1
|
Cambiasso MY, Romanato M, Gotfryd L, Valzacchi GR, Calvo L, Calvo JC, Fontana VA. Sperm histone modifications may predict success in human assisted reproduction: a pilot study. J Assist Reprod Genet 2024:10.1007/s10815-024-03280-w. [PMID: 39419944 DOI: 10.1007/s10815-024-03280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
PURPOSE Currently, assisted reproduction clinics employ various sperm selection techniques to identify the best sperm for fertilization. However, these techniques may not assess crucial sperm traits that can substantially impact embryonic quality. To address this, we propose analyzing diverse histone modifications as potential markers of sperm functionality and success in assisted reproduction techniques. METHODS Cross-sectional pilot study including infertile male patients attending an infertility clinic in CABA, Argentina between April and August 2019 was performed. We used immunofluorescence techniques to evaluate post-translational modifications of histones in sperm and established correlations with in vitro fertilization outcome and embryo quality. RESULTS Our findings indicate a negative correlation between H3K4me3 and H3K4me2 marks and fertilization rate and showed a positive correlation of this parameter with H3K9me mark. In addition, there was a positive correlation between H3K27me3 and good embryo quality. CONCLUSIONS This pilot study proposes a non-invasive strategy to predict embryo quality by analyzing spermatozoa prior to fertilization. The assessment of histone post-translational modifications in sperm samples could provide useful information for the recognition of epigenetic marks that could predict the health of the embryo of an assisted fertilization treatment.
Collapse
Affiliation(s)
- M Y Cambiasso
- CONICET, Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
| | - M Romanato
- CONICET, Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - L Gotfryd
- CONICET, Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | | | - L Calvo
- CONICET, Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - J C Calvo
- CONICET, Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - V A Fontana
- CONICET, Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Briski O, Cabeza JP, Salamone DF, Fernández-Martin R, Gambini A. Efficiency of the zinc chelator 1,10-phenanthroline for assisted oocyte activation following ICSI in pigs. Reprod Fertil Dev 2024; 36:RD24129. [PMID: 39270059 DOI: 10.1071/rd24129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Context In vitro embryo production in pigs is an important tool for advancing biomedical research. Intracytoplasmic sperm injection (ICSI) circumvents the polyspermy problems associated with conventional IVF in porcine. However, the suboptimal efficiency for ICSI in pigs requires new strategies to increase blastocyst formation rates. Aim To investigate novel methods for assisted activation using the zinc chelator 1,10-phenanthroline (PHEN), and to improve embryo developmental competence and quality of ICSI porcine blastocyst. Methods ICSI embryos were treated with PHEN after or before sperm injection, recording pronuclear formation, blastocyst rate and the expression of SMARCA4, OCT4, SOX2 and CDX2. Key results Neither electrical nor PHEN significantly improves pronuclear formation rates before or after ICSI. Following in vitro culture to the blastocyst stage, no significant differences were observed in developmental rates among the groups. Moreover, the use of PHEN did not alter the total cell number or the expression of OCT4, SOX2 and CDX2 in pig ICSI blastocysts. Conclusions Assisted oocyte activation with PHEN does not affect the preimplantation development of ICSI-derived pig embryos. Implications These results hold significance in refining and advancing the application of assisted oocyte activation techniques. They offer insights into addressing fertility issues and propelling advancements in human and animal reproductive medicine.
Collapse
Affiliation(s)
- Olinda Briski
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina; and CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Juan P Cabeza
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Daniel F Salamone
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina; and CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Rafael Fernández-Martin
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina; and CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, Buenos Aires C1417DSE, Argentina
| | - Andrés Gambini
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Qld 4343, Australia; and School of Veterinary Sciences, The University of Queensland, Gatton, Qld 4343, Australia
| |
Collapse
|
3
|
Nakai M, Suzuki SI, Fuchimoto DI, Sembon S, Kikuchi K. Oocyte activation with phospholipase Cζ mRNA induces repetitive intracellular Ca 2+ rises and improves the quality of pig embryos after intracytoplasmic sperm injection. J Reprod Dev 2024; 70:229-237. [PMID: 38853022 PMCID: PMC11310388 DOI: 10.1262/jrd.2023-105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/19/2024] [Indexed: 06/11/2024] Open
Abstract
For the intracytoplasmic sperm injection (ICSI) procedure in pigs, an electrical pulse (EP) has been used as an effective method for oocyte stimulation, but unlike sperm, EP is unable to induce Ca2+ oscillations. In this study, we investigated the effects of generating artificial Ca2+ oscillations with phospholipase Cζ (PLCζ) mRNA, a candidate sperm factor, on fertilization, embryonic development, and gene expression after ICSI. Firstly, the concentration of PLCζ mRNA of a fixed volume (1.0 pl) that would induce a pattern of Ca2+ rise similar to that of in vitro fertilized (IVF) sperm was examined and determined to be 300 ng/μl. Secondly, the effects of oocyte stimulation methods on fertilization and embryonic development were investigated. ICSI-oocytes were activated by EP (EP group) or by PLCζ mRNA (PLCζ group). Furthermore, IVF-oocytes (IVF group) and ICSI-oocytes with and without an injection of buffer (buffer and untreated groups, respectively) were used as controls. It was found that the rates of normal fertilization in the PLCζ and EP groups were significantly higher than those in the buffer and untreated groups. The blastocyst formation rates did not differ among the groups. The embryo quality in the EP group was inferior to those in the PLCζ and IVF groups. Additionally, the expression level of a proapoptosis-related gene (Caspase-3) in the EP group was significantly higher than those in the PLCζ and IVF groups. Our data suggest that oocyte activation by PLCζ mRNA has the effect of improving embryo quality.
Collapse
Affiliation(s)
- Michiko Nakai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0901, Japan
| | - Shun-Ichi Suzuki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0901, Japan
| | - Dai-Ichiro Fuchimoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0901, Japan
| | - Shoichiro Sembon
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0901, Japan
| | - Kazuhiro Kikuchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0901, Japan
| |
Collapse
|
4
|
Piñeiro-Silva C, Gadea J. Optimizing oocyte electroporation for genetic modification of porcine embryos: Evaluation of the parthenogenetic activation. Theriogenology 2024; 218:126-136. [PMID: 38325149 DOI: 10.1016/j.theriogenology.2024.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
In reproductive biology, understanding the effects of novel techniques on early embryo development is of paramount importance. To date, the effects of electrical activation on oocytes prior to in vitro fertilization (IVF) are not well understood. The aim of this study was to investigate the effects of oocyte electroporation prior to IVF on embryo development and to differentiate between true embryos and parthenotes by using a TPCN2 knock-out (KO) male to evaluate the presence of the KO allele in the resulting blastocysts. The study consisted of three experiments. The first one examined oocyte electroporation with and without subsequent IVF and found that electroporated oocytes had higher activation rates, increased occurrence of a single pronucleus, and no effect on sperm penetration. Cleavage rates improved in electroporated oocytes, but blastocyst rates remained constant. Genotype analysis revealed a significant increase in the proportion of parthenotes in the electroporated groups compared to the IVF control (30.2 % vs. 6.8 %). The second experiment compared two electroporation media, Opti-MEM and Nuclease-Free Duplex Buffer (DB). DB induced higher oocyte degeneration rates, and lower cleavage and blastocyst rates than Opti-MEM, while parthenogenetic formation remained consistent (60.0 and 48.5 %). In the third experiment, the timing of electroporation relative to IVF was evaluated (1 h before IVF, immediately before IVF and 7 h after IVF). Electroporation immediately before IVF resulted in higher activation rates and different pronuclear proportions compared to the other timing groups. The penetration rate was higher in the immediate electroporation group, and cleavage rate improved in all electroporated groups compared to the control. Blastocyst rates remained constant. Genotyping revealed no significant differences in parthenote proportions among the timing groups, but these were higher than the control (56.25 %, 63.89 %, 51.61 %, 2.44 %, respectively), and showed higher mutation rates when electroporation was performed 7 h after IVF. Overall, this comprehensive study sheds light on the potential of electroporation for creating genetically modified embryos and the importance of media selection and timing in the process, the best media being the Opti-MEM and the more efficient timing regarding mutation rate, 7 h post-IVF, even when the parthenote formation did not differ among electroporated groups. Further studies are needed to reduce the parthenogenetic activation while maintaining high mutation rates to optimize the use of this procedure for the generation of gene-edited pig embryos by oocyte/zygote electroporation.
