNAs, 89 tRNAs and 1 CRISPRS. The molecular data, including genomic features, associated with morphological, biochemical and pathogenic characteristics warrant that the six Streptomyces Brazilian strains represent a new species associated with potato scab in Brazil, which would be named Streptomyces brasiliscabiei with IBSBF 2867T as the type strain.
Collapse
Affiliation(s)
- Daniele Bussioli Alves Corrêa
- Laboratório de Bacteriologia Vegetal, Instituto Biológico, Centro Avançado em Proteção de Plantas e Sanidade Animal-CAPSA, Alameda Dos Vidoeiros, 1097, Gramado, Campinas, SP, CEP:13101-680, Brazil
| | - Danilo Trabuco do Amaral
- Faculdade de Filosofia, Ciências E Letras, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Márcio José da Silva
- Centro de Biologia Molecular E Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Suzete Aparecida Lanza Destéfano
- Laboratório de Bacteriologia Vegetal, Instituto Biológico, Centro Avançado em Proteção de Plantas e Sanidade Animal-CAPSA, Alameda Dos Vidoeiros, 1097, Gramado, Campinas, SP, CEP:13101-680, Brazil.
| |
Collapse
|
18
|
Hudec C, Novinscak A, Filion M. Diversity and Virulence of Streptomyces spp. Causing Potato Common Scab in Prince Edward Island, Canada. PHYTOPATHOLOGY 2021; 111:617-626. [PMID: 32976057 DOI: 10.1094/phyto-08-20-0339-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Common scab (CS) is a potato disease that significantly decreases the market value of potato tubers after the development of necrotic lesions on their surface. Streptomyces scabiei is the main causal agent of CS; however, other closely related species, including S. acidiscabies and S. turgidiscabies, have also been shown to cause the disease. In this study, we characterized the genetic and phenotypic diversity of Streptomyces spp. causing CS in Prince Edward Island, the main potato-producing province in Canada. Two hundred and ninety-six pathogenic Streptomyces spp. isolates were retrieved from diseased tubers harvested from six fields located across a longitudinal geographical gradient. Genome fingerprinting analyses using repetitive elements PCR (ERIC- and BOX-PCR) revealed 14 distinct genetic groups. Thirteen groups were taxonomically affiliated with S. scabiei, whereas the fourteenth group was affiliated with S. acidiscabies. Their geographical distribution was characterized and revealed that on average between six and eight different genetic groups were detected per field, with variable abundance. Virulence assays showed strong differences in virulence between the genetic groups, ranging from low to highly virulent. Interestingly, pathogenic Streptomyces spp. populations in each field seem to be dominated by the most virulent genetic groups. The results obtained will contribute to better understanding of the population dynamic of pathogenic Streptomyces spp. causing CS of potato and promoting the development of more efficient detection and intervention tools to manage this important potato disease.
Collapse
Affiliation(s)
- Cindy Hudec
- Department of Biology, Université de Moncton, Moncton, New Brunswick, Canada
| | - Amy Novinscak
- Department of Biology, Université de Moncton, Moncton, New Brunswick, Canada
| | - Martin Filion
- Saint-Jean-sur-Richelieu Research and Development Center, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Quebec, Canada
| |
Collapse
|
19
|
Weisberg AJ, Kramer CG, Kotha RR, Luthria DL, Chang JH, Clarke CR. A Novel Species-Level Group of Streptomyces Exhibits Variation in Phytopathogenicity Despite Conservation of Virulence Loci. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:39-48. [PMID: 33030393 DOI: 10.1094/mpmi-06-20-0164-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The genus Streptomyces includes several phytopathogenic species that cause common scab, a devastating disease of tuber and root crops, in particular potato. The diversity of species that cause common scab is unknown. Likewise, the genomic context necessary for bacteria to incite common scab symptom development is not fully characterized. Here, we phenotyped and sequenced the genomes of five strains from a poorly studied Streptomyces lineage. These strains form a new species-level group. When genome sequences within just these five strains are compared, there are no polymorphisms of loci implicated in virulence. Each genome contains the pathogenicity island that encodes for the production of thaxtomin A, a phytotoxin necessary for common scab. Yet, not all sequenced strains produced thaxtomin A. Strains varied from nonpathogenic to highly virulent on two hosts. Unexpectedly, one strain that produced thaxtomin A and was pathogenic on radish was not aggressively pathogenic on potato. Therefore, while thaxtomin A biosynthetic genes and production of thaxtomin A are necessary, they are not sufficient for causing common scab of potato. Additionally, results show that even within a species-level group of Streptomyces strains, there can be aggressively pathogenic and nonpathogenic strains despite conservation of virulence genes.
Collapse
Affiliation(s)
- Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, OR 97331, U.S.A
| | - Charles G Kramer
- Genetic Improvement for Fruits and Vegetables Lab, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, U.S.A
| | - Raghavendhar R Kotha
- Food Composition and Methods Development Lab, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, U.S.A
| | - Devanand L Luthria
- Food Composition and Methods Development Lab, Beltsville Human Nutrition Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, U.S.A
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, OR 97331, U.S.A
- Center for Genome Research and Biocomputing, Oregon State University, OR 97331, U.S.A
| | - Christopher R Clarke
- Genetic Improvement for Fruits and Vegetables Lab, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, U.S.A
| |
Collapse
|
20
|
Ismail S, Jiang B, Nasimi Z, Inam-ul-Haq M, Yamamoto N, Danso Ofori A, Khan N, Arshad M, Abbas K, Zheng A. Investigation of Streptomyces scabies Causing Potato Scab by Various Detection Techniques, Its Pathogenicity and Determination of Host-Disease Resistance in Potato Germplasm. Pathogens 2020; 9:pathogens9090760. [PMID: 32957549 PMCID: PMC7559370 DOI: 10.3390/pathogens9090760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 11/16/2022] Open
Abstract
Streptomyces scabies is a Gram-positive bacterial pathogen that causes common scab disease to several crops, particularly in the potato. It is a soil borne pathogen, a very devastating scab pathogen and difficult to manage in the field. Streptomyces has several species that cause common scab such as S. scabiei, S. acidiscabies, S. europaeiscabiei, S. luridiscabiei, S. niveiscabiei, S. puniciscabiei, S. reticuliscabiei, S. stelliscabiei, S. turgidiscabies, S. ipomoeae. Common scab disease harmfully affects potato economic and market value due to the presence of black spots on the tuber. Owing to its genetic diversity and pathogenicity, the determination of pathogen presence in potato fields is still challenging. In this study, S. scabies genetic diversity was measured by surveying five potato-growing areas of Pakistan during the growing season 2019. A total of 50 Streptomyces isolates, including S. scabies, S. acidiscabies, S. griseoflavus were isolated and identified based on morphologic, biochemical and molecular analysis. Virulent confirmation assays confirmed ten virulent strains of Streptomyces spp. On the potato cultivars Cardinal and Santee. Among the Streptomyces species, S. scabies showed the highest scab index, followed by S. acidiscabies and S. griseoflavus by exhibiting the scab-like lesions on potato tubers. Ten potato cultivars were screened against these virulent isolates of Streptomyces. The Faisalabad white variety showed the highest scab index followed By Cardinal, Tourag, Kuroda, Santee, Lady Rosetta, Asterix, Diamant, Faisalabad red and Sadaf. Moreover, genetic diversity and pathogenicity of Streptomyces spp. on potato tubers were also likely diverse in different geographical regions and also potato cultivars. This study represents a contribution to understanding the local interaction between potatoes and Streptomyces spp. in Pakistan. It will aid in supporting a solution for the management of this pathogen around the world.
