1
|
Rubio L, Galipienso L, Ferriol I. Detection of Plant Viruses and Disease Management: Relevance of Genetic Diversity and Evolution. FRONTIERS IN PLANT SCIENCE 2020; 11:1092. [PMID: 32765569 PMCID: PMC7380168 DOI: 10.3389/fpls.2020.01092] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/02/2020] [Indexed: 05/04/2023]
Abstract
Plant viruses cause considerable economic losses and are a threat for sustainable agriculture. The frequent emergence of new viral diseases is mainly due to international trade, climate change, and the ability of viruses for rapid evolution. Disease control is based on two strategies: i) immunization (genetic resistance obtained by plant breeding, plant transformation, cross-protection, or others), and ii) prophylaxis to restrain virus dispersion (using quarantine, certification, removal of infected plants, control of natural vectors, or other procedures). Disease management relies strongly on a fast and accurate identification of the causal agent. For known viruses, diagnosis consists in assigning a virus infecting a plant sample to a group of viruses sharing common characteristics, which is usually referred to as species. However, the specificity of diagnosis can also reach higher taxonomic levels, as genus or family, or lower levels, as strain or variant. Diagnostic procedures must be optimized for accuracy by detecting the maximum number of members within the group (sensitivity as the true positive rate) and distinguishing them from outgroup viruses (specificity as the true negative rate). This requires information on the genetic relationships within-group and with members of other groups. The influence of the genetic diversity of virus populations in diagnosis and disease management is well documented, but information on how to integrate the genetic diversity in the detection methods is still scarce. Here we review the techniques used for plant virus diagnosis and disease control, including characteristics such as accuracy, detection level, multiplexing, quantification, portability, and designability. The effect of genetic diversity and evolution of plant viruses in the design and performance of some detection and disease control techniques are also discussed. High-throughput or next-generation sequencing provides broad-spectrum and accurate identification of viruses enabling multiplex detection, quantification, and the discovery of new viruses. Likely, this technique will be the future standard in diagnostics as its cost will be dropping and becoming more affordable.
Collapse
Affiliation(s)
- Luis Rubio
- Centro de Protección Vegetal y Biotecnology, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
- *Correspondence: Luis Rubio,
| | - Luis Galipienso
- Centro de Protección Vegetal y Biotecnology, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
| | - Inmaculada Ferriol
- Plant Responses to Stress Programme, Centre for Research in Agricultural Genomics (CRAG-CSIC_UAB-UB) Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
2
|
Galein Y, Legrève A, Bragard C. Long Term Management of Rhizomania Disease-Insight Into the Changes of the Beet necrotic yellow vein virus RNA-3 Observed Under Resistant and Non-resistant Sugar Beet Fields. FRONTIERS IN PLANT SCIENCE 2018; 9:795. [PMID: 30013579 PMCID: PMC6036237 DOI: 10.3389/fpls.2018.00795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/24/2018] [Indexed: 05/09/2023]
Abstract
Rhizomania disease, caused by the Beet necrotic yellow vein virus (BNYVV), is considered as one of the major constraints for sugar beet production, worldwide. As a result of the introgression of major resistance genes (Holly, Rz2) in commercially available sugar beet varieties, the virus has endured strong selection pressure since the 90s'. Understanding the virus response and diversity to sugar beet resistance is a key factor for a sustainable management of only few resistance genes. Here we report rhizomania surveys conducted in a rhizomania hot spot, the Pithiviers area (France) during a 4-year period and complementary to the study of Schirmer et al. (2005). The study aimed at evaluating the intra- and inter-field BNYVV diversity in response to different sources of resistance and over the growing season. To follow rhizomania development over the sugar beet growing season, extensive field samplings combined with field assays were performed in this study. The evolution of the BNYVV diversity was assessed at intra- and inter-field levels, with sugar beet cultivars containing different resistance genes (Rz1, Rz1 + Heterodera schachtii resistance and Rz1Rz2). Intra-field diversity was analyzed at the beginning and the end of the growing season of each field. From more than one thousand field samples, the simultaneous presence of the different A, B and P types of BNYVV was confirmed, with 21 variants identified at positions 67-70 of the p25 tetrad. The first variant, AYHR, was found most commonly followed by SYHG. Numerous mixed infections (9.93% of the samples), mostly of B-type with P-type, have also been evidenced. Different tetrads associated with the A- or B-type were also found with a fifth RNA-genome component known to allow more aggressiveness to BNYVV on sugar beet roots. Cultivars with Rz1+Rz2 resistant genes showed few root symptoms even if the BNYVV titre was quite high according to the BNYVV type present. The virus infectious potential in the soil at the end of the growing season with such cultivars was also lower despite a wider diversity at the BNYVV RNA3 sequence level. Rz1+Rz2 cultivars also exhibited a lower presence of Beet soil-borne virus (BSBV), a P. betae-transmitted Pomovirus. Cultivars with Rz1 and nematode (N) resistance genes cultivated in field infected with nematodes showed lower BNYVV titre than those with Rz1 or Rz1+Rz2 cultivars. Overall, the population structure of BNYVV in France is shown to be different from that previously evidenced in different world areas. Implications for long-term management of the resistance to rhizomania is discussed.