Collapse
Affiliation(s)
- Celia Piñeiro-Silva
- Department of Physiology, University of Murcia, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum" and Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30100, Murcia, Spain
| | - Joaquín Gadea
- Department of Physiology, University of Murcia, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum" and Institute for Biomedical Research of Murcia (IMIB-Arrixaca), 30100, Murcia, Spain.
| |
Collapse
|
5
|
Briski O, La Motta GE, Ratner LD, Allegroni FA, Pillado S, Álvarez G, Gutierrez B, Tarragona L, Zaccagnini A, Acerbo M, Ciampi C, Fernández-Martin R, Salamone DF. Comparison of ICSI, IVF, and in vivo derived embryos to produce CRISPR-Cas9 gene-edited pigs for xenotransplantation. Theriogenology 2024; 220:43-55. [PMID: 38471390 DOI: 10.1016/j.theriogenology.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Genome editing in pigs for xenotransplantation has seen significant advances in recent years. This study compared three methodologies to generate gene-edited embryos, including co-injection of sperm together with the CRISPR-Cas9 system into oocytes, named ICSI-MGE (mediated gene editing); microinjection of CRISPR-Cas9 components into oocytes followed by in vitro fertilization (IVF), and microinjection of in vivo fertilized zygotes with the CRISPR-Cas9 system. Our goal was to knock-out (KO) porcine genes involved in the biosynthesis of xenoantigens responsible for the hyperacute rejection of interspecific xenografts, namely GGTA1, CMAH, and β4GalNT2. Additionally, we attempted to KO the growth hormone receptor (GHR) gene with the aim of limiting the growth of porcine organs to a size that is physiologically suitable for human transplantation. Embryo development, pregnancy, and gene editing rates were evaluated. We found an efficient mutation of the GGTA1 gene following ICSI-MGE, comparable to the results obtained through the microinjection of oocytes followed by IVF. ICSI-MGE also showed higher rates of biallelic mutations compared to the other techniques. Five healthy piglets were born from in vivo-derived embryos, all of them exhibiting biallelic mutations in the GGTA1 gene, with three displaying mutations in the GHR gene. No mutations were observed in the CMAH and β4GalNT2 genes. In conclusion, in vitro methodologies showed high rates of gene-edited embryos. Specifically, ICSI-MGE proved to be an efficient technique for obtaining homozygous biallelic mutated embryos. Lastly, only live births were obtained from in vivo-derived embryos showing efficient multiple gene editing for GGTA1 and GHR.
Collapse
Affiliation(s)
- Olinda Briski
- CONICET-Universidad de Buenos Aires - Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Gastón Emilio La Motta
- CONICET-Universidad de Buenos Aires - Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Laura Daniela Ratner
- CONICET-Universidad de Buenos Aires - Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Federico Andrés Allegroni
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Santiago Pillado
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Guadalupe Álvarez
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Betiana Gutierrez
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Lisa Tarragona
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Andrea Zaccagnini
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Marcelo Acerbo
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Carla Ciampi
- CONICET-Universidad de Buenos Aires - Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Rafael Fernández-Martin
- CONICET-Universidad de Buenos Aires - Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina.
| | - Daniel Felipe Salamone
- CONICET-Universidad de Buenos Aires - Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina.
| |
Collapse
|
6
|
Lunney JK, Van Goor A, Walker KE, Hailstock T, Franklin J, Dai C. Importance of the pig as a human biomedical model. Sci Transl Med 2021; 13:eabd5758. [PMID: 34818055 DOI: 10.1126/scitranslmed.abd5758] [Citation(s) in RCA: 269] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Joan K Lunney
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Angelica Van Goor
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Kristen E Walker
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Taylor Hailstock
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Jasmine Franklin
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Chaohui Dai
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
7
|
Gambini A, Duque Rodríguez M, Rodríguez MB, Briski O, Flores Bragulat AP, Demergassi N, Losinno L, Salamone DF. Horse ooplasm supports in vitro preimplantation development of zebra ICSI and SCNT embryos without compromising YAP1 and SOX2 expression pattern. PLoS One 2020; 15:e0238948. [PMID: 32915925 PMCID: PMC7485800 DOI: 10.1371/journal.pone.0238948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/25/2020] [Indexed: 11/18/2022] Open
Abstract
Several equids have gone extinct and many extant equids are currently considered vulnerable to critically endangered. This work aimed to evaluate whether domestic horse oocytes support preimplantation development of zebra embryos obtained by intracytoplasmic sperm injection (ICSI, zebroid) and cloning, and to study the Hippo signaling pathway during the lineage specification of trophectoderm cells and inner cell mass cells. We first showed that zebra and horse sperm cells induce porcine oocyte activation and recruit maternal SMARCA4 during pronuclear formation. SMARCA4 recruitment showed to be independent of the genetic background of the injected sperm. No differences were found in blastocyst rate of ICSI hybrid (zebra spermatozoon into horse egg) embryos relative to the homospecific horse control group. Interestingly, zebra cloned blastocyst rate was significantly higher at day 8. Moreover, most ICSI and cloned horse and zebra blastocysts showed a similar expression pattern of SOX2 and nuclear YAP1 with the majority of the nuclei positive for YAP1, and most SOX2+ nuclei negative for YAP1. Here we demonstrated that horse oocytes support zebra preimplantation development of both, ICSI and cloned embryos, without compromising development to blastocyst, blastocyst cell number neither the expression of SOX2 and YAP1. Our results support the use of domestic horse oocytes as a model to study in vitro zebra embryos on behalf of preservation of valuable genetic.