Collapse
Affiliation(s)
- Sohaib Ismail
- Department of Plant Pathology, Sichuan Agricultural University, Chengdu 611130, China; (S.I.); (Z.N.); (N.Y.); (A.D.O.)
| | - Bo Jiang
- College of Lifescience and Technology, Yangtze Normal University, Chongqing 408100, China;
| | - Zohreh Nasimi
- Department of Plant Pathology, Sichuan Agricultural University, Chengdu 611130, China; (S.I.); (Z.N.); (N.Y.); (A.D.O.)
| | - M. Inam-ul-Haq
- Department of Plant Pathology, PMAS-Arid Agriculture University, Rawalpindi 44000, Pakistan;
| | - Naoki Yamamoto
- Department of Plant Pathology, Sichuan Agricultural University, Chengdu 611130, China; (S.I.); (Z.N.); (N.Y.); (A.D.O.)
| | - Andrews Danso Ofori
- Department of Plant Pathology, Sichuan Agricultural University, Chengdu 611130, China; (S.I.); (Z.N.); (N.Y.); (A.D.O.)
| | - Nawab Khan
- Department of Agricultural Economics, Sichuan Agricultural University, Chengdu 611130, China;
| | - Muhammad Arshad
- Department of Microbiology, Sichuan Agricultural University, Chengdu 611130, China;
| | - Kumail Abbas
- Institute of Horticulture, Sichuan Agricultural University, Chengdu 611130, China;
| | - Aiping Zheng
- Department of Plant Pathology, Sichuan Agricultural University, Chengdu 611130, China; (S.I.); (Z.N.); (N.Y.); (A.D.O.)
- Correspondence:
| |
Collapse
|
21
|
Prieto MC, Lapaz MI, Lucini EI, Pianzzola MJ, Grosso NR, Asensio CM. Thyme and suico essential oils: promising natural tools for potato common scab control. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:81-89. [PMID: 31539455 DOI: 10.1111/plb.13048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Potato common scab is a worldwide disease mainly caused by Streptomyces scabiei. It seriously affects potato crops by decreasing tuber quality. Essential oils (EO) are natural products with recognised antimicrobial properties. In this research, the antibacterial activities of thyme, oregano, suico and mint EO against S. scabiei were analysed. Infected tubers and soil samples were used for bacterial isolation; the obtained isolates were genetically identified. The chemical composition of the EO was determined by GC-MS. The broth microdilution method was used to analyse antibacterial properties of EO. Thirty-one bacterial isolates were obtained. The isolate chosen for antibacterial assays was morpho-physiologically and genetically identified as S. scabiei. Thyme EO was mainly composed of thymol and o-cymene; suico EO of dihydrotagetone, trans-tagetone and verbenone; oregano EO of trans-sabinene hydrate, thymol and ɣ-terpinene; and mint EO of menthone and menthol. All the EO tested were effective against S. scabiei, but thyme and suico EO were the most successful, with a minimum inhibitory concentration of 0.068 g·l-1 and 0.147 g·l-1 , respectively, and a minimum bactericidal concentration of 0.137 g·l-1 and 0.147 g·l-1 , respectively. Scanning electron microscopy showed similar damage caused by both thyme and suico EO to the bacterial envelope. Total phenolic content of EO was not related to their antibacterial activity. Thyme and suico EO are effective antibacterial agents against S. scabiei, impeding bacterial viability and disturbing the bacterial cell envelope. These EO are promising tools for control of potato common scab.
Collapse
Affiliation(s)
- M C Prieto
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - M I Lapaz
- Área de Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - E I Lucini
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - M J Pianzzola
- Área de Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - N R Grosso
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - C M Asensio
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| |
Collapse
|
22
|
Bao S, Zhang Z, Lian Q, Sun Q, Zhang R. Evolution and expression of genes encoding TCP transcription factors in Solanum tuberosum reveal the involvement of StTCP23 in plant defence. BMC Genet 2019; 20:91. [PMID: 31801457 PMCID: PMC6892148 DOI: 10.1186/s12863-019-0793-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 11/22/2019] [Indexed: 11/20/2022] Open
Abstract
Background The plant-specific Teosinte branched1/Cycloidea/Proliferating cell factor (TCP) family of transcription factors is involved in the regulation of cell growth and proliferation, performing diverse functions in plant growth and development. In addition, TCP transcription factors have recently been shown to be targets of pathogenic effectors and are likely to play a vital role in plant immunity. No comprehensive analysis of the TCP family members in potato (Solanum tuberosum L.) has been undertaken, however, and whether their functions are conserved in potato remains unknown. Results To assess TCP gene evolution in potato, we identified TCP-like genes in several publicly available databases. A total of 23 non-redundant TCP transcription factor-encoding genes were identified in the potato genome and subsequently subjected to a systematic analysis that included determination of their phylogenetic relationships, gene structures and expression profiles in different potato tissues under basal conditions and after hormone treatments. These assays also confirmed the function of the class I TCP StTCP23 in the regulation of plant growth and defence. Conclusions This is the first genome-wide study including a systematic analysis of the StTCP gene family in potato. Identification of the possible functions of StTCPs in potato growth and defence provides valuable information for our understanding of the classification and functions of the TCP genes in potato.
Collapse
Affiliation(s)
- Sarina Bao
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, China
| | - Zhenxin Zhang
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, China
| | - Qun Lian
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, China
| | - Qinghua Sun
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, China
| | - Ruofang Zhang
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
23
|
Clarke CR, Kramer CG, Kotha RR, Wanner LA, Luthria DL, Kramer M. Cultivar Resistance to Common Scab Disease of Potato Is Dependent on the Pathogen Species. PHYTOPATHOLOGY 2019; 109:1544-1554. [PMID: 31066348 DOI: 10.1094/phyto-09-18-0368-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Common scab of potato is a superficial tuber disease caused by Streptomyces species that produce the phytotoxin thaxtomin. Because common scab development is highly dependent on the effects of this single toxin, the current operating paradigm in common scab pathology is that a potato cultivar resistant to one strain of the common scab pathogen is resistant to all strains. However, cultivar resistance to common scab disease identified in one breeding program is often not durable when tested in other potato breeding programs across the United States. We infected 55 potato cultivar populations with three distinct species of the common scab pathogen and identified cultivars that were resistant or susceptible to all three species and cultivars that had widely varying resistance dependent on the pathogen species. Overall lower virulence was associated with the strain that produces the least thaxtomin. This result showcases several cultivars of potato that are expected to be resistant to the majority of common scab populations but also highlights that many potato cultivars are resistant to only specific species of the pathogen. These results demonstrate that extension specialists and growers must consider their local population of the common scab pathogen when selecting which cultivars to plant for common scab resistance.