Collapse
Affiliation(s)
| | - Anne Legrève
- Applied Microbiology-Phytopathology, Earth & Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Claude Bragard
- Applied Microbiology-Phytopathology, Earth & Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
di Rienzo V, Bubici G, Montemurro C, Cillo F. Rapid identification of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus using high resolution melting and TaqMan SNP Genotyping assays as allelic discrimination techniques. PLoS One 2018; 13:e0196738. [PMID: 29709020 PMCID: PMC5927427 DOI: 10.1371/journal.pone.0196738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022] Open
Abstract
In tomato, resistance to Tomato spotted wilt virus (TSWV) is conferred by the dominant gene, designated Sw-5. Virulent Sw-5 resistance breaking (SRB) mutants of TSWV have been reported on Sw-5 tomato cultivars. Two different PCR-based allelic discrimination techniques, namely Custom TaqMan™ SNP Genotyping and high-resolution melting (HRM) assays, were developed and compared for their ability to distinguish between avirulent (Sw-5 non-infecting, SNI) and SRB biotypes. TaqMan assays proved to be more sensitive (threshold of detection in a range of 50–70 TSWV RNA copies) and more reliable than HRM, assigning 25 TSWV isolates to their correct genotype with an accuracy of 100%. Moreover, the TaqMan SNP assays were further improved developing a rapid and simple protocol that included crude leaf extraction for RNA template preparations. On the other hand, HRM assays showed higher levels of sensitivity than TaqMan when used to co-detect both biotypes in different artificial mixtures. These diagnostic assays contributed to gain preliminary information on the epidemiology of TSWV isolates in open field conditions. In fact, the presented data suggest that SRB isolates are present as stable populations established year round, persisting on both winter (globe artichoke) and summer (tomato) crops, in the same cultivated areas of Southern Italy.
Collapse
Affiliation(s)
| | - Giovanni Bubici
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Cinzia Montemurro
- Spin off SINAGRI s.r.l., Bari, Italy
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Fabrizio Cillo
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
- * E-mail:
| |
Collapse
|
4
|
Zhuo N, Jiang N, Zhang C, Zhang ZY, Zhang GZ, Han CG, Wang Y. Genetic diversity and population structure of beet necrotic yellow vein virus in China. Virus Res 2015; 205:54-62. [PMID: 25997927 DOI: 10.1016/j.virusres.2015.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/04/2015] [Accepted: 05/10/2015] [Indexed: 10/23/2022]
Abstract
Beet necrotic yellow vein virus (BNYVV) is a serious threat to the sugar beet industry worldwide. However, little information is available regarding the genetic diversity and population structure of BNYVV in China. Here, we analyzed multiple sequences from four genomic regions (CP, RNA3, RNA4 and RNA5) of a set of Chinese isolates. Sequence analyses revealed that several isolates were mixed infections of variants with different genotypes and/or different p25 tetrad motifs. In total, 12 distinct p25 tetrads were found in the Chinese BNYVV population, of which four tetrads were newly identified. Phylogenetic analyses based on four genes (CP, RNA3-p25, RNA4-p31 and RNA5-p26) in isolates from around the world revealed the existence of two to four groups, which mostly corresponded to previously reported phylogenetic groups. Two new subgroups and a new group were identified from the Chinese isolates in p25 and p26 trees, respectively. Selection pressure analysis indicated that there was a positive selection pressure on the p25 from the Chinese isolates, but the other three proteins were under a negative selection pressure. There was frequent gene flow between geographically distant populations, which meant that BNYVV populations from different provinces were not geographically differentiated.
