1
|
Zhang Y, Liu F, Wang B, Qiu D, Liu J, Wu H, Cheng C, Bei X, Lü P. First Report of Burkholderia cepacia Causing Finger-Tip Rot on Banana Fruit in the Guangxi Province of China. PLANT DISEASE 2022; 106:PDIS05211083PDN. [PMID: 34854762 DOI: 10.1094/pdis-05-21-1083-pdn] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Yongyan Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fan Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongliang Qiu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiapeng Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huan Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunzhen Cheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Xuejun Bei
- College of Biology and Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Peitao Lü
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Liu Y, Bellich B, Hug S, Eberl L, Cescutti P, Pessi G. The Exopolysaccharide Cepacian Plays a Role in the Establishment of the Paraburkholderia phymatum - Phaseolus vulgaris Symbiosis. Front Microbiol 2020; 11:1600. [PMID: 32765457 PMCID: PMC7378592 DOI: 10.3389/fmicb.2020.01600] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Paraburkholderia phymatum is a rhizobial strain that belongs to the beta-proteobacteria, a group known to form efficient nitrogen-fixing symbioses within root nodules of several legumes, including the agriculturally important common bean. The establishment of the symbiosis requires the exchange of rhizobial and plant signals such as lipochitooligosaccharides (Nod factors), polysaccharides, and flavonoids. Inspection of the genome of the competitive rhizobium P. phymatum revealed the presence of several polysaccharide biosynthetic gene clusters. In this study, we demonstrate that bceN, a gene encoding a GDP-D-mannose 4,6-dehydratase, which is involved in the production of the exopolysaccharide cepacian, an important component of biofilms produced by closely related opportunistic pathogens of the Burkholderia cepacia complex (Bcc), is required for efficient plant colonization. Wild-type P. phymatum was shown to produce cepacian while a bceN mutant did not. Additionally, the bceN mutant produced a significantly lower amount of biofilm and formed less root nodules compared to the wild-type strain with Phaseolus vulgaris as host plant. Finally, expression of the operon containing bceN was induced by the presence of germinated P. vulgaris seeds under nitrogen limiting conditions suggesting a role of this polysaccharide in the establishment of this ecologically important symbiosis.
Collapse
Affiliation(s)
- Yilei Liu
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Barbara Bellich
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Sebastian Hug
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Liu J, Wang X, Zhang T, Li X. Assessment of active bacteria metabolizing phenolic acids in the peanut (Arachis hypogaea L.) rhizosphere. Microbiol Res 2017; 205:118-124. [DOI: 10.1016/j.micres.2017.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 08/08/2017] [Accepted: 09/09/2017] [Indexed: 01/05/2023]
|
4
|
Araújo WL, Creason AL, Mano ET, Camargo-Neves AA, Minami SN, Chang JH, Loper JE. Genome Sequencing and Transposon Mutagenesis of Burkholderia seminalis TC3.4.2R3 Identify Genes Contributing to Suppression of Orchid Necrosis Caused by B. gladioli. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:435-446. [PMID: 26959838 DOI: 10.1094/mpmi-02-16-0047-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
From a screen of 36 plant-associated strains of Burkholderia spp., we identified 24 strains that suppressed leaf and pseudobulb necrosis of orchid caused by B. gladioli. To gain insights into the mechanisms of disease suppression, we generated a draft genome sequence from one suppressive strain, TC3.4.2R3. The genome is an estimated 7.67 megabases in size, with three replicons, two chromosomes, and the plasmid pC3. Using a combination of multilocus sequence analysis and phylogenomics, we identified TC3.4.2R3 as B. seminalis, a species within the Burkholderia cepacia complex that includes opportunistic human pathogens and environmental strains. We generated and screened a library of 3,840 transposon mutants of strain TC3.4.2R3 on orchid leaves to identify genes contributing to plant disease suppression. Twelve mutants deficient in suppression of leaf necrosis were selected and the transposon insertions were mapped to eight loci. One gene is in a wcb cluster that is related to synthesis of extracellular polysaccharide, a key determinant in bacterial-host interactions in other systems, and the other seven are highly conserved among Burkholderia spp. The fundamental information developed in this study will serve as a resource for future research aiming to identify mechanisms contributing to biological control.