Collapse
Affiliation(s)
- Christopher R Clarke
- Genetic Improvement for Fruits and Vegetables Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705
| | - Charles G Kramer
- Genetic Improvement for Fruits and Vegetables Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705
| | - Raghavendhar R Kotha
- Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705
| | - Leslie A Wanner
- Genetic Improvement for Fruits and Vegetables Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705
| | - Devanand L Luthria
- Food Composition and Methods Development Laboratory, Beltsville Human Nutrition Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705
| | - Matthew Kramer
- Statistics Group, Northeast Area, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705
| |
Collapse
|
24
|
Liang F, Lin R, Yao Y, Xiao Y, Zhang M, Shi C, He X, Zhou B, Wang B. Systematic Identification of Pathogenic Streptomyces sp. AMCC400023 That Causes Common Scab and Genomic Analysis of Its Pathogenicity Island. PHYTOPATHOLOGY 2019; 109:1115-1128. [PMID: 30829555 DOI: 10.1094/phyto-07-18-0266-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Potato scab, a serious soilborne disease caused by Streptomyces spp., occurs in potato-growing areas worldwide and results in severe economic losses. In this paper, the pathogenicity of Streptomyces strain AMCC400023, isolated from potato scabs in Hebei Province, China, was verified systematically by the radish seedling test, the potato tuber slice assay, the potted back experiment, and the detection of phytotoxin thaxtomin A. Morphological, physiological, and biochemical characteristics were determined, and the 16S ribosomal RNA analyses of Streptomyces sp. AMCC400023 were carried out. To obtain the accurate taxonomic status of the pathogen strain, the whole genome was sequenced, and the phylogenetic tree among 31 Streptomyces genomes was formed. The average nucleotide identity (ANI) and in silico DNA-DNA hybridization (isDDH) were analyzed, and at the same time, the toxicity-related genes between Streptomyces sp. AMCC400023 and Streptomyces scabiei were compared, all based on the whole-genome level. All of the data supported that, instead of a member of S. scabiei, test strain Streptomyces sp. AMCC400023 was a distinct phytopathogen of potato common scab, which had a relatively close relationship with S. scabiei while separating clearly from S. scabiei at least in the species level of taxonomic status. The complete pathogenicity island (PAI) composition of Streptomyces sp. AMCC400023 was identified, which contained a toxin region and a colonization region. It was conjectured that the PAI of Streptomyces sp. AMCC400023 might be directly or indirectly acquired from S. scabiei 87-22 by horizontal gene transfer, or at the very least, there was a very close homologous relationship between the two pathogens as indicated by a series of analyses, such as phylogenetic relationships among 31 Streptomyces species, ANI and isDDH analyses, PAI structure mapping, thaxtomin A synthetic gene cluster tree construction, and most important, the collinearity analysis at the genome level.
Collapse
Affiliation(s)
- Feiyang Liang
- 1 Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Rongshan Lin
- 1 Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Yaqian Yao
- 1 Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | | | - Mingshuo Zhang
- 1 Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Chunyu Shi
- 3 Agricultural College, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Xiaoli He
- 1 Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Bo Zhou
- 1 Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, People's Republic of China
- 4 National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Tai'an 271018, People's Republic of China
| | - Bing Wang
- 1 Department of Microbiology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| |
Collapse
|
25
|
Li Y, Liu J, Díaz-Cruz G, Cheng Z, Bignell DRD. Virulence mechanisms of plant-pathogenic Streptomyces species: an updated review. MICROBIOLOGY-SGM 2019; 165:1025-1040. [PMID: 31162023 DOI: 10.1099/mic.0.000818] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gram-positive Actinobacteria from the genus Streptomyces are best known for their morphological complexity and for their ability to produce numerous bioactive specialized metabolites with useful applications in human and veterinary medicine and in agriculture. In contrast, the ability to infect living plant tissues and to cause diseases of root and tuber crops such as potato common scab (CS) is a rare attribute among members of this genus. Research on the virulence mechanisms of plant-pathogenic Streptomyces spp. has revealed the importance of the thaxtomin phytotoxins as key pathogenicity determinants produced by several species. In addition, other phytotoxic specialized metabolites may contribute to the development or severity of disease caused by Streptomyces spp., along with the production of phytohormones and secreted proteins. A thorough understanding of the molecular mechanisms of plant pathogenicity will enable the development of better management procedures for controlling CS and other plant diseases caused by the Streptomyces.
Collapse
Affiliation(s)
- Yuting Li
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| | - Jingyu Liu
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| | - Gustavo Díaz-Cruz
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| | - Zhenlong Cheng
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| | - Dawn R D Bignell
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada
| |
Collapse
|
26
|
Alejo A, Burgueño E, Maldonado LA, Herrera G, Felix R, Quintana ET. In vitro effect of the crude extract of a potato common scab streptomycete in Sinaloa, Mexico. Rev Argent Microbiol 2019; 51:363-370. [PMID: 30799233 DOI: 10.1016/j.ram.2018.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/27/2018] [Accepted: 09/08/2018] [Indexed: 11/29/2022] Open
Abstract
A strain isolated from potato common scab superficial lesions in El Fuerte Valley in northern Sinaloa, Mexico, was identified by 16S rRNA and morphological methods. Moreover, the effects of the crude extract of strain V2 was evaluated on radish and potato. The isolate was similar to Streptomyces acidiscabies in its morphological properties; however, the 16S rRNA gene sequence of strain V2 was neither 100% identical to this species nor to the streptomycetes previously reported in Sinaloa, Mexico. Strain V2 did not amplify any specific PCR products for genes nec1 and tomA, which have been found and reported in S. acidiscabies. Strain V2 produced a PCR product for the txtAB operon, which is related to the production of thaxtomin. In vitro assays using crude thaxtomin extract and a spore suspension of the organism caused necrotic symptoms on radish and potato, which were highly virulent in potato. This study reports that Streptomyces sp. V2 has a toxigenic region (TR) that is associated with the thaxtomin gene cluster.
Collapse
Affiliation(s)
- Amanda Alejo
- Laboratorio de Bioprospección en Actinobacterias, Instituto Politécnico Nacional (IPN), Escuela Nacional de Ciencias Biológicas (ENCB), Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Delg. Miguel Hidalgo, C.P. 11340, Mexico City, Mexico
| | - Eleuterio Burgueño
- Departamento de Química Orgánica, Instituto Politécnico Nacional (IPN), Escuela Nacional de Ciencias Biológicas (ENCB), Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Delg. Miguel Hidalgo, C.P. 11340, Mexico City, Mexico
| | - Luis A Maldonado
- Facultad de Química, Universidad Nacional Autónoma de México, Circuito exterior S/N, Ciudad Universitaria, Delg. Coyoacán, C.P. 04510, Mexico City, Mexico
| | - Gabriel Herrera
- Laboratorio de Diagnóstico fitosanitario (LDF), Unidad Tecnológica Fitosanitaria Integral (UTEFI), Junta Local de Sanidad Vegetal del Valle del Fuerte, Lázaro Cárdenas 315 Pte. Col. Centro, Los Mochis, Sinaloa, Mexico
| | - Ruben Felix
- Universidad de Occidente, Departamento de Ciencias Biológicas, Unidad Los Mochis, C.P. 81223 Los Mochis, Sinaloa, Mexico
| | - Erika T Quintana
- Laboratorio de Bioprospección en Actinobacterias, Instituto Politécnico Nacional (IPN), Escuela Nacional de Ciencias Biológicas (ENCB), Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Delg. Miguel Hidalgo, C.P. 11340, Mexico City, Mexico.