Collapse
Affiliation(s)
- Na Zhuo
- State Key Laboratory for Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Ning Jiang
- State Key Laboratory for Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Chao Zhang
- State Key Laboratory for Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Zong-Ying Zhang
- State Key Laboratory for Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Guo-Zhen Zhang
- State Key Laboratory for Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Cheng-Gui Han
- State Key Laboratory for Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Ying Wang
- State Key Laboratory for Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Smith MJ, Adams MJ, Ward E. Ribosomal DNA analyses reveal greater sequence variation in Polymyxa species than previously thought and indicate the possibility of new ribotype-host-virus associations. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:143-150. [PMID: 23757143 DOI: 10.1111/1758-2229.12026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 12/04/2012] [Indexed: 06/02/2023]
Abstract
Polymyxa species transmit viruses to many important crops. They are poorly understood obligate parasites occupying a distinct position in the Tree of Life. To better understand the potential for spread of Polymyxa-vectored diseases, ribosomal DNA was analysed from isolates covering a wide range of geographical locations, virus associations and hosts. Internal transcribed spacer 2 structure analysis indicated that Polymyxa graminis isolates could represent many species and there was more sequence variation within the known subgroups (ribotypes) than previously described. In cereal crops and soils from temperate climates Polymyxa isolates were usually ribotype I or II, but their host specificities or preferences were unclear. For the first time, there was evidence that ribotype I (in addition to ribotype II) could transmit SBWMV/SBCMV. Different ribotypes often occurred together in the same soil or plant. New hosts were identified for particular ribotypes, including the first detection of the sugar beet-infecting Polymyxa betae, in wheat. Unexpectedly, ribotype III-like sequences, usually restricted to crops in the tropics, were found in wheat from the USA. P. betae isolates showed limited variation (≤ 2%) and the recent change in susceptibility of sugar beet varieties to BNYVV in the USA is unlikely to be due to changes in P. betae.
Collapse
Affiliation(s)
- Madeleine J Smith
- Department of Plant Pathology and Microbiology, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | | | | |
Collapse
|
6
|
Pavli OI, Tampakaki AP, Skaracis GN. High level resistance against rhizomania disease by simultaneously integrating two distinct defense mechanisms. PLoS One 2012; 7:e51414. [PMID: 23284692 PMCID: PMC3527438 DOI: 10.1371/journal.pone.0051414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 11/01/2012] [Indexed: 11/18/2022] Open
Abstract
With the aim of achieving durable resistance against rhizomania disease of sugar beet, the employment of different sources of resistance to Beet necrotic yellow vein virus was pursued. To this purpose, Nicotiana benthamiana transgenic plants that simultaneously produce dsRNA originating from a conserved region of the BNYVV replicase gene and the HrpZ(Psph) protein in a secreted form (SP/HrpZ(Psph)) were produced. The integration and expression of both transgenes as well as proper production of the harpin protein were verified in all primary transformants and selfed progeny (T1, T2). Transgenic resistance was assessed by BNYVV-challenge inoculation on T2 progeny by scoring disease symptoms and DAS-ELISA at 20 and 30 dpi. Transgenic lines possessing single transformation events for both transgenes as well as wild type plants were included in inoculation experiments. Transgenic plants were highly resistant to virus infection, whereas in some cases immunity was achieved. In all cases, the resistant phenotype of transgenic plants carrying both transgenes was superior in comparison with the ones carrying a single transgene. Collectively, our findings demonstrate, for a first time, that the combination of two entirely different resistance mechanisms provide high level resistance or even immunity against the virus. Such a novel approach is anticipated to prevent a rapid virus adaptation that could potentially lead to the emergence of isolates with resistance breaking properties.