Collapse
Affiliation(s)
- Andrés Gambini
- Facultad de Agronomía, Cátedra de Producción Equina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- * E-mail:
| | - Matteo Duque Rodríguez
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Agronomía, Cátedra de Fisiología Animal, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Belén Rodríguez
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Agronomía, Cátedra de Fisiología Animal, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Olinda Briski
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Agronomía, Cátedra de Fisiología Animal, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana P. Flores Bragulat
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Agronomía y Veterinaria, Cátedra de Producción Equina, Universidad Nacional de Río Cuarto, Río IV, Córdoba, Argentina
| | | | - Luis Losinno
- Facultad de Agronomía y Veterinaria, Cátedra de Producción Equina, Universidad Nacional de Río Cuarto, Río IV, Córdoba, Argentina
| | - Daniel F. Salamone
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Agronomía, Cátedra de Fisiología Animal, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
8
|
Zigo M, Maňásková-Postlerová P, Zuidema D, Kerns K, Jonáková V, Tůmová L, Bubeníčková F, Sutovsky P. Porcine model for the study of sperm capacitation, fertilization and male fertility. Cell Tissue Res 2020; 380:237-262. [PMID: 32140927 DOI: 10.1007/s00441-020-03181-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Mammalian fertilization remains a poorly understood event with the vast majority of studies done in the mouse model. The purpose of this review is to revise the current knowledge about semen deposition, sperm transport, sperm capacitation, gamete interactions and early embryonic development with a focus on the porcine model as a relevant, alternative model organism to humans. The review provides a thorough overview of post-ejaculation events inside the sow's reproductive tract including comparisons with humans and implications for human fertilization and assisted reproductive therapy (ART). Porcine methodology for sperm handling, preservation, in vitro capacitation, oocyte in vitro maturation, in vitro fertilization and intra-cytoplasmic sperm injection that are routinely used in pig research laboratories can be successfully translated into ART to treat human infertility. Last, but not least, new knowledge about mitochondrial inheritance in the pig can provide an insight into human mitochondrial diseases and new knowledge on polyspermy defense mechanisms could contribute to the development of new male contraceptives.
Collapse
Affiliation(s)
- Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Pavla Maňásková-Postlerová
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czech Republic.,Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16521, Prague, Czech Republic
| | - Dalen Zuidema
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Karl Kerns
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Věra Jonáková
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czech Republic
| | - Lucie Tůmová
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16521, Prague, Czech Republic
| | - Filipa Bubeníčková
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16521, Prague, Czech Republic
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.,Department of Obstetrics, Gynecology & Women's Health, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
9
|
Eini F, Bidadkosh A, Nazarian H, Piryaei A, Ghaffari Novin M, Joharchi K. Thymoquinone reduces intracytoplasmic oxidative stress and improves epigenetic modification in polycystic ovary syndrome mice oocytes, during in-vitro maturation. Mol Reprod Dev 2019; 86:1053-1066. [PMID: 31209968 DOI: 10.1002/mrd.23222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 11/08/2022]
Abstract
Although in-vitro maturation (IVM) of oocytes has been presented as an alternative treatment to traditional stimulated in-vitro fertilization, the culture condition can be improved by natural antioxidants. Thus, we investigated the protective effect of Thymoquinone (TQ) during IVM in the polycystic ovary syndrome (PCOS) mice model. The induction of PCOS was made by dehydroepiandrosterone via subcutaneous injection, in prepubertal female B6D2F1-mice. After 21 days later, germinal vesicle (GV)-stage-oocytes were extracted and incubated in IVM media containing 0, 1.0, 10.0, and 100.0 μM of TQ. To assess fertilization and blastulation rates, after 22-24 hr, the treated oocytes were fertilized in-vitro with epididymal spermatozoa. Some other oocytes were evaluated for maturation, epigenetic, and oxidative stress markers. Similarly, the mRNA expression of epigenetic enzymes genes (Dnmt1 and Hdac1), three maternally derived genes (Mapk, CyclinB, and Cdk1) and apoptosis-related genes (Bax and Bcl2) were assessed. Our results showed that the maturation, fertilization, and blastulation rates were significantly higher in the 10.0 μM TQ-treated group compared with the untreated group and likewise with in-vivo matured oocytes. The Bax expression was reduced in 10.0 μM TQ matured oocytes, but Bcl2, Dnmt1, Hdac1, Cdk1, and Mapk were upregulated in this group compared to other groups. Furthermore, dimethylation of histone-3 at lysine-9 (H3K9m2) and DNA methylation were significantly increased whereas H4K12 acetylation (H4K12ac) was decreased in the 10.0 μM TQ-treated group in comparison with control and in-vivo matured oocytes. Therefore, our results are suggesting that 10.0 μM TQ may enhance the developmental competence of PCOS oocytes via the modulation of oxidative stress and epigenetic alterations.
Collapse
Affiliation(s)
- Fatemeh Eini
- Fertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Bidadkosh
- Department of Nephrology, Royal Alexandra, Hospital for Children, University of Sydney, Sydney, New South Wales, Australia
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khojasteh Joharchi
- Department of Pharmacology, School of Medicine and Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Watanabe H. Risk of chromosomal aberration in spermatozoa during intracytoplasmic sperm injection. J Reprod Dev 2018; 64:371-376. [PMID: 29984741 PMCID: PMC6189574 DOI: 10.1262/jrd.2018-040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/11/2018] [Indexed: 11/20/2022] Open
Abstract
Intracytoplasmic sperm injection (ICSI) has become critical for the treatment of severe male infertility. The principal feature of ICSI is the direct injection of spermatozoon into an oocyte, which facilitates the production of fertilized embryos regardless of semen characteristics, such as sperm concentration and motility. However, the chromosomal integrity of ICSI zygotes is degraded compared to that of zygotes obtained via in vitro fertilization. This chromosomal damage may occur due to the injection of non-capacitated, acrosome-intact spermatozoa, which never enter the oocytes under natural fertilization. Furthermore, it is possible that the in vitro incubation and pre-treatment of spermatozoa during ICSI results in DNA damage. Chromosomal aberrations in embryos induce early pregnancy losses. However, these issues may be overcome by embryo production using gametes with guaranteed chromosomal integrity. Because conventional chromosome analysis requires fixing cells to obtain the chromosome spreads, embryos cannot be produced using the nucleus that has been analyzed. On the other hand, genome cloning using androgenic or gynogenic embryos provides an additional nucleus for chromosome analysis following embryo production. Thus, this review aims to highlight the hazardous nature of chromosomal aberrations in sperm during ICSI and to introduce a method for the prezygotic examination for chromosomal aberrations.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Biological Sciences, Asahikawa Medical University, Hokkaido 078-8510, Japan
| |
Collapse
|
11
|
de Macedo MP, Glanzner WG, Rissi VB, Gutierrez K, Currin L, Baldassarre H, Bordignon V. A fast and reliable protocol for activation of porcine oocytes. Theriogenology 2018; 123:22-29. [PMID: 30273737 DOI: 10.1016/j.theriogenology.2018.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/10/2018] [Accepted: 09/23/2018] [Indexed: 12/29/2022]
Abstract
Oocyte activation is physiologically triggered by the sperm during fertilization, however, production of porcine embryos by somatic cell nuclear transfer (SCNT), intracytoplasmic sperm injection (ICSI) or parthenogenetic activation (PA) requires artificial oocyte activation. Although effective protocols for artificial oocyte activation have been developed, current protocols require long exposures to non-specific inhibitors, which do not mimic the physiological process and may have detrimental consequences for embryo development. This study attempted to mimic the physiological activation events induced by fertilization, through the manipulation of Ca2+ and Zn2+ levels, and protein kinase C (PKC) as well as cyclin dependent kinase 1 (CDK1) activities, with the aim of developing an improved protocol for activation of porcine oocytes. In the first experiment, matured oocytes were exposed to ionomycin (Ion) for 5 min, and then treated with a specific CDK1 inhibitor (RO-3306) and/or PKC activator (OAG) for different time intervals. The highest rate of pronuclear (PN) formation (58.8%) was obtained when oocytes were treated with PKCa + CDK1i for 4 h. Second, PN formation and embryo development were evaluated in oocytes exposed for different times to a Zn2+ chelator (TPEN) following Ion treatment. This revealed that 15 min was the minimal exposure time to TPEN required to maximise oocyte activation and embryo development. Next, we observed that treatment with PKCa + CDK1i for 4 h after TPEN for 15 min decreased embryo development compared to TPEN alone. Lastly, we compared the efficiency of the Ion (5 min) plus TPEN (15 min) protocol (IT-20) with a control protocol used in our laboratory (CT-245) for production of PA, SCNT and ICSI embryos. In PA embryos, IT-20 resulted in higher cleavage (72% vs 49.2%) and blastocyst from cleaved embryos (65.5% vs 46.2%) compared to CT-245. In ICSI embryos, higher PN rates were obtained with the IT-20 protocol compared with CT-245 and the non-activated (N-A) group. Moreover, the two protocols were equally efficient for activation of SCNT embryos. Based on these findings, we propose that IT-20 is a fast and effective protocol for activation of porcine oocytes.