| |
Collapse
|
27
|
Sarwar A, Latif Z, Zhang S, Hao J, Bechthold A. A Potential Biocontrol Agent Streptomyces violaceusniger AC12AB for Managing Potato Common Scab. Front Microbiol 2019; 10:202. [PMID: 30800116 PMCID: PMC6375851 DOI: 10.3389/fmicb.2019.00202] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/24/2019] [Indexed: 11/13/2022] Open
Abstract
Potato common scab (PCS) is an economically important disease worldwide. In this study we demonstrated the possible role of Streptomyces violaceusniger AC12AB in controlling PCS. Isolates of Streptomyces scabies were obtained from CS infected tubers collected from Maine United States, which were confirmed by morphological and molecular analysis including 16S rRNA sequencing and RFLP analysis of amplified 16S-23S ITS. Pathogenicity assays related genes including txtAB, nec1, and tomA were also identified in all S. scabies strains through PCR reaction. An antagonistic bacterial strain was isolated from soil in Punjab and identified as S. violaceusniger AC12AB based on 16S rRNA sequencing analysis. Methanolic extract of S. violaceusniger AC12AB contained azalomycin RS-22A which was confirmed by 1H and 13C-NMR, 1H/1H-COSY, HMBC and HMQC techniques. S. violaceusniger AC12AB exhibited plant growth promotion attributes including Indole-3-acetic acid production with 17 μgmL-1 titers, siderophores production, nitrogen fixation and phosphates solubilization potential. When tubers were inoculated with S. violaceusniger AC12AB, significant (P < 0.05) PCS disease reduction up to 90% was observed in greenhouse and field trials, respectively. Likewise, S. violaceusniger AC12AB significantly (P < 0.05) increased potato crop up to 26.8% in field trial. Therefore, plant growth promoting S. violaceusniger AC12AB could provide a dual benefit by decreasing PCS disease severity and increasing potato yield as an effective and inexpensive alternative strategy to manage this disease.
Collapse
Affiliation(s)
- Arslan Sarwar
- Department of Microbiology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Zakia Latif
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Songya Zhang
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jianjun Hao
- School of Food and Agriculture, The University of Maine, Orono, ME, United States
| | - Andreas Bechthold
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
28
|
Enciso-Rodriguez F, Douches D, Lopez-Cruz M, Coombs J, de Los Campos G. Genomic Selection for Late Blight and Common Scab Resistance in Tetraploid Potato ( Solanum tuberosum). G3 (BETHESDA, MD.) 2018; 8:2471-2481. [PMID: 29794167 PMCID: PMC6027896 DOI: 10.1534/g3.118.200273] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Potato (Solanum tuberosum) is a staple food crop and is considered one of the main sources of carbohydrates worldwide. Late blight (Phytophthora infestans) and common scab (Streptomyces scabies) are two of the primary production constraints faced by potato farming. Previous studies have identified a few resistance genes for both late blight and common scab; however, these genes explain only a limited fraction of the heritability of these diseases. Genomic selection has been demonstrated to be an effective methodology for breeding value prediction in many major crops (e.g., maize and wheat). However, the technology has received little attention in potato breeding. We present the first genomic selection study involving late blight and common scab in tetraploid potato. Our data involves 4,110 (Single Nucleotide Polymorphisms, SNPs) and phenotypic field evaluations for late blight (n=1,763) and common scab (n=3,885) collected in seven and nine years, respectively. We report moderately high genomic heritability estimates (0.46 ± 0.04 and 0.45 ± 0.017, for late blight and common scab, respectively). The extent of genotype-by-year interaction was high for late blight and low for common scab. Our assessment of prediction accuracy demonstrates the applicability of genomic prediction for tetraploid potato breeding. For both traits, we found that more than 90% of the genetic variance could be captured with an additive model. For common scab, the highest prediction accuracy was achieved using an additive model. For late blight, small but statistically significant gains in prediction accuracy were achieved using a model that accounted for both additive and dominance effects. Using whole-genome regression models we identified SNPs located in previously reported hotspots regions for late blight, on genes associated with systemic disease resistance responses, and a new locus located in a WRKY transcription factor for common scab.
Collapse
Affiliation(s)
| | | | | | | | - Gustavo de Los Campos
- Department of Epidemiology & Biostatistics
- Department of Statistics & Probability
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, 48824
| |
Collapse
|
29
|
Sarwar A, Latif Z, Zhang S, Zhu J, Zechel DL, Bechthold A. Biological Control of Potato Common Scab With Rare Isatropolone C Compound Produced by Plant Growth Promoting Streptomyces A1RT. Front Microbiol 2018; 9:1126. [PMID: 29899736 PMCID: PMC5989138 DOI: 10.3389/fmicb.2018.01126] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/14/2018] [Indexed: 12/01/2022] Open
Abstract
Potato is prone to many drastic diseases like potato common scab (CS). As no highly effective methods exist for managing CS, this study explored the possibility of using biological control. Ten bacterial strains were isolated from CS-infected potato tubers from four different locations of Punjab, Pakistan, and identified based on biochemical and molecular analysis. Analysis of 16s rDNA sequences amplified by PCR revealed the isolated bacterial strains to be Streptomyces scabies, S. turgidiscabies and S. stelliscabiei. Pathogenic islands were also confirmed among the isolates after identification of txtAB, nec1, and tomA genes with PCR amplification. One strain isolated from soil was antagonistic to the pathogenic Streptomyces spp., and determined to be Streptomyces A1RT on the basis of 16s rRNA sequencing. A methanolic extract of Streptomyces A1RT contained Isatropolone C, which was purified and structurally determined by 1H- and 13C-NMR, 1H/1H-COSY, HMQC, and HMBC techniques. Streptomyces A1RT also produced the plant growth hormone indole-3-acetic acid (IAA) with a titer of 26 μg ml-1 as confirmed by spectrophotometry and HPLC. In a greenhouse assay, disease severity index was established from 0 to 500. Average disease severity indexes were recorded as 63, 130.5, and 78 for Streptomyces scabies, S. turgidiscabies and S. stelliscabiei, respectively. When Streptomyces A1RT was applied in soil that contained one of these pathogenic isolates, the average disease severity indexes were significantly (P < 0.05) reduced to 11.1, 5.6 and 8.4, respectively. A significant increase in tuber weight and shoot development was also observed with the tubers treated with Streptomyces A1RT. The use of the plant growth-promoting Streptomyces A1RT against potato CS thus provides an alternative strategy to control the disease without affecting environmental, plants, animals and human health.
Collapse
Affiliation(s)
- Arslan Sarwar
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Zakia Latif
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Songya Zhang
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jing Zhu
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg im Breisgau, Germany
| | - David L Zechel
- Department of Chemistry, Queen's University, Kingston, ON, Canada
| | - Andreas Bechthold
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
30
|
Lin C, Tsai CH, Chen PY, Wu CY, Chang YL, Yang YL, Chen YL. Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. PLoS One 2018; 13:e0196520. [PMID: 29698535 PMCID: PMC5919641 DOI: 10.1371/journal.pone.0196520] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/13/2018] [Indexed: 11/25/2022] Open
Abstract
Potato common scab, which is caused by soil-borne Streptomyces species, is a severe plant disease that results in a significant reduction in the economic value of potatoes worldwide. Due to the lack of efficacious pesticides, crop rotations, and resistant potato cultivars against the disease, we investigated whether biological control can serve as an alternative approach. In this study, multiple Bacillus species were isolated from healthy potato tubers, and Bacillus amyloliquefaciens Ba01 was chosen for further analyses based on its potency against the potato common scab pathogen Streptomyces scabies. Ba01 inhibited the growth and sporulation of S. scabies and secreted secondary metabolites such as surfactin, iturin A, and fengycin with potential activity against S. scabies as determined by imaging mass spectrometry. In pot assays, the disease severity of potato common scab decreased from 55.6 ± 11.1% (inoculated with S. scabies only) to 4.2 ± 1.4% (inoculated with S. scabies and Ba01). In the field trial, the disease severity of potato common scab was reduced from 14.4 ± 2.9% (naturally occurring) to 5.6 ± 1.1% after Ba01 treatment, representing evidence that Bacillus species control potato common scab in nature.