Collapse
Affiliation(s)
- Welington L Araújo
- 1 Laboratory of Molecular Biology and Microbial Ecology, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Allison L Creason
- 2 Department of Botany and Plant Pathology; and
- 3 Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, U.S.A
| | - Emy T Mano
- 1 Laboratory of Molecular Biology and Microbial Ecology, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Aline A Camargo-Neves
- 1 Laboratory of Molecular Biology and Microbial Ecology, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- 4 Interdisciplinary Center for Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, Brazil
| | - Sonia N Minami
- 4 Interdisciplinary Center for Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, Brazil
| | - Jeff H Chang
- 2 Department of Botany and Plant Pathology; and
- 3 Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, U.S.A
- 5 Center for Genome Research and Biocomputing, Oregon State University; and
| | - Joyce E Loper
- 2 Department of Botany and Plant Pathology; and
- 3 Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, U.S.A
- 6 USDA-Agricultural Research Service, Horticultural Crops Laboratory, Corvallis, Oregon, U.S.A
| |
Collapse
|
5
|
Diverse Burkholderia Species Isolated from Soils in the Southern United States with No Evidence of B. pseudomallei. PLoS One 2015; 10:e0143254. [PMID: 26600238 PMCID: PMC4658082 DOI: 10.1371/journal.pone.0143254] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/02/2015] [Indexed: 01/28/2023] Open
Abstract
The global distribution of the soil-dwelling bacterium Burkholderia pseudomallei, causative agent of melioidosis, is poorly understood. We used established culturing methods developed for B. pseudomallei to isolate Burkholderia species from soil collected at 18 sampling sites in three states in the southern United States (Arizona (n = 4), Florida (n = 7), and Louisiana (n = 7)). Using multi-locus sequence typing (MLST) of seven genes, we identified 35 Burkholderia isolates from these soil samples. All species belonged to the B. cepacia complex (Bcc), including B. cenocepacia, B. cepacia, B. contaminans, B. diffusa, B. metallica, B. seminalis, B. vietnamiensis and two unnamed members of the Bcc. The MLST analysis provided a high level of resolution among and within these species. Despite previous clinical cases within the U.S. involving B. pseudomallei and its close phylogenetic relatives, we did not isolate any of these taxa. The Bcc contains a number of opportunistic pathogens that cause infections in cystic fibrosis patients. Interestingly, we found that B. vietnamiensis was present in soil from all three states, suggesting it may be a common component in southern U.S. soils. Most of the Burkholderia isolates collected in this study were from Florida (30/35; 86%), which may be due to the combination of relatively moist, sandy, and acidic soils found there compared to the other two states. We also investigated one MLST gene, recA, for its ability to identify species within Burkholderia. A 365bp fragment of recA recovered nearly the same species-level identification as MLST, thus demonstrating its cost effective utility when conducting environmental surveys for Burkholderia. Although we did not find B. pseudomallei, our findings document that other diverse Burkholderia species are present in soils in the southern United States.
Collapse
|
6
|
Draft Genome Sequence of Burkholderia cenocepacia Strain 869T2, a Plant-Beneficial Endophytic Bacterium. GENOME ANNOUNCEMENTS 2015; 3:3/6/e01327-15. [PMID: 26564046 PMCID: PMC4972782 DOI: 10.1128/genomea.01327-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An endophytic bacterium, Burkholderia cenocepacia 869T2, isolated from vetiver grass, has shown its abilities for both in planta biocontrol and plant growth promotion. Its draft genome sequence was determined to provide insights into those metabolic pathways involved in plant-beneficial activity. This is the first genome report for endophytic B. cenocepacia.
Collapse
|
7
|
Zhu DW, Wu ZY, Luo AM, Gao H. Characterization and detection of toxoflavin-producingBurkholderiain rice straws andDaqufor Chinese Maotai-flavour liquor brewing. JOURNAL OF THE INSTITUTE OF BREWING 2015. [DOI: 10.1002/jib.210] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- De-wen Zhu
- Department of Food Engineering, College of Light Industry, Textile and Food Engineering; Sichuan University; Chengdu 610065 China
| | - Zheng-yun Wu
- Department of Food Engineering, College of Light Industry, Textile and Food Engineering; Sichuan University; Chengdu 610065 China
| | - Ai-min Luo
- Department of Food Engineering, College of Light Industry, Textile and Food Engineering; Sichuan University; Chengdu 610065 China
| | - Hong Gao
- Department of Food Engineering, College of Light Industry, Textile and Food Engineering; Sichuan University; Chengdu 610065 China
| |
Collapse
|
8
|
Suppiger A, Schmid N, Aguilar C, Pessi G, Eberl L. Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex. Virulence 2014; 4:400-9. [PMID: 23799665 PMCID: PMC3714132 DOI: 10.4161/viru.25338] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Burkholderia cepacia complex (Bcc) consists of 17 closely related species that are problematic opportunistic bacterial pathogens for cystic fibrosis patients and immunocompromised individuals. These bacteria are capable of utilizing two different chemical languages: N-acyl homoserine lactones (AHLs) and cis-2-unsaturated fatty acids. Here we summarize the current knowledge of the underlying molecular architectures of these communication systems, showing how they are interlinked and discussing how they regulate overlapping as well as specific sets of genes. A particular focus is laid on the role of these signaling systems in the formation of biofilms, which are believed to be highly important for chronic infections. We review genes that have been implicated in the sessile lifestyle of this group of bacteria. The new emerging role of the intracellular second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) as a downstream regulator of the fatty acid signaling cascade and as a key factor in biofilm formation is also discussed.