Collapse
Affiliation(s)
- Mariana P de Macedo
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada
| | - Werner G Glanzner
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada
| | - Vitor B Rissi
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Karina Gutierrez
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada
| | - Luke Currin
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada
| | - Hernan Baldassarre
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada.
| |
Collapse
|
12
|
Wani NA, Hong S. Intracytoplasmic sperm injection (ICSI) of in vitro matured oocytes with stored epididymal spermatozoa in camel (Camelus dromedarius): Effect of exogenous activation on in vitro embryo development. Theriogenology 2018; 113:44-49. [DOI: 10.1016/j.theriogenology.2018.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/31/2018] [Accepted: 02/04/2018] [Indexed: 11/17/2022]
|
13
|
Águila L, Felmer R, Arias ME, Navarrete F, Martin-Hidalgo D, Lee HC, Visconti P, Fissore R. Defective sperm head decondensation undermines the success of ICSI in the bovine. Reproduction 2018; 154:307-318. [PMID: 28751536 DOI: 10.1530/rep-17-0270] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/20/2017] [Accepted: 06/30/2017] [Indexed: 12/25/2022]
Abstract
The efficiency of intracytoplasmic sperm injection (ICSI) in the bovine is low compared to other species. It is unknown whether defective oocyte activation and/or sperm head decondensation limit the success of this technique in this species. To elucidate where the main obstacle lies, we used homologous and heterologous ICSI and parthenogenetic activation procedures. We also evaluated whether in vitro maturation negatively impacted the early stages of activation after ICSI. Here we showed that injected bovine sperm are resistant to nuclear decondensation by bovine oocytes and this is only partly overcome by exogenous activation. Remarkably, when we used heterologous ICSI, in vivo-matured mouse eggs were capable of mounting calcium oscillations and displaying normal PN formation following injection of bovine sperm, although in vitro-matured mouse oocytes were unable to do so. Together, our data demonstrate that bovine sperm are especially resistant to nuclear decondensation by in vitro-matured oocytes and this deficiency cannot be simply overcome by exogenous activation protocols, even by inducing physiological calcium oscillations. Therefore, the inability of a suboptimal ooplasmic environment to induce sperm head decondensation limits the success of ICSI in the bovine. Studies aimed to improve the cytoplasmic milieu of in vitro-matured oocytes and to replicate the molecular changes associated with in vivo capacitation and acrosome reaction will deepen our understanding of the mechanism of fertilization and improve the success of ICSI in this species.
Collapse
Affiliation(s)
- Luis Águila
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile.,School of Veterinary Medicine, Faculty of Sciences, Universidad Mayor Sede Temuco, Temuco, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile
| | - María Elena Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile
| | - Felipe Navarrete
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| | - David Martin-Hidalgo
- Research Group of Intracellular Signaling and Technology of Reproduction, Research Institute INBIO G+C, University of Extremadura, Caceres, Spain.,Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hoi Chang Lee
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| | - Pablo Visconti
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| | - Rafael Fissore
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
14
|
Salamone DF, Canel NG, Rodríguez MB. Intracytoplasmic sperm injection in domestic and wild mammals. Reproduction 2017; 154:F111-F124. [PMID: 29196493 DOI: 10.1530/rep-17-0357] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 11/08/2022]
Abstract
Intracytoplasmic sperm injection (ICSI) has become a useful technique for clinical applications in the horse-breeding industry. However, both ICSI blastocyst and offspring production continues to be limited for most farm and wild species. This article reviews technical differences of ICSI performance among species, possible biological and methodological reasons for the variable efficiency and potential strategies to improve the outcomes. One of the major applications of ICSI in animal production is the reproduction of high-value specimens. Unfortunately, some domestic species like the bovine show low rates of pronuclei formation after sperm injection, which led to the development of various artificial activation protocols and sperm pre-treatments that are discussed in this article. The impact of ICSI technique on equine breeding programs is considered in detail, since in contrast to other species, its use for elite horse reproduction has increased in recent years. ICSI has also been used to produce genetically modified animals; however, despite numerous attempts in several domestic species, only transgenic pigs have been consistently produced. Finally, the ICSI is a promising tool for genetic rescue of endangered and wild species. In conclusion, while ICSI has become a consistent ART for some species, it needs further development for others. The low results obtained for some domestic species, the high training needed and the equipment required have limited this technique to the production of elite specimens or for research purposes.
Collapse
Affiliation(s)
- Daniel F Salamone
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| | - Natalia G Canel
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| | - María Belén Rodríguez
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| |
Collapse
|
15
|
Nakai M, Suzuki SI, Ito J, Fuchimoto DI, Sembon S, Noguchi J, Onishi A, Kashiwazaki N, Kikuchi K. Efficient pig ICSI using Percoll-selected spermatozoa; evidence for the essential role of phospholipase C-ζ in ICSI success. J Reprod Dev 2016; 62:639-643. [PMID: 27725346 PMCID: PMC5177984 DOI: 10.1262/jrd.2016-103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
In pigs, the damaged sperm membrane leads to leakage of phospholipase C-ζ (PLCζ), which has been identified as a sperm factor, and a reduction of
oocyte-activating ability. In this study, we investigated whether sperm selected by Percoll gradient centrifugation (Percoll) have sufficient PLCζ, and whether
the efficiency of fertilization and blastocyst formation after intracytoplasmic sperm injection (ICSI) using Percoll-selected sperm can be improved.