Collapse
Affiliation(s)
- Ourania I Pavli
- Department of Crop Sciences, Agricultural University of Athens, Athens, Greece.
| | | | | |
Collapse
|
7
|
Chiba S, Kondo H, Miyanishi M, Andika IB, Han C, Tamada T. The evolutionary history of Beet necrotic yellow vein virus deduced from genetic variation, geographical origin and spread, and the breaking of host resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:207-18. [PMID: 20977309 DOI: 10.1094/mpmi-10-10-0241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Beet necrotic yellow vein virus (BNYVV) is an economically important pathogen of sugar beet and has been found worldwide, probably as the result of recent worldwide spread. The BNYVV genome consists of four or five RNA components. Here, we report analysis of sequence variation in the RNA3-p25, RNA4-p31, RNA2-CP, and RNA5-p26 genes of 73 worldwide isolates. The RNA3-p25 gene encodes virulence and avirulence factors. These four sets of gene sequences each fell into two to four groups, of which the three groups of p25 formed eight subgroups with different geographical distributions. Each of these subgroup isolates (strains) could have arisen from four original BNYVV population and their mixed infections. The genetic diversity for BNYVV was relatively small. Selection pressure varied greatly depending on the BNYVV gene and geographical location. Isolates of the Italy strain, in which p25 was subject to the strongest positive selection, were able to overcome the Rz1-host resistance gene to differing degrees, whereas other geographically limited strains could not. Resistance-breaking variants were generated by p25 amino acid changes at positions 67 and 68. Our studies suggest that BNYVV originally evolved in East Asia and has recently become a pathogen of cultivated sugar beet followed by the emergence of new resistance-breaking variants.
Collapse
Affiliation(s)
- Soutaro Chiba
- Institute of Plant Science and Bioresources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Acosta-Leal R, Bryan BK, Rush CM. Host effect on the genetic diversification of beet necrotic yellow vein virus single-plant populations. PHYTOPATHOLOGY 2010; 100:1204-1212. [PMID: 20649415 DOI: 10.1094/phyto-04-10-0103] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Theoretical models predict that, under restrictive host conditions, virus populations will exhibit greater genetic variability. This virus response has been experimentally demonstrated in a few cases but its relation with a virus's capability to overcome plant resistance is unknown. To explore the genetic host effects on Beet necrotic yellow vein virus (BNYVV) populations that might be related to resistance durability, a wild-type virus isolate was vector inoculated into partially resistant Rz1, Rz2, and susceptible sugar beet cultivars during a serial planting experiment. Cloning and sequencing a region of the viral RNA-3, involving the pathogenic determinant p25, revealed that virus diversity significantly increased in direct proportion to the strength of host resistance. Thus, whereas virus titers were highest, intermediate, and lowest in susceptible, Rz1, and Rz2 plants, respectively; the average number of nucleotide differences among single-plant populations was 0.8 (±0.1) in susceptible, 1.4 (±0.1) in Rz1, and 2.4 (±0.2) in Rz2 genotypes. A similar relationship between host restriction to BNYVV root accumulation and virus genetic variability was detected in fields of sugar beet where these specific Rz1- and Rz2-mediated resistances have been defeated.
Collapse
Affiliation(s)
- Rodolfo Acosta-Leal
- Texas AgriLife Research ( Texas A & M University System), Amarillo, TX, USA.