Collapse
Affiliation(s)
- Chih Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Chia-Hsin Tsai
- Department of Plant Pathology, Taiwan Agricultural Research Institute, Taichung, Taiwan
| | - Pi-Yu Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Yen Wu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Ya-Lin Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ying-Lien Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
31
|
Lapaz MI, Huguet-Tapia JC, Siri MI, Verdier E, Loria R, Pianzzola MJ. Genotypic and Phenotypic Characterization of Streptomyces Species Causing Potato Common Scab in Uruguay. PLANT DISEASE 2017; 101:1362-1372. [PMID: 30678602 DOI: 10.1094/pdis-09-16-1348-re] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Isolation and characterization of common scab (CS) pathogen Streptomyces spp. from Uruguayan potato tubers and soil samples were done in response to significant economic losses due to CS on potato in autumn 2010. Seventy of the 331 isolates were classified as pathogenic owing to their ability to induce necrosis on tuber disks and stunting of radish seedling. Streptomyces spp. causing CS on potato in Uruguay were found to represent a range of different species by virtue of their diverse morphological and physiological traits as well as rep-PCR, rpoB phylogenetic analysis, and multi-locus sequences analysis. We identified isolates primarily as Streptomyces scabiei, S. acidiscabies, and S. europaeiscabiei. However, some of the pathogenic isolates still remain to be identified at the species level. This highlights the need for improved methods for discrimination among pathogenic Streptomyces species. The presence of Streptomyces pathogenicity island (PAI) genes was analyzed, including genes encoding for thaxtomin synthetase (txtA, txtB), tomatinase (tomA), and a necrosis protein (nec1). Among the isolates that were pathogenic, 50% contained the four pathogenicity genes, 33% had an atypical composition of PAI marker genes, and 17% did not contain any genes. The absence of the genes reported to be involved in thaxtomin biosynthesis (txtA, txtB) was confirmed by whole-genome sequencing of two representative strains of this group. This finding suggests the participation of other virulence factors in plant pathogenicity.
Collapse
Affiliation(s)
- M I Lapaz
- Cátedra de Microbiología, Departamento de Biociencias, Facultad de Química (FQ), Universidad de la República, 11800 Montevideo, Uruguay
| | - J C Huguet-Tapia
- Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida (UF-IFAS), Gainesville 32611 USA
| | - M I Siri
- Cátedra de Microbiología, Departamento de Biociencias, FQ, Universidad de la República, 11800 Montevideo, Uruguay
| | - E Verdier
- Dirección General de Servicios Agrícolas, Departamento Laboratorios Biológicos, Ministerio de Ganadería Agricultura y Pesca, 12900 Montevideo, Uruguay
| | - R Loria
- Department of Plant Pathology, UF-IFAS, Gainesville 32611 USA
| | - M J Pianzzola
- Cátedra de Microbiología, Departamento de Biociencias, FQ, Universidad de la República, 11800 Montevideo, Uruguay
| |
Collapse
|
32
|
Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP. Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiol Mol Biol Rev 2016; 80:1-43. [PMID: 26609051 PMCID: PMC4711186 DOI: 10.1128/mmbr.00019-15] [Citation(s) in RCA: 952] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Actinobacteria are Gram-positive bacteria with high G+C DNA content that constitute one of the largest bacterial phyla, and they are ubiquitously distributed in both aquatic and terrestrial ecosystems. Many Actinobacteria have a mycelial lifestyle and undergo complex morphological differentiation. They also have an extensive secondary metabolism and produce about two-thirds of all naturally derived antibiotics in current clinical use, as well as many anticancer, anthelmintic, and antifungal compounds. Consequently, these bacteria are of major importance for biotechnology, medicine, and agriculture. Actinobacteria play diverse roles in their associations with various higher organisms, since their members have adopted different lifestyles, and the phylum includes pathogens (notably, species of Corynebacterium, Mycobacterium, Nocardia, Propionibacterium, and Tropheryma), soil inhabitants (e.g., Micromonospora and Streptomyces species), plant commensals (e.g., Frankia spp.), and gastrointestinal commensals (Bifidobacterium spp.). Actinobacteria also play an important role as symbionts and as pathogens in plant-associated microbial communities. This review presents an update on the biology of this important bacterial phylum.
Collapse
Affiliation(s)
- Essaid Ait Barka
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Parul Vatsa
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Lisa Sanchez
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Nathalie Gaveau-Vaillant
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Cedric Jacquard
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | | | - Hans-Peter Klenk
- School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christophe Clément
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UFR Sciences, UPRES EA 4707, Université de Reims Champagne-Ardenne, Reims, France
| | - Yder Ouhdouch
- Faculté de Sciences Semlalia, Université Cadi Ayyad, Laboratoire de Biologie et de Biotechnologie des Microorganismes, Marrakesh, Morocco
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Sylvius Laboratories, Leiden University, Leiden, The Netherlands
| |
Collapse
|
33
|
Kobayashi A, Kobayashi YO, Someya N, Ikeda S. Community Analysis of Root- and Tuber-Associated Bacteria in Field-Grown Potato Plants Harboring Different Resistance Levels against Common Scab. Microbes Environ 2015; 30:301-9. [PMID: 26657303 PMCID: PMC4676553 DOI: 10.1264/jsme2.me15109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eight genotypes of potato plants with different resistance levels against common scab were grown in a field infested with Streptomyces turgidiscabies. DNA was extracted from the roots, tubers, and rhizosphere soils of each of the eight genotypes at the flowering stage, and the quantity of S. turgidiscabies genomic DNA was assessed by real-time PCR using a TaqMan probe. The results obtained showed that the different potato genotypes had significant impacts on the population levels of S. turgidiscabies between resistant and susceptible genotypes in the tubers, but not in the roots or rhizosphere soils. Clone analyses of 16S rRNA gene libraries from the eight potato genotypes identified three phyla (Proteobacteria, Firmicutes, and Actinobacteria) as dominant taxa in root and tuber clone libraries, while a clustering analysis identified 391 operational taxonomic units (OTUs) at the species level. Eleven OTUs closely related to Aquicella siphonis, Arthrobacter nicotinovorans, Streptomyces rishiriensis, Rhodococcus baikonurensis, Rhizobium radiobacter, Rhizobium etli, Phyllobacterium myrsinacearum, Paenibacillus pabuli, Paenibacillus alginolyticus, and Bacillus halmapalus were detected in the root or tuber libraries of all the potato genotypes examined. Furthermore, an abundance of OTUs related to Aquicella and Rhodococcus was observed in the rhizospheres of resistant and susceptible potato genotypes, respectively. Based on this ecological information, an efficient survey may be conducted for biological agents from the potato rhizosphere.