Percoll-selected sperm (Percoll group) or sperm without Percoll selection (Control group) were used. A proportion of the oocytes injected with control sperm
were subjected to electrical stimulation at 1 h after ICSI (Cont + ES group). It was found that the Percoll group showed a large amount of PLCζ in comparison
with the Control group. Furthermore, application of Percoll-selected sperm for ICSI increased the efficiency of fertilization and embryo development. Thus,
these results indicate the Percoll-selected sperm have sufficient PLCζ and high oocyte-activating ability after ICSI in pigs.
Collapse
Affiliation(s)
- Michiko Nakai
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hwang JH, Kim SE, Gupta MK, Lee H. Gnotobiotic Miniature Pig Interbreed Somatic Cell Nuclear Transfer for Xenotransplantation. Cell Reprogram 2016; 18:207-13. [PMID: 27459580 DOI: 10.1089/cell.2015.0065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transgenic animal producing technology has improved consistently over the last couple of decades. Among the available methods, somatic cell nuclear transfer (SCNT) technology was officially the most popular. However, SCNT has low efficiency and requires a highly skilled individual. Additionally, the allo-SCNT nuclear reprogramming mechanism is poorly understood in the gnotobiotic miniature pig, which is a candidate for xenotransplantation, making sampling in oocytes very difficult compared to commercial hybrid pigs. Therefore, interbreed SCNT (ibSCNT), which is a combination of miniature pig and commercial pig (Landrace based), was analyzed and was found to be similar to SCNT in terms of the rate of blastocyst formation (12.6% ± 2.9% vs. 15.5% ± 2.2%; p > 0.05). However, a significantly lower fusion rate was observed in the ibSCNT compared to normal SCNT with Landrace pig somatic cells (29.6% ± 0.8% vs. 65.0% ± 4.9%). Thus, the optimization of fusion parameters was necessary for efficient SCNT. Our results further revealed that ibSCNT by the whole-cell intracytoplasmic injection (WCICI) method had a significantly higher blastocyst forming efficiency than the electrofusion method (31.1 ± 8.5 vs. 15.5% ± 2.2%). The nuclear remodeling and the pattern of changes in acetylation at H3K9 residue were similar in both SCNT and ibSCNT embryos.
Collapse
Affiliation(s)
- Jeong Ho Hwang
- 1 Bio-Organ Research Center, Konkuk University , Seoul, Republic of Korea.,3 Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology , Jeongeup, Republic of Korea
| | - Sang Eun Kim
- 2 Department of Animal Biotechnology, Konkuk University , Seoul, Republic of Korea
| | - Mukesh Kumar Gupta
- 4 Department of Biotechnology and Medical Engineering, National Institute of Technology , Rourkela, India
| | - HoonTaek Lee
- 1 Bio-Organ Research Center, Konkuk University , Seoul, Republic of Korea.,2 Department of Animal Biotechnology, Konkuk University , Seoul, Republic of Korea
| |
Collapse
|
17
|
Nakai M, Ito J, Kashiwazaki N, Men N, Tanihara F, Noguchi J, Kaneko H, Onishi A, Kikuchi K. Treatment with protein kinase C activator is effective for improvement of male pronucleus formation and further embryonic development of sperm-injected oocytes in pigs. Theriogenology 2016; 85:703-8. [DOI: 10.1016/j.theriogenology.2015.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 11/26/2022]
|
18
|
Casillas F, Ducolomb Y, Lemus AE, Cuello C, Betancourt M. Porcine embryo production following in vitro fertilization and intracytoplasmic sperm injection from vitrified immature oocytes matured with a granulosa cell co-culture system. Cryobiology 2015; 71:299-305. [DOI: 10.1016/j.cryobiol.2015.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/23/2015] [Accepted: 08/03/2015] [Indexed: 11/15/2022]
|
19
|
Hosseini S, Asgari V, Ostadhosseini S, Hajian M, Ghanaei H, Nasr-Esfahani M. Developmental competence of ovine oocytes after vitrification: Differential effects of vitrification steps, embryo production methods, and parental origin of pronuclei. Theriogenology 2015; 83:366-76. [DOI: 10.1016/j.theriogenology.2014.09.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/26/2014] [Accepted: 09/27/2014] [Indexed: 12/27/2022]
|
20
|
Li J, Huan Y, Xie B, Wang J, Zhao Y, Jiao M, Huang T, Kong Q, Liu Z. Identification and characterization of an oocyte factor required for sperm decondensation in pig. Reproduction 2014; 148:367-75. [PMID: 25030891 DOI: 10.1530/rep-14-0264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mammalian oocytes possess factors to support fertilization and embryonic development, but knowledge on these oocyte-specific factors is limited. In the current study, we demonstrated that porcine oocytes with the first polar body collected at 33 h of in vitro maturation sustain IVF with higher sperm decondensation and pronuclear formation rates and support in vitro development with higher cleavage and blastocyst rates, compared with those collected at 42 h (P<0.05). Proteomic analysis performed to clarify the mechanisms underlying the differences in developmental competence between oocytes collected at 33 and 42 h led to the identification of 18 differentially expressed proteins, among which protein disulfide isomerase associated 3 (PDIA3) was selected for further study. Inhibition of maternal PDIA3 via antibody injection disrupted sperm decondensation; conversely, overexpression of PDIA3 in oocytes improved sperm decondensation. In addition, sperm decondensation failure in PDIA3 antibody-injected oocytes was rescued by dithiothreitol, a commonly used disulfide bond reducer. Our results collectively report that maternal PDIA3 plays a crucial role in sperm decondensation by reducing protamine disulfide bonds in porcine oocytes, supporting its utility as a potential tool for oocyte selection in assisted reproduction techniques.
Collapse
Affiliation(s)
- Jingyu Li
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| | - Yanjun Huan
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| | - Bingteng Xie
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| | - Jiaqiang Wang
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| | - Yanhua Zhao
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| | - Mingxia Jiao
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| | - Tianqing Huang
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| | - Qingran Kong
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| | - Zhonghua Liu
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| |
Collapse
|
21
|
Nakai M, Ozawa M, Maedomari N, Noguchi J, Kaneko H, Ito J, Onishi A, Kashiwazaki N, Kikuchi K. Delay in cleavage of porcine embryos after intracytoplasmic sperm injection (ICSI) shows poorer embryonic development. J Reprod Dev 2014; 60:256-9. [PMID: 24694523 PMCID: PMC4085392 DOI: 10.1262/jrd.2013-100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In pigs, the embryonic developmental ability after intracytoplasmic sperm injection (ICSI) is inferior to that resulting from in vitro fertilization (IVF). We evaluated the timing of cell division up to blastocyst formation on embryonic development after ICSI using either whole sperm (w-ICSI) or the sperm head alone (h-ICSI) and IVF as a control. At 10 h after ICSI or IVF, we selected only zygotes, and each of the zygotes/embryos was evaluated for cleavage every 24 h until 168 h. We then observed a delay in the 1st and 2nd cleavages of h-ICSI embryos and also in blastocoele formation by w-ICSI embryos in comparison with IVF embryos. The rate of blastocyst formation and the quality of blastocysts in both ICSI groups were inferior to those in the IVF group. In conclusion, the delay in cleavage of porcine ICSI embryos shows poorer embryonic development.