| | | | | |
Collapse
|
9
|
Acosta-Leal R, Bryan BK, Smith JT, Rush CM. Breakdown of host resistance by independent evolutionary lineages of Beet necrotic yellow vein virus involves a parallel c/u mutation in its p25 gene. PHYTOPATHOLOGY 2010; 100:127-33. [PMID: 20055646 DOI: 10.1094/phyto-100-2-0127] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
ABSTRACT Breakdown of sugar beet Rz1-mediated resistance against Beet necrotic yellow vein virus (BNYVV) infection was previously found, by reverse genetics, to be caused by a single mutation in its p25 gene. The possibility of alternative breaking mutations, however, has not been discarded. To explore the natural diversity of BNYVV in the field and its effects on overcoming Rz1, wild-type (WT) and resistance-breaking (RB) p25 genes from diverse production regions of North America were characterized. The relative titer of WT p25 was inversely correlated with disease expression in Rz1 plants from Minnesota and California. In Minnesota, the predominant WT p25 encoded the A(67)C(68) amino acid signature whereas, in California, it encoded A(67)L(68). In both locations, these WT signatures were associated with asymptomatic BNYVV infections of Rz1 cultivars. Further analyses of symptomatic resistant plants revealed that, in Minnesota, WT A(67)C(68) was replaced by V(67)C(68) whereas, in California, WT A(67)L(68) was replaced by V(67)L(68). Therefore, V(67) was apparently critical in overcoming Rz1 in both pathosystems. The greater genetic distances between isolates from different geographic regions rather than between WT and RB from the same location indicate that the underlying C to U transition originated independently in both BNYVV lineages.
Collapse
|
10
|
Janzac B, Fabre F, Palloix A, Moury B. Constraints on evolution of virus avirulence factors predict the durability of corresponding plant resistances. MOLECULAR PLANT PATHOLOGY 2009; 10:599-610. [PMID: 19694951 PMCID: PMC6640373 DOI: 10.1111/j.1364-3703.2009.00554.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
SUMMARY Understanding the factors driving pathogen emergence and re-emergence is a major challenge, particularly in agriculture, where the use of resistant plant cultivars imposes strong selective pressures on plant pathogen populations and leads frequently to 'resistance breakdown'. Presently, durable resistances are only identified after a long period of large-scale cultivation of resistant cultivars. We propose a new predictor of the durability of plant resistance. Because resistance breakdown involves modifications in the avirulence factors of pathogens, we tested for correlations between the evolutionary constraints acting on avirulence factors or their diversity and the durability of the corresponding resistance genes in the case of plant-virus interactions. An analysis performed on 20 virus species-resistance gene combinations revealed that the selective constraints applied on amino acid substitutions in virus avirulence factors correlate with the observed durability of the corresponding resistance genes. On the basis of this result, a model predicting the potential durability of resistance genes as a function of the selective constraints applied on the corresponding avirulence factors is proposed to help breeders to select the most durable resistance genes.
Collapse
Affiliation(s)
- Berenger Janzac
- INRA, UR407 Pathologie Végétale, Domaine Saint Maurice, BP94, F-84140 Montfavet, France.
| | | | | | | |
Collapse
|
11
|
Koenig R, Loss S, Specht J, Varrelmann M, Lüddecke P, Deml G. A single U/C nucleotide substitution changing alanine to valine in the beet necrotic yellow vein virus P25 protein promotes increased virus accumulation in roots of mechanically inoculated, partially resistant sugar beet seedlings. J Gen Virol 2009; 90:759-763. [PMID: 19218223 DOI: 10.1099/vir.0.007112-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Beet necrotic yellow vein virus (BNYVV) A type isolates E12 and S8, originating from areas where resistance-breaking had or had not been observed, respectively, served as starting material for studying the influence of sequence variations in BNYVV RNA 3 on virus accumulation in partially resistant sugar beet varieties. Sub-isolates containing only RNAs 1 and 2 were obtained by serial local lesion passages; biologically active cDNA clones were prepared for RNAs 3 which differed in their coding sequences for P25 aa 67, 68 and 129. Sugar beet seedlings were mechanically inoculated with RNA 1+2/RNA 3 pseudorecombinants. The origin of RNAs 1+2 had little influence on virus accumulation in rootlets. E12 RNA 3 coding for V(67)C(68)Y(129) P25, however, enabled a much higher virus accumulation than S8 RNA 3 coding for A(67)H(68)H(129) P25. Mutants revealed that this was due only to the V(67) 'GUU' codon as opposed to the A(67) 'GCU' codon.