Collapse
Affiliation(s)
- Akira Kobayashi
- National Agricultural Research Center for Hokkaido Region, National Agriculture and Food Research Organization
| | | | | | | |
Collapse
|
34
|
Bouizgarne B, Ait Ben Aouamar A. Diversity of Plant Associated Actinobacteria. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2014. [DOI: 10.1007/978-3-319-05936-5_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Wanner LA, Kirk WW, Qu XS. Field efficacy of nonpathogenic Streptomyces species against potato common scab. J Appl Microbiol 2013; 116:123-33. [PMID: 24034169 DOI: 10.1111/jam.12336] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/09/2013] [Accepted: 08/22/2013] [Indexed: 11/28/2022]
Abstract
AIMS The primary objective of these experiments was to reduce pathogenicity and virulence of endemic soil pathogenic Streptomyces strains that cause potato common scab (CS) using nonpathogenic Streptomyces strains to suppress CS in a field situation. METHODS AND RESULTS Nonpathogenic Streptomyces strains that had shown potential for mitigating CS in greenhouse assays were used in Michigan and Pennsylvania fields known to have high CS disease pressure. Five biocontrol (BC) strains and three potato cultivars were used in 2009, and three BC strains and three cultivars were used in 2010 in each location. The effects of BC strains on CS disease incidence and severity differed between locations, years and potato cultivars. When overall means of individual BC treatments were compared with nontreated controls, CS incidence and severity were decreased by all BC strains in PA2009, PA2010 and MI2010, particularly in cultivar 'Yukon Gold' in MI. Biocontrol treatments also significantly shifted the proportions of superficial, raised and pitted lesion types in some cultivar/biocontrol treatment combinations. CONCLUSIONS All BC strains significantly reduced CS incidence and severity on 'Yukon Gold' in three of four trials, and one BC strain significantly improved the lesion severity profile in cultivar 'Atlantic'. No BC strain significantly reduced CS incidence and severity on all potato cultivars in the different years and locations. SIGNIFICANCE AND IMPACT OF THE STUDY Several nonpathogenic Streptomyces strains showed potential to reduce CS incidence and severity on two important potato-chipping cultivars in the field. These results can be further applied to reduce CS disease severity in potatoes.
Collapse
Affiliation(s)
- L A Wanner
- Genetic Improvement of Fruit and Vegetables Laboratory, USDA-ARS, Beltsville, MD, USA
| | | | | |
Collapse
|
36
|
Rosenzweig N, Tiedje JM, Quensen JF, Meng Q, Hao JJ. Microbial Communities Associated with Potato Common Scab-Suppressive Soil Determined by Pyrosequencing Analyses. PLANT DISEASE 2012; 96:718-725. [PMID: 30727523 DOI: 10.1094/pdis-07-11-0571] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Potato common scab, caused by Streptomyces spp., is an annual production problem for potato growers, and not effectively controlled by current methods. A field with naturally occurring common scab suppression has been identified in Michigan, and confirmed to have a biological basis for this disease suppression. This field and an adjacent scab nursery conducive to disease were studied using pyrosequencing to compare the two microbial communities. Total DNA was extracted from both the disease-conducive and -suppressive soils. A phylogenetically taxon-informative region of the 16S rRNA gene was used to establish operational taxonomic units (OTUs) to characterize bacterial community richness and diversity. In total, 1,124 OTUs were detected and 565 OTUs (10% dissimilarity) were identified in disease-conducive soil and 859 in disease-suppressive soil, including 300 shared both between sites. Common phyla based on relative sequence abundance were Acidobacteria, Proteobacteria, and Firmicutes. Sequences of Lysobacter were found in significantly higher numbers in the disease-suppressive soil, as were sequences of group 4 and group 6 Acidobacteria. The relative abundance of sequences identified as the genus Bacillus was significantly higher by an order of magnitude in the disease-conducive soil.
Collapse
Affiliation(s)
| | - James M Tiedje
- Department of Crop and Soil Science and Center for Microbial Ecology
| | - John F Quensen
- Department of Crop and Soil Science and Center for Microbial Ecology
| | | | - Jianjun J Hao
- Department of Plant Pathology, Michigan State University, East Lansing 48824
| |
Collapse
|
37
|
Hao JJ, Liu H, Donis-Gonzalez IR, Lu XH, Jones AD, Fulbright DW. Antimicrobial Activity of Chestnut Extracts for Potential Use in Managing Soilborne Plant Pathogens. PLANT DISEASE 2012; 96:354-360. [PMID: 30727136 DOI: 10.1094/pdis-03-11-0169] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chestnut extracts were studied for antimicrobial activity against selected microorganisms, including plant pathogens. Chestnut extract on paper discs was applied to an agar medium to evaluate the inhibition to multiple microorganisms or the extract was added at various concentrations to a culture medium to evaluate the growth of target microorganisms. Chestnut type, tissue of plants (shell, pellicle, and leaf), extraction methods, and physical characteristics were studied to determine antimicrobial activity. Most test microorganisms were inhibited by the extracts at different effective concentrations for 50% growth inhibition (EC50). Pseudomonas fluorescens was the most sensitive (EC50 = 4.4 μg/μl), Phytophthora cambivora was one of the least inhibited (EC50 = 185 μg/μl), and Cryphonectria parasitica was not inhibited. Extracts of the Japanese × European chestnut (Castanea crenata × C. sativa) 'Colossal' showed a greater inhibition than those of wild trees of the Chinese species (C. mollissima). High temperature did not affect the inhibitory effect. Extracts from chestnut pellicle had the highest concentration of antimicrobial compound, compared with leaf and shell. The active fraction contained several substances with molecular masses consistent with one flavonol glycoside and several terpenoid substances. Pellicle and shell tissue reduced radish scab disease caused by Streptomyces scabies in the greenhouse.
Collapse
Affiliation(s)
| | | | | | | | - A Daniel Jones
- Department of Biochemistry & Molecular Biology and Department of Chemistry
| | - Dennis W Fulbright
- Department of Plant Pathology, Michigan State University, East Lansing 48824
| |
Collapse
|
38
|
Dees MW, Somervuo P, Lysøe E, Aittamaa M, Valkonen JPT. Species' identification and microarray-based comparative genome analysis of Streptomyces species isolated from potato scab lesions in Norway. MOLECULAR PLANT PATHOLOGY 2012; 13:174-86. [PMID: 21880106 PMCID: PMC6638902 DOI: 10.1111/j.1364-3703.2011.00741.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Streptomyces strains were isolated from scab lesions on potatoes collected from different parts of Norway. Twenty-eight plant-pathogenic strains, as tested on seedlings of radish and on potato, were identified on the basis of physiological and molecular criteria. Polymerase chain reaction (PCR) analysis, using species-specific primers, and sequencing of the 16S rRNA gene identified 14 nonmelanin-producing strains to S. turgidiscabies. Fourteen melanin-producing strains were detected with primers specific to S. scabies, but whole-genome microarray analysis, based on 12 766 probes designed for 8848 predicted open reading frames (ORFs) of S. scabies, showed that the 14 strains were different from S. scabies. They were subsequently identified to be S. europaeiscabiei based on the internal transcribed spacer (ITS) sequences of the rRNA genes. This is the first report of the occurrence of S. turgidiscabies and S. europaeiscabiei in Norway. The putative 762 genes exhibiting the highest sequence differences between strains of S. europaeiscabiei and S. scabies according to microarray analysis were concentrated in relatively few gene ontology (GO) categories, including 'symbiosis and mutualism through parasitism', 'cell death' and 'responses to biotic stimulus', whereas genes related to primary metabolism appeared to be more conserved. Microarray data and 16S rRNA gene phylogeny showed, consistently, that there were two genetically distinguishable groups of S. europaeiscabiei on the basis of differences in 131 genes. The results provide novel information about the genetic variability of S. europaeiscabiei and the gene-specific variability between the genomes of S. europaeiscabiei and S. scabies. The usefulness of a custom-designed, whole-genome oligonucleotide microarray in a survey of bacterial plant pathogens was demonstrated.