Collapse
Affiliation(s)
- Angela Suppiger
- Department of Microbiology, University of Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
9
|
Khodai-Kalaki M, Aubert DF, Valvano MA. Characterization of the AtsR hybrid sensor kinase phosphorelay pathway and identification of its response regulator in Burkholderia cenocepacia. J Biol Chem 2013; 288:30473-30484. [PMID: 24014026 DOI: 10.1074/jbc.m113.489914] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AtsR is a membrane-bound hybrid sensor kinase of Burkholderia cenocepacia that negatively regulates quorum sensing and virulence factors such as biofilm production, type 6-secretion, and protease secretion. Here we elucidate the mechanism of AtsR phosphorelay by site-directed mutagenesis of predicted histidine and aspartic acid phosphoacceptor residues. We demonstrate by in vitro phosphorylation that histidine 245 and aspartic acid 536 are conserved sites of phosphorylation in AtsR, and we also identify the cytosolic response regulator AtsT (BCAM0381) as a key component of the AtsR phosphorelay pathway. Monitoring the function of AtsR and its derivatives in vivo by measuring extracellular protease activity and swarming motility confirmed the in vitro phosphorylation results. Together we find that the AtsR receiver domain plays a fine-tuning role in determining the levels of phosphotransfer from its sensor kinase domain to the AtsT response regulator.
Collapse
Affiliation(s)
- Maryam Khodai-Kalaki
- From the Centre for Human Immunology, Department of Microbiology and Immunology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5C1, Canada and
| | - Daniel F Aubert
- From the Centre for Human Immunology, Department of Microbiology and Immunology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5C1, Canada and
| | - Miguel A Valvano
- From the Centre for Human Immunology, Department of Microbiology and Immunology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5C1, Canada and; the Centre for Infection and Immunity, Queen's University Belfast, BT9 5GZ Belfast, United Kingdom.
| |
Collapse
|
10
|
Aubert DF, O'Grady EP, Hamad MA, Sokol PA, Valvano MA. The Burkholderia cenocepacia sensor kinase hybrid AtsR is a global regulator modulating quorum-sensing signalling. Environ Microbiol 2012; 15:372-85. [PMID: 22830644 DOI: 10.1111/j.1462-2920.2012.02828.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Burkholderia cenocepacia is commonly found in the environment and also as an important opportunistic pathogen infecting patients with cystic fibrosis. Successful infection by this bacterium requires coordinated expression of virulence factors, which is achieved through different quorum sensing (QS) regulatory systems. Biofilm formation and Type 6 secretion system (T6SS) expression in B. cenocepacia K56-2 are positively regulated by QS and negatively regulated by the sensor kinase hybrid AtsR. This study reveals that in addition to affecting biofilm and T6SS activity, the deletion of atsR in B. cenocepacia leads to overproduction of other QS-regulated virulence determinants including proteases and swarming motility. Expression of the QS genes, cepIR and cciIR, was upregulated in the ΔatsR mutant and resulted in early and increased N-acylhomoserine lactone (AHL) production, suggesting that AtsR plays a role in controlling the timing and fine-tuning of virulence gene expression by modulating QS signalling. Furthermore, a ΔatsRΔcepIΔcciI mutant could partially upregulate the same virulence determinants indicating that AtsR also modulates the expression of virulence genes by a second mechanism, independently of any AHL production. Together, our results strongly suggest that AtsR is a global virulence regulator in B. cenocepacia.
Collapse
Affiliation(s)
- Daniel F Aubert
- Centre for Human Immunology, Department of Microbiology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
11
|
Wilson AD, Baietto M. Advances in electronic-nose technologies developed for biomedical applications. SENSORS (BASEL, SWITZERLAND) 2011; 11:1105-76. [PMID: 22346620 PMCID: PMC3274093 DOI: 10.3390/s110101105] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/08/2010] [Accepted: 12/10/2010] [Indexed: 12/20/2022]
Abstract
The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry.