Collapse
Affiliation(s)
- R Koenig
- Julius Kühn Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, Messeweg 11, D-38106 Braunschweig, Germany
| | - S Loss
- Julius Kühn Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, Messeweg 11, D-38106 Braunschweig, Germany
| | - J Specht
- Julius Kühn Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, Messeweg 11, D-38106 Braunschweig, Germany
| | - M Varrelmann
- Institut für Zuckerrübenforschung, Abteilung Phytomedizin, Holtenser Landstraße 77, D-37079 Göttingen, Germany
| | - P Lüddecke
- Julius Kühn Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, Messeweg 11, D-38106 Braunschweig, Germany
| | - G Deml
- Julius Kühn Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, Messeweg 11, D-38106 Braunschweig, Germany
| |
Collapse
|
12
|
Mehrvar M, Valizadeh J, Koenig R, Bragard CG. Iranian beet necrotic yellow vein virus (BNYVV): pronounced diversity of the p25 coding region in A-type BNYVV and identification of P-type BNYVV lacking a fifth RNA species. Arch Virol 2009; 154:501-6. [DOI: 10.1007/s00705-009-0322-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 01/14/2009] [Indexed: 11/29/2022]
|
13
|
González-Vázquez M, Ayala J, García-Arenal F, Fraile A. Occurrence of Beet black scorch virus Infecting Sugar Beet in Europe. PLANT DISEASE 2009; 93:21-24. [PMID: 30764261 DOI: 10.1094/pdis-93-1-0021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In a survey of soilborne viruses infecting sugar beet in central Spain, Beet black scorch virus (BBSV) was detected in field grown sugar beets with symptoms of rhizomania disease. BBSV was found in all analyzed sugar beet producing regions from central Spain, as well as in bait plants grown in soils with a history of rhizomania from several Western European countries, thereby constituting the first report of BBSV in Europe. BBSV was transferred to Chenopodium quinoa, where it caused chlorotic local lesions from which virus particles were purified. The nucleotide sequence of the 3'-untranslated region of the genomic RNA was determined for 13 European isolates, and sequences were highly similar to those reported for Chinese and U.S. isolates. Sequence comparisons revealed three clusters of sequences, one including most European isolates, one including one European and two Chinese isolates, and the third including the U.S. isolate. BBSV was detected in a number of samples with rhizomania symptoms in which Beet necrotic yellow vein virus went undetected. However, its role in rhizomania disease in Europe, if any, remains to be established.
Collapse
Affiliation(s)
- Magali González-Vázquez
- Departamento de Biotecnología and Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Julián Ayala
- Asociación de Investigación y Mejora del Cultivo de la Remolacha Azucarera, Ctra. De Villabañez Km 2.7, 47012 Valladolid, Spain
| | - Fernando García-Arenal
- Departamento de Biotecnología and Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Aurora Fraile
- Departamento de Biotecnología and Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
14
|
Distribution of various types and P25 subtypes of Beet necrotic yellow vein virus in Germany and other European countries. Arch Virol 2008; 153:2139-44. [DOI: 10.1007/s00705-008-0234-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 10/09/2008] [Indexed: 10/21/2022]
|
15
|
Acosta-Leal R, Xiong Z. Complementary functions of two recessive R-genes determine resistance durability of tobacco 'Virgin A Mutant' (VAM) to Potato virus Y. Virology 2008; 379:275-83. [PMID: 18682305 DOI: 10.1016/j.virol.2008.06.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 06/23/2008] [Accepted: 06/24/2008] [Indexed: 11/19/2022]
Abstract
Tobaccos VAM and NC745 carry the recessive va gene that confers resistance to PVY(NN). However, they exhibit different levels of resistance durability. Upon virus inoculation, only NC745 developed sporadic systemic symptoms caused by emerging resistance-breaking variants that easily infected both NC745 and VAM genotypes. To identify the differential host conditions associated with this phenomenon, cellular accumulation, cell-to-cell movement, vascular translocation, and foliar content of PVY(NN) were comparatively evaluated. Virus cell-to-cell movement was restricted and its transit through the vasculature boundaries was completely blocked in both tobacco varieties. However, an additional defense mechanism operating only in tobacco VAM drastically reduced the in situ cellular virus accumulation. Genetic analyses of hybrid plant progenies indicate that VAM-type resistance was conditioned by at least two recessive genes: va and a newly reported va2 locus. Moreover, segregant plant progenies that restricted virus movement but permitted normal virus accumulation were prone to develop resistance-breaking infections.