Collapse
Affiliation(s)
- Michiko Nakai
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Ibaraki 305-0901, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chankitisakul V, Am-In N, Tharasanit T, Somfai T, Nagai T, Techakumphu M. Sperm pretreatment with dithiothreitol increases male pronucleus formation rates after intracytoplasmic sperm injection (ICSI) in swamp buffalo oocytes. J Reprod Dev 2012; 59:66-71. [PMID: 23132520 PMCID: PMC3943227 DOI: 10.1262/jrd.2012-104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Failure of male pronucleus formation has hampered the success of intracytoplasmic sperm
injection (ICSI) in swamp buffalo. The aim of the present study was to improve male
pronucleus formation by pretreating sperm with various chemicals before ICSI. In
Experiments1 and 2, sperm were treated according to one of the following protocols: (1)
0.1% Triton-X 100 (TX) for 1 min, (2) 10 µM calcium ionophore (CaI) for 20 min, (3)
freezing and thawing (FT) without any cryoprotectant, or (4) no treatment (control). These
sperm treatment groups then either did or did not receive additional sperm treatment with
5 mM dithiothreitol (DTT) for 20 min. Acrosomal integrity (Experiment 1) and DNA
fragmentation (Experiment 2) were evaluated in the sperm before ICSI. In Experiment 3,
oocytes matured in vitro were subjected to ICSI using pretreated sperm as
described above and then were cultured either with or without activation. The TX- and
CaI-treated sperm caused an increase in the number of acrosome-loss sperm, whereas the FT
treatment and control increased the proportion of acrosome-reacted sperm (P<0.05). The
DNA fragmentation did not differ among treatments (P>0.05). At 18 h post-ICSI,
pronucleus (PN) formation was found only in activated oocytes. The majority of the
activated ICSI oocytes contained intact sperm heads. Normal fertilization was observed in
the CaI and FT treatment groups and control group when sperm were treated with DTT before
ICSI. In conclusion, DTT treatment of sperm with reacted acrosomes before ICSI together
with activation of the ICSI oocytes is important for successful male pronucleus
formation.
Collapse
Affiliation(s)
- Vibuntita Chankitisakul
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | | | |
Collapse
|
23
|
Viability of ICSI oocytes after caffeine treatment and sperm membrane removal with Triton X-100 in pigs. Theriogenology 2012; 76:1658-66. [PMID: 21855983 DOI: 10.1016/j.theriogenology.2011.06.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/24/2011] [Accepted: 06/25/2011] [Indexed: 11/24/2022]
Abstract
Non-adequate decondensation of injected sperm nucleus is one the main problems of intracytoplasmic sperm injection (ICSI) in porcine. With the aim of improving pronuclear formation, the effects on activation and embryo development rates of 0.1% Triton X-100 (TX) sperm pre-treatment for membrane removal and/or 5 mM Caffeine (CAF) addition in oocyte manipulating and culture medium for 2 h after ICSI or artificial activation were studied. The effects of 4 different Ca(2+) concentrations contained in the injection medium on embryo development after sham injection were also analysed. In Experiment 1, no significant effect on cleavage or blastocyst rate was detected independently of Ca(2+) concentration contained in the injection medium. In Experiment 2, oocytes injected with TX pre-treated sperm showed a significant higher rate of male pronuclear formation in comparison with oocytes from control group (2PN; 54.1 vs 36.6%). However, no differences on in vitro embryo development, cleavage or blastocyst rates were observed. In Experiment 3, oocytes treated with CAF during and after micromanipulation and injected with sperm pre-treated with TX had a significantly lower oocyte activation rate than any other experimental groups (25.7 vs 56.3-66.3%). No differences were observed in cleavage rates among different experimental groups. However, the CAF group showed a higher blastocyst rate significantly different from TX+CAF group (12.0 vs 1.9%, respectively). In a second approach, the effect of electric field strengths and CAF treatments on oocyte activation was studied. In Experiment 4, oocytes submitted to 0.6 kV/cm showed significant higher activation rates than 1.2 kV/cm ones regardless of the caffeine treatment (83.7 vs 55.9% and 75.7 vs 44.3%; in control and caffeine groups, respectively). No effect of caffeine treatment was observed in any experimental group. In conclusion, TX sperm treatment before ICSI without an additional activation procedure improved male pronuclear formation, but did not improve embryo development until blastocyst stage. No significant effect of caffeine was found when sperm was not treated with TX, although in membrane absence caffeine avoided oocyte activation and embryo development. Finally, caffeine had no effect on female pronuclear formation regardless of electric field strengths applied to the parthenogenetic activation.
Collapse
|
24
|
Lacking expression of paternally-expressed gene confirms the failure of syngamy after intracytoplasmic sperm injection in swamp buffalo (Bubalus bubalis). Theriogenology 2012; 77:1415-24. [DOI: 10.1016/j.theriogenology.2011.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 10/03/2011] [Accepted: 11/12/2011] [Indexed: 01/20/2023]
|
25
|
Cheng WM, Wu ZH, Zhang X, Zhu YB, Pang YW, Guo M, Wang D, Tian JH. Effects of Different Activation Regimens on Pronuclear Formation and Developmental Competence of In Vitro-Matured Porcine Oocytes After Intracytoplasmic Sperm Injection. Reprod Domest Anim 2011; 47:609-14. [DOI: 10.1111/j.1439-0531.2011.01930.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Watanabe H, Okawara S, Bhuiyan M, Fukui Y. Effect of lycopene on cytoplasmic maturation of porcine oocytes in vitro. Reprod Domest Anim 2011; 45:838-45. [PMID: 19788518 DOI: 10.1111/j.1439-0531.2009.01365.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of the present study was to improve cytoplasmic maturation of porcine oocytes by the addition of lycopene into in vitro maturation (IVM) media. We designed six experimental groups; IVM medium was supplemented with 10 IU/ml FSH, FSH and 10 IU/ml human chorionic gonadotrophin (hCG), or FSH and 7 μm lycopene in the first half of the IVM culture (0-22 h) followed by further culture (22-44 h) with or without hCG. The addition of lycopene into IVM media delayed the interruption of communication between an oocyte and the cumulus cells. Although meiotic competence was similar among the six groups, the glutathione level of matured oocytes was significantly higher in the lycopene-supplemented group (9.89 pmol per oocyte) than that in other groups (7.25 and 7.81 pmol per oocyte). Fertilization rate was significantly improved in lycopene-supplemented groups (58.3%) more than that in the group supplemented with FSH only (43.1%), whereas there were no differences in developmental competence among the groups (blastocyst rate: 20.1-29.5%). These results indicate that insufficient cytoplasmic maturation during conventional IVM resulted by disconnection of the gap junction between an oocyte and the cumulus cells in the early phase during IVM culture. We concluded that lycopene induced a prolonged sustainment of gap junctional communication between an oocyte and the cumulus cells during porcine IVM culture, which was an effective cytoplasmic maturation of porcine IVM oocytes.