Collapse
Affiliation(s)
- Merete W Dees
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | | | | | | | | |
Collapse
|
39
|
Qu X, Wanner L, Christ B. Multiplex real-time PCR (TaqMan) assay for the simultaneous detection and discrimination of potato powdery and common scab diseases and pathogens. J Appl Microbiol 2011; 110:769-77. [DOI: 10.1111/j.1365-2672.2010.04930.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Tagawa M, Tamaki H, Manome A, Koyama O, Kamagata Y. Isolation and characterization of antagonistic fungi against potato scab pathogens from potato field soils. FEMS Microbiol Lett 2010; 305:136-42. [PMID: 20653777 DOI: 10.1111/j.1574-6968.2010.01928.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Potato scab is a serious plant disease caused by several Streptomyces sp., and effective control methods remain unavailable. Although antagonistic bacteria and phages against potato scab pathogens have been reported, to the best of our knowledge, there is no information about fungi that are antagonistic to the pathogens. The aim of this study was to isolate fungal antagonists, characterize their phylogenetic positions, determine their antagonistic activities against potato scab pathogens, and highlight their potential use as control agents under lower pH conditions. Fifteen fungal stains isolated from potato field soils were found to have antagonistic activity against three well-known potato scab pathogens: Streptomyces scabiei, Streptomyces acidiscabiei, and Streptomyces turgidiscabiei. These 15 fungal strains were phylogenetically classified into at least six orders and nine genera based on 18S rRNA gene sequencing analysis. These fungal isolates were related to members of the genera Penicillium, Eupenicillium, Chaetomium, Fusarium, Cladosporium, Mortierella, Kionochaeta, Pseudogymnoascus, and Lecythophora. The antagonistic activities of most of the fungal isolates were highly strengthened under the lower pH conditions, suggesting the advantage of combining their use with a traditional method such as soil acidification. This is the first report to demonstrate that phylogenetically diverse fungi show antagonistic activity against major potato scab pathogens. These fungal strains could be used as potential agents to control potato scab disease.
Collapse
Affiliation(s)
- Masahiro Tagawa
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
41
|
Aittamaa M, Somervuo P, Laakso I, Auvinen P, Valkonen JPT. Microarray-based comparison of genetic differences between strains of Streptomyces turgidiscabies with focus on the pathogenicity island. MOLECULAR PLANT PATHOLOGY 2010; 11:733-746. [PMID: 21029319 PMCID: PMC6640499 DOI: 10.1111/j.1364-3703.2010.00641.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The areas of the pathogenicity island (PAI) designated as 'colonization region' (CR) and 'toxicogenic region' (TR) [Lerat et al. (2009) Mol. Plant Pathol. 10, 579-585] contain genes required for virulence and phytoxin production, respectively, in Streptomyces spp. causing common scab on potatoes. The PAI was tested for genetic variability by microarray analysis in strains of S. turgidiscabies isolated from potatoes in Finland. The data revealed four types of PAI based on divergent CR and TR which occurred in different combinations. Only one PAI type was highly similar to S. scabies (strains 87.22 and ATTC49173). Using probes designed for the predicted genes of S. scabies, two gene clusters in S. scabies appeared to be similar to most strains of S. turgidiscabies and contained PAI genes corresponding to CR and TR. They were located approximately 5 Mb apart in the S. scabies genome, as compared with only 0.3 Mb in S. turgidiscabies Car8. Data from comparative genomic hybridization with probes designed for S. scabies genes and for the PAI of S. turgidiscabies were compared by multilocus cluster analysis, which revealed two strains of S. turgidiscabies that were very closely related at the whole-genome level, but contained distinctly different PAIs. The type strain of S. reticuliscabiei (DSM41804; synonymous to S. turgidiscabies) was clustered with S. turgidiscabies. Taken together, the data indicate wide genetic variability of PAIs among strains of S. turgidiscabies, and demonstrate that PAI is made up of a mosaic of regions which may undergo independent evolution.
Collapse
Affiliation(s)
- Marja Aittamaa
- Department of Agricultural Sciences, PO Box 27, FIN-00014 University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
42
|
What does it take to be a plant pathogen: genomic insights from Streptomyces species. Antonie van Leeuwenhoek 2010; 98:179-94. [DOI: 10.1007/s10482-010-9429-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 03/09/2010] [Indexed: 11/26/2022]
|
43
|
Hao JJ, Meng QX, Yin JF, Kirk WW. Characterization of a New Streptomyces Strain, DS3024, That Causes Potato Common Scab. PLANT DISEASE 2009; 93:1329-1334. [PMID: 30759507 DOI: 10.1094/pdis-93-12-1329] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A novel strain of Streptomyces (named DS3024) was isolated from a potato field in Michigan in 2006. The taxonomy of the organism was determined by morphology, biochemistry, and genetic analysis. Analysis of the 16S ribosomal RNA gene sequence indicated that the organism was most similar to an isolate of Streptomyces sp., ME02-6979.3a, which is not pathogenic to potato tubers but is distinct from other known pathogenic Streptomyces spp. Strain DS3024 has genes that encode thaxtomin synthetase (txtAB), which is required for pathogenicity and virulence, and tomatinase (tomA), which is a common marker for many pathogenic Streptomyces spp. However, the nec1 gene (associated with virulence in most pathogenic Streptomyces spp.) was not detected. The new strain was capable of growth at pH 4.5, caused necrosis on potato tuber slices, and produced thaxtomin A. In greenhouse experiments, DS3024 caused scab symptoms on potato tubers similar to those caused by Streptomyces scabies on tubers of potato cv. Atlantic, which is scab susceptible. We propose that DS3024 is a new strain of Streptomyces capable of causing common scab on potato tubers. The prevalence of this strain of Streptomyces in potato-producing areas in the north-central United States has not been determined.