Collapse
Affiliation(s)
- Rodolfo Acosta-Leal
- Division of Plant Pathology and Microbiology, Department of Plant Sciences, University of Arizona, Forbes 303, Tucson, AZ 85721, USA.
| | | |
Collapse
|
16
|
Chiba S, Miyanishi M, Andika IB, Kondo H, Tamada T. Identification of amino acids of the beet necrotic yellow vein virus p25 protein required for induction of the resistance response in leaves of Beta vulgaris plants. J Gen Virol 2008; 89:1314-1323. [PMID: 18420811 DOI: 10.1099/vir.0.83624-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The RNA3-encoded p25 protein of beet necrotic yellow vein virus (BNYVV) is responsible for the production of rhizomania symptoms of sugar beet roots (Beta vulgaris subsp. vulgaris). Here, it was found that the presence of the p25 protein is also associated with the resistance response in rub-inoculated leaves of sugar beet and wild beet (Beta vulgaris subsp. maritima) plants. The resistance phenotype displayed a range of symptoms from no visible lesions to necrotic or greyish lesions at the inoculation site, and only very low levels of virus and viral RNA accumulated. The susceptible phenotype showed large, bright yellow lesions and developed high levels of virus accumulation. In roots after Polymyxa betae vector inoculation, however, no drastic differences in virus and viral RNA accumulation levels were found between plants with susceptible and resistant phenotypes, except at an early stage of infection. There was a genotype-specific interaction between BNYVV strains and two selected wild beet lines (MR1 and MR2) and sugar beet cultivars. Sequence analysis of natural BNYVV isolates and site-directed mutagenesis of the p25 protein revealed that 3 aa residues at positions 68, 70 and 179 are important in determining the resistance phenotype, and that host-genotype specificity is controlled by single amino acid changes at position 68. The mechanism of the occurrence of resistance-breaking BNYVV strains is discussed.
Collapse
Affiliation(s)
- Soutaro Chiba
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Masaki Miyanishi
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Ida Bagus Andika
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Hideki Kondo
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Tetsuo Tamada
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
17
|
Acosta-Leal R, Fawley MW, Rush CM. Changes in the intraisolate genetic structure of Beet necrotic yellow vein virus populations associated with plant resistance breakdown. Virology 2008; 376:60-8. [PMID: 18423510 DOI: 10.1016/j.virol.2008.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 01/30/2008] [Accepted: 03/11/2008] [Indexed: 11/18/2022]
Abstract
The causal agent of rhizomania disease, Beet necrotic yellow vein virus (BNYVV), typically produces asymptomatic root-limited infections in sugar beets (Beta vulgaris) carrying the Rz1-allele. Unfortunately, this dominant resistance has been recently overcome. Multiple cDNA clones of the viral pathogenic determinant p25, derived from populations infecting susceptible or resistant plants, were sequenced to identify host effects on the viral population structure. Populations isolated from compatible plant-virus interactions (susceptible plant-wild type virus and resistant plant-resistant breaking variants) were large and relatively homogeneous, whereas those from the incompatible interaction (resistant plant-avirulent type virus) were small and highly heterogeneous. All populations from susceptible plants had the same dominant haplotype, whereas those from resistant cultivars had a different haplotype surrounded by a spectrum of mutants. Selection and diversification analyses suggest an evolutionary trajectory of BNYVV with positive selection for changes required to overcome resistance, followed by elimination of hitchhiking mutations through purifying selection.
Collapse
Affiliation(s)
- Rodolfo Acosta-Leal
- Texas A&M University, Texas Agricultural Research Station, Amarillo, TX 79106, USA.
| | | | | |
Collapse
|