Collapse
Affiliation(s)
- H Watanabe
- Department of Food Production Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | | | | | | |
Collapse
|
27
|
Nakai M, Ito J, Sato KI, Noguchi J, Kaneko H, Kashiwazaki N, Kikuchi K. Pre-treatment of sperm reduces success of ICSI in the pig. Reproduction 2011; 142:285-93. [PMID: 21610169 DOI: 10.1530/rep-11-0073] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In pigs, although ICSI is a feasible fertilization technique, its efficiency is low. In general, injected pig sperm are insufficient to induce oocyte activation and embryonic development. Pretreatments for disrupting sperm membranes have been applied to improve the fertility of ICSI oocytes; however, we hypothesize that such pretreatment(s) may reduce the ability of the sperm to induce oocyte activation. We first evaluated the effects of sperm pretreatments (sonication (SO) to isolate the sperm heads from the tails, Triton X-100 (TX), and three cycles of repeated freezing/thawing (3×-FT) for disrupting sperm membranes) on the rate of pronucleus (PN) formation after ICSI. We found that oocytes injected with control (whole) sperm had higher rates of PN formation than those obtained after subjecting the sperm to SO, TX, and 3×-FT. The amounts of phospholipase Cζ (PLCζ), which is thought to be the oocyte-activating factor in mammalian sperm, in sperm treated by each method was significantly lower than that in whole untreated sperm. Furthermore, using immunofluorescence, it was found that in pig sperm, PLCζ was localized to both the post-acrosomal region and the tail area. Thus we demonstrated for the first time that sperm pretreatment leads to a reduction of oocyte-activating capacity. Our data also show that in addition to its expected localization to the sperm head, PLCζ is also localized in the tail of pig sperm, thus raising the possibility that injection of whole sperm may be required to attain successful activation in pigs.
Collapse
Affiliation(s)
- Michiko Nakai
- Reproductive Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Liang YY, Ye DN, Laowtammathron C, Phermthai T, Nagai T, Somfai T, Parnpai R. Effects of Chemical Activation Treatment on Development of Swamp Buffalo (Bubalus bubalis) Oocytes Matured In Vitro and Fertilized by Intracytoplasmic Sperm Injection. Reprod Domest Anim 2011; 46:e67-73. [DOI: 10.1111/j.1439-0531.2010.01636.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
NAKAI M, KASHIWAZAKI N, ITO J, MAEDOMARI N, OZAWA M, SHINO M, NOGUCHI J, KANEKO H, KIKUCHI K. Factors Affecting Fertilization and Embryonic Development During Intracytoplasmic Sperm Injection in Pigs. J Reprod Dev 2011; 57:183-7. [DOI: 10.1262/jrd.10-200e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Michiko NAKAI
- Division of Animal Sciences, National Institute of Agrobiological Sciences
| | - Naomi KASHIWAZAKI
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University
| | - Junya ITO
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University
| | - Naoki MAEDOMARI
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University
| | - Manabu OZAWA
- Division of Animal Sciences, National Institute of Agrobiological Sciences
| | - Masao SHINO
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University
| | - Junko NOGUCHI
- Division of Animal Sciences, National Institute of Agrobiological Sciences
| | - Hiroyuki KANEKO
- Division of Animal Sciences, National Institute of Agrobiological Sciences
| | - Kazuhiro KIKUCHI
- Division of Animal Sciences, National Institute of Agrobiological Sciences
| |
Collapse
|
30
|
Binh N, Van Thuan N, Miyake M. Effects of liquid preservation of sperm on their ability to activate oocytes and initiate preimplantational development after intracytoplasmic sperm injection in the pig. Theriogenology 2009; 71:1440-50. [DOI: 10.1016/j.theriogenology.2009.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 01/22/2009] [Accepted: 01/14/2009] [Indexed: 10/21/2022]
|
31
|
Watanabe H, Akiyama J, Uddin Bhuiyan MM, Fukui Y. Enhanced Oocyte Activation by Intracytoplasmic Injection of Porcine Spermatozoa Pre-treated with Dithiothreitol. ACTA ACUST UNITED AC 2009. [DOI: 10.1274/jmor.26.54] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Cheng WM, An L, Wu ZH, Zhu YB, Liu JH, Gao HM, Li XH, Zheng SJ, Chen DB, Tian JH. Effects of disulfide bond reducing agents on sperm chromatin structural integrity and developmental competence of in vitro matured oocytes after intracytoplasmic sperm injection in pigs. Reproduction 2009; 137:633-43. [PMID: 19155332 DOI: 10.1530/rep-08-0143] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We recently reported that electrical activation followed by secondary chemical activation greatly enhanced the developmental competence of in vitro matured porcine oocytes fertilized by intracytoplasmic sperm injection (ICSI). We hypothesized that sperm treatment with disulfide bond reducing agents will enhance the development competence of porcine embryos produced by this ICSI procedure. We examined the effects of glutathione (GSH), dithiothreitol (DTT), GSH or DTT in combination with heparin on sperm DNA structure, paternal chromosomal integrity, pronuclear formation, and developmental competence of in vitro matured porcine oocytes after ICSI. Acridine orange staining and flow cytometry based sperm chromatin structure assay were used to determine sperm DNA integrity by calculating the cells outside the main population (COMP alphaT). No differences were observed in COMP alphaT values among GSH-treated and control groups. COMP alphaT values in GSH-treated groups were significantly lower than that in DTT-treated groups. Following ICSI, GSH treatments did not significantly alter paternal chromosomal integrity. Paternal chromosomal integrity in sperm treated with DTT plus or minus heparin was also the lowest among all groups. GSH-treated sperm yielded the highest rates of normal fertilization and blastocyst formation, which were significantly higher than that of control and DTT-treated groups. The majority of blastocysts derived from control and GSH-treated spermatozoa were diploid, whereas blastocysts derived from DTT-treated spermatozoa were haploid. In conclusion, sperm treatment with GSH enhanced the developmental capacity of porcine embryos produced by our optimized ICSI procedure.
Collapse
Affiliation(s)
- Wen-Min Cheng
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences and Technology, China Agricultural University, Beijing
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
García-Roselló E, García-Mengual E, Coy P, Alfonso J, Silvestre MA. Intracytoplasmic sperm injection in livestock species: an update. Reprod Domest Anim 2008; 44:143-51. [PMID: 18954388 DOI: 10.1111/j.1439-0531.2007.01018.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracytoplasmic sperm injection (ICSI) is a powerful technique in the field of assisted reproduction (ART) and provides exciting opportunities for studying the basic mechanisms of fertilization and early embryo development. Nevertheless, its application in agriculture and conservation biology has been greatly hampered by the low success rate reported for this method in respect of economically important species. Specifically, the rates of blastocyst formation and live newborn are greatly reduced when zygotes are generated by ICSI. Except for humans, ICSI remains a low efficiency technology in comparison with alternatives such as in vitro fertilization (IVF) and its application is less widespread. In this paper, we discuss the present status, applications and factors affecting ICSI in pigs and other species.