Collapse
Affiliation(s)
- J J Hao
- Department of Plant Pathology, Michigan State University, East Lansing 48824
| | - Q X Meng
- Department of Plant Pathology, Michigan State University, East Lansing 48824
| | - J F Yin
- Department of Plant Pathology, University of Georgia, Tifton 31793
| | - W W Kirk
- Department of Plant Pathology, Michigan State University, East Lansing
| |
Collapse
|
44
|
Lerat S, Simao-Beaunoir AM, Beaulieu C. Genetic and physiological determinants of Streptomyces scabies pathogenicity. MOLECULAR PLANT PATHOLOGY 2009; 10:579-85. [PMID: 19694949 PMCID: PMC6640508 DOI: 10.1111/j.1364-3703.2009.00561.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
UNLABELLED SUMMARY Common scab is a severe disease worldwide affecting tap root crops and potato tubers. It is caused by soil-borne filamentous bacteria belonging to the genus Streptomyces. Streptomycetes usually are saprophytic microorganisms, but a few species have acquired the ability to infect underground plant tissues. The predominant causal agent of potato scab worldwide is Streptomyces scabies. The production of phytotoxins called thaxtomins is essential for the virulence of common scab-causing agents. The genes involved in the biosynthetic pathway of thaxtomins and other virulence genes are clustered on a large pathogenicity island. The pathogenicity island can be mobilized and transferred to nonpathogenic relatives, leading to the emergence of new pathogenic streptomycetes. In most pathogenic Streptomyces species, thaxtomin A is the predominant form found. The regulation of thaxtomin A synthesis is complex. Although the plant-derived compound cellobiose is now recognized as the inducer of thaxtomin A synthesis at a genetic level, other molecules (including aromatic amino acids and some secondary metabolites) show inhibitory effects on the production of the toxin. This paper is an overview of common scab with a focus on S. scabies and its virulence mechanisms. TAXONOMY Streptomyces scabies (Thaxt.) Lambert and Loria; Kingdom Bacteria; Phylum Actinobacteria; Class Actinomycetes; Order Actinomycetales; Family Streptomycetaceae; genus Streptomyces; species scabies or scabiei. HOST RANGE Streptomyces scabies (syn. S. scabiei) has a broad host range comprising tuber vegetables and most tap root crops. Streptomyces scabies causes common scab on potato (Solanum tuberosum), beet (Beta vulgaris), carrot (Daucus carota), parsnip (Pastinaca sativa), radish (Raphanus sativus), rutabaga (Brassica napobrassica) and turnip (Brassica rapa). Disease symptoms: Common scab symptoms appear as randomly distributed shallow, raised or deep-pitted corky lesions. Their size and colour are quite variable, but lesions typically are brown with a diameter of a few millimetres. No above-ground symptoms disclose the presence of the disease as aerial tissues of scab-infected plants remain healthy. Streptomyces scabies also inhibits the growth of seedlings in monocot and dicot plants. USEFUL WEBSITES http://www.sanger.ac.uk/Projects/S_scabies, http://www.potatodiseases.org/scab.html, http://www.uri.edu/ce/factsheets/sheets/potatoscab.html.
Collapse
Affiliation(s)
- Sylvain Lerat
- Centre SEVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada, J1K 2R1
| | | | | |
Collapse
|
45
|
St-Onge R, Goyer C, Coffin R, Filion M. Genetic diversity of Streptomyces spp. causing common scab of potato in eastern Canada. Syst Appl Microbiol 2008; 31:474-84. [DOI: 10.1016/j.syapm.2008.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 09/12/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
|
46
|
Qu X, Wanner LA, Christ BJ. Using the TxtAB operon to quantify pathogenic Streptomyces in potato tubers and soil. PHYTOPATHOLOGY 2008; 98:405-412. [PMID: 18944188 DOI: 10.1094/phyto-98-4-0405] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The phytotoxin thaxtomin, produced by plant pathogenic Streptomyces species, is the only known pathogenicity determinant for common scab diseases of potato and other root and tuber crops. Genes encoding thaxtomin synthetase (txtAB) are found on a pathogenicity island characteristic of genetically diverse plant pathogenic Streptomyces species. In this study, an SYBR Green quantitative real-time polymerase chain reaction (PCR) assay using primers designed to anneal to the txtAB operon of Streptomyces was developed to quantify pathogenic bacterial populations in potatoes and soil. The real-time PCR assay was specific for pathogenic Streptomyces strains. The detection limit of the assay was 10 fg of the target DNA, or one genome equivalent. Cycle threshold (Ct) values were linearly correlated with the concentration of the target DNA (correlation coefficient R(2) = 0.99) and were not affected by the presence of plant DNA extracts, indicating the usefulness of the assay for quantitative analyses of the pathogenic bacteria in plant tissues. The amount of pathogenic Streptomyces DNA in total DNA extracts from 1 g asymptomatic and symptomatic tubers was quantified using the assay and ranged from 10(1) to 10(6) pg. A standard curve was established to quantify pathogenic Streptomyces in soil. Using the standard curve, numbers of pathogenic Streptomyces colony forming units were extrapolated to range from 10(3) to 10(6) per gram of soil from potato fields where common scab was found. This real-time PCR assay using primers designed from the txtAB operon allows rapid, accurate, and cost effective quantification of pathogenic Streptomyces strains in potato tubers and in soil.
Collapse
Affiliation(s)
- Xinshun Qu
- Department of Plant Pathology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
47
|
Wanner LA. High proportions of nonpathogenic Streptomyces are associated with common scab-resistant potato lines and less severe disease. Can J Microbiol 2007; 53:1062-75. [DOI: 10.1139/w07-061] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Streptomyces isolates were obtained from potato tubers with common scab lesions from 2 fields over a 3 year period in Minnesota and a 5 year period in Maine. Isolates were obtained from different potato cultivars or breeding lines and types of scab lesions. A majority of isolates could be classified as putative pathogens based on the presence of genes for biosynthesis of the pathogenicity determinant, thaxtomin, but large numbers of streptomycetes lacking genes for thaxtomin biosynthesis (presumably nonpathogenic) were also recovered. Most Streptomyces isolates recovered from raised and pitted lesions were pathogens, whereas mostly nonpathogenic isolates were recovered from unblemished potato skin or nonscab lesions. Fewer pathogenic than nonpathogenic isolates were recovered from the most resistant potato lines. The proportion and diversity of nonpathogenic isolates recovered was higher in Maine than in Minnesota. The association between greater numbers of nonpathogenic Streptomyces and less severe common scab suggests that the interaction between plant genotype and Streptomyces microbial community is important in determining the severity of common scab on potato, and emphasizes the role of complex interactions between plants and microbial populations on and near plant roots in plant disease outcomes.
Collapse
Affiliation(s)
- Leslie A. Wanner
- USDA–ARS Genetic Improvement of Fruit and Vegetable Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705, USA (e-mail: )
| |
Collapse
|
48
|
Wanner LA. A New Strain of Streptomyces Causing Common Scab in Potato. PLANT DISEASE 2007; 91:352-359. [PMID: 30781174 DOI: 10.1094/pdis-91-4-0352] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Common scab is a serious disease of potatoes (Solanum tuberosum) and other root and tuber crops, affecting the quality and market value of these crops. The disease is caused by gram-positive soil bacteria in the genus Streptomyces. A new common scab-causing streptomycete was isolated from scabby potatoes originating in southeastern Idaho. Research has supported a model of horizontal transfer of pathogenicity determinants among streptomycetes, and the new strain has hallmarks of the recently characterized Streptomyces pathogenicity island (PAI); it has genes encoding the synthetase for the pathogenicity determinant thaxtomin and for a second pathogenicity factor, tomatinase, although it lacks a third gene characteristic of the Streptomyces PAI, the nec1 gene. The new strain has a unique 16s rDNA gene sequence closely related to those of other pathogenic Streptomyces species. This 16s rDNA sequence was also found in isolates lacking a PAI, suggesting that the new pathogenic strain arose by horizontal transfer of a PAI into a saprophytic streptomycete. Isolates of the new strain are pathogenic on radish and potato, and are more virulent than the S. scabies type strain. In addition to scab lesions on potato tubers, lesions were also seen on underground stems and stolons. This new strain represents additional complexity in the pathogenic strains causing plant disease in the United States.
Collapse
Affiliation(s)
- Leslie A Wanner
- USDA-ARS Vegetable Laboratory, 10300 Baltimore Ave., Beltsville, MD 20705
| |
Collapse
|