Collapse
Affiliation(s)
- Alphus D. Wilson
- Southern Hardwoods Laboratory, Center for Bottomland Hardwoods Research, Southern Research Station, USDA Forest Service, 432 Stoneville Road, Stoneville, MS 38776, USA
| | - Manuela Baietto
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy; E-Mail:
| |
Collapse
|
12
|
Vial L, Chapalain A, Groleau MC, Déziel E. The various lifestyles of theBurkholderia cepaciacomplex species: a tribute to adaptation. Environ Microbiol 2010; 13:1-12. [DOI: 10.1111/j.1462-2920.2010.02343.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Cesarini S, Bevivino A, Tabacchioni S, Chiarini L, Dalmastri C. RecAgene sequence and Multilocus Sequence Typing for species-level resolution ofBurkholderia cepaciacomplex isolates. Lett Appl Microbiol 2009; 49:580-8. [DOI: 10.1111/j.1472-765x.2009.02709.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Genetic diversity and multihost pathogenicity of clinical and environmental strains of Burkholderia cenocepacia. Appl Environ Microbiol 2009; 75:5250-60. [PMID: 19542323 DOI: 10.1128/aem.00877-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A collection of 54 clinical and agricultural isolates of Burkholderia cenocepacia was analyzed for genetic relatedness by using multilocus sequence typing (MLST), pathogenicity by using onion and nematode infection models, antifungal activity, and the distribution of three marker genes associated with virulence. The majority of clinical isolates were obtained from cystic fibrosis (CF) patients in Michigan, and the agricultural isolates were predominantly from Michigan onion fields. MLST analysis resolved 23 distinct sequence types (STs), 11 of which were novel. Twenty-six of 27 clinical isolates from Michigan were genotyped as ST-40, previously identified as the Midwest B. cenocepacia lineage. In contrast, the 12 agricultural isolates represented eight STs, including ST-122, that were identical to clinical isolates of the PHDC lineage. In general, pathogenicity to onions and the presence of the pehA endopolygalacturonase gene were detected only in one cluster of related strains consisting of agricultural isolates and the PHDC lineage. Surprisingly, these strains were highly pathogenic in the nematode Caenorhabditis elegans infection model, killing nematodes faster than the CF pathogen Pseudomonas aeruginosa PA14 on slow-kill medium. The other strains displayed a wide range of pathogenicity to C. elegans, notably the Midwest clonal lineage which displayed high, moderate, and low virulence. Most strains displayed moderate antifungal activity, although strains with high and low activities were also detected. We conclude that pathogenicity to multiple hosts may be a key factor contributing to the potential of B. cenocepacia to opportunistically infect humans both by increasing the prevalence of the organism in the environment, thereby increasing exposure to vulnerable hosts, and by the selection of virulence factors that function in multiple hosts.
Collapse
|
15
|
Identification and onion pathogenicity of Burkholderia cepacia complex isolates from the onion rhizosphere and onion field soil. Appl Environ Microbiol 2008; 74:3121-9. [PMID: 18344334 DOI: 10.1128/aem.01941-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cepacia complex strains are genetically related but phenotypically diverse organisms that are important opportunistic pathogens in patients with cystic fibrosis (CF,) as well as pathogens of onion and banana, colonizers of the rhizospheres of many plant species, and common inhabitants of bulk soil. Genotypic identification and pathogenicity characterization were performed on B. cepacia complex isolates from the rhizosphere of onion and organic soils in Michigan. A total of 3,798 putative B. cepacia complex isolates were recovered on Pseudomonas cepacia azelaic acid tryptamine and trypan blue tetracycline semiselective media during the 2004 growing season from six commercial onion fields located in two counties in Michigan. Putative B. cepacia complex isolates were identified by hybridization to a 16S rRNA gene probe, followed by duplex PCR using primers targeted to the 16S rRNA gene and recA sequences and restriction fragment length polymorphism analysis of the recA sequence. A total of 1,290 isolates, 980 rhizosphere and 310 soil isolates, were assigned to the species B. cepacia (160), B. cenocepacia (480), B. ambifaria (623), and B. pyrrocinia (27). The majority of isolates identified as B. cepacia (85%), B. cenocepacia (90%), and B. ambifaria (76%) were pathogenic in a detached onion bulb scale assay and caused symptoms of water soaking, maceration, and/or necrosis. A phylogenetic analysis of recA sequences from representative B. cepacia complex type and panel strains, along with isolates collected in this study, revealed that the B. cenocepacia isolates associated with onion grouped within the III-B lineage and that some strains were closely related to strain AU1054, which was isolated from a CF patient. This study revealed that multiple B. cepacia complex species colonize the onion rhizosphere and have the potential to cause sour skin rot disease of onion. In addition, the onion rhizosphere is a natural habitat and a potential environmental source of B. cenocepacia.
Collapse
|