Collapse
Affiliation(s)
- E García-Roselló
- Dpto. Medicina y Cirugía Animal, Facultad de Ciencias Experimentales y de la Salud, Universidad CEU-Cardenal Herrera, Edificio Seminario, Moncada, Spain.
| | | | | | | | | |
Collapse
|
34
|
Wu Y, Liu CJ, Wan PC, Hao ZD, Zeng SM. Factors affecting the efficiency of producing porcine embryos expressing enhanced green fluorescence protein by ICSI-mediated gene transfer method. Anim Reprod Sci 2008; 113:156-66. [PMID: 18804336 DOI: 10.1016/j.anireprosci.2008.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 07/01/2008] [Accepted: 08/01/2008] [Indexed: 11/16/2022]
Abstract
This study aims to investigate factors that affect the efficiency of blastocyst development and enhanced green fluorescence protein (EGFP) expression in porcine embryos following intracytoplasmic sperm injection (ICSI)-mediated DNA transfer. Frozen-thawed dead spermatozoa were exposed to different concentrations (0.01 microg/mL, 0.05 microg/mL or 0.1 microg/mL) of EGFP DNA solution, and then microinjected into in vitro matured oocytes. The optimal concentration for EGFP expression of resultant embryos was 0.05 microg/mL. When oocytes were microinjected on a warm stage at 30 degrees C, the percentage of EGFP-expressing embryos was higher than that at 38.5 degrees C (40.1% vs. 20.9%, P<0.01). The efficiency of EGFP expression in embryos following ICSI using linear EGFP DNA-exposed spermatozoa was higher than using circular DNA (40.8% vs. 28.2%, P<0.05). ICSI oocytes treated with 6-DMAP after electro-activation had a higher percentage of embryos expressing EGFP than those not treated (52.5% vs. 26.3%, P<0.01). However, neither incubation temperatures of spermatozoa and DNA (4 degrees C, 24 degrees C or 39 degrees C) nor BSA addition to the incubation medium affected the efficiency of producing EGFP-expressing embryos. Furthermore, treatment with DNase I after preincubation of sperm and DNA prevented the embryos from expressing EGFP. The EGFP expression of ICSI oocytes was affected neither by intracytoplasmic injection using sperm heads or whole spermatozoa, nor by washing of the sperm after preincubation. The above-mentioned factors did not affect embryonic developmental competence, apart from 6-DMAP treatment after electro-activation. In conclusion, most exogenous DNA molecules were tightly bound on the membranes of sperm head after incubation of DNA and sperm, and the temperature during ICSI, 6-DMAP treatment, exogenous DNA concentrations and constructs could significantly affect EGFP expression in porcine embryos following ICSI-mediated DNA transfer.
Collapse
Affiliation(s)
- Yi Wu
- Laboratory of Animal Embryonic Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | | | | | | | | |
Collapse
|
35
|
Viability, acrosome morphology and fertilizing capacity of boar spermatozoa treated with strontium chloride. ZYGOTE 2008; 16:49-56. [DOI: 10.1017/s0967199407004479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryThe positive effect of strontium ions (Sr2+) on sperm motility, capacitation and acrosome reaction has been demonstrated in the mouse, human, guinea pig and hamster. In the present study, we have evaluated the effect of Sr2+ on the viability and acrosome morphology of boar spermatozoa, and on the fertilization and development after the microinjection of Sr2+-treated spermatozoa into porcine oocytes. Before incubation, 79% of spermatozoa were classified as propidium iodide (PI)-negative (live) using the LIVE/DEAD Sperm Viability Kit. After incubation with strontium chloride (SrCl2), 39% (0 mM; no divalent cations), 25% (1.9 mM) and 24% (7.5 mM) of them were classified as PI-negative. The proportion of spermatozoa that had initiated the acrosome reaction was higher in Sr2+-containing medium than in Sr2+-free medium, when assessed by electron microscopy. There was no significant difference in percentage of spermatozoa initiating the acrosome reaction between Sr2+-treated groups (1.9 mM: 22%, 7.5 mM: 33%, p > 0.05). After the microinjection of spermatozoa incubated with SrCl2, 67% (1.9 mM) and 61% (7.5 mM) of injected oocytes were successfully fertilized, and then 43% (1.9 mM) and 41% (7.5 mM) contained a fully decondensed sperm head. Sham-injected oocytes were significantly activated at a lower rate than Sr2+-treated groups (27%, p < 0.05). Next, after microinjection of spermatozoa incubated with 1.9 mM SrCl2 (n = 51), 45% of injected oocytes cleaved on day 2, and 18% developed to blastocysts on day 7 (sham-injection, n = 48: 15% to cleavage and 0% to blastocyst). These results demonstrate that Sr2+ is likely to positively affect the fertilizing capacity of spermatozoa in the pig.
Collapse
|
36
|
García J, Noriega-Hoces L, Gonzales GF. Sperm chromatin stability and its relationship with fertilization rate after intracytoplasmic sperm injection (ICSI) in an assisted reproduction program. J Assist Reprod Genet 2007; 24:587-93. [PMID: 18034300 DOI: 10.1007/s10815-007-9174-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Accepted: 10/19/2007] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Evaluate sperm chromatin stability and its relationship with the rate of fertilization after procedures of intracytoplasmic sperm injection (ICSI) in a program of assisted reproduction. DESIGN Prospective study. SETTING Institute of Gynecology and Reproduction. PATIENTS Thirty-three women with their respective partners (12 couples in the study group and 21 couples in the control group) participating in a program of assisted reproduction. The study group was defined as men with >30% of non-decondensed spermatozoa (high sperm chromatin stability). INTERVENTIONS A part of each seminal sample was used to evaluate sperm chromatin stability under SDS and EDTA treatment and the second aliquot was used for the ICSI procedure. Fertilization was evaluated 16-18 h post sperm injection at a pronuclear stage. The fertilized oocytes were further cultured for 24-48 h before transfer to the patient. MAIN OUTCOME MEASURES Fertilization rate. RESULTS Thirty-five oocytes (35.7%) in the group of study and 109 oocytes (78.9%) in the control group showed two pronuclei (P < 0.001). The coefficient of determination between the SDS + EDTA (Grade 2) and rate of fertilization was r (2) = 0.85 (P < 0.001) and the coefficient of regression was 1.72 +/- 0.19 (beta +/- ES) (P < 0.001). CONCLUSIONS High sperm chromatin stability is a factor which reduces the rate of fertilization after ICSI procedure.
Collapse
Affiliation(s)
- Javier García
- Laboratory of Assisted Reproduction, PRANOR Group of Assisted Reproduction, Instituto de Ginecología y Reproducción, Lima, Peru
| | | | | |
Collapse
|
37
|
Kurome M, Saito H, Tomii R, Ueno S, Hiruma K, Nagashima H. Effects of sperm pretreatment on efficiency of ICSI-mediated gene transfer in pigs. J Reprod Dev 2007; 53:1217-26. [PMID: 17938554 DOI: 10.1262/jrd.19069] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intracytoplasmic sperm injection (ICSI)-mediated gene transfer has recently been shown to be an effective technique for producing transgenic pigs; however, the types of sperm pretreatment having the most beneficial effects on post-ICSI embryogenesis or transgenic efficiency have not been clarified. In the present study, we performed ICSI-mediated gene transfer using pig sperm subjected to various pretreatments and determined the developmental potential of sperm-injected oocytes and introduction efficiency of exogenous DNA. Embryos were then transferred to recipient pigs to confirm gene transfer efficiency during the fetal period. When ICSI was performed using unfrozen sperm heads with tails removed by piezo-pulse, the rates of blastocyst formation (14.2%, 17/120) and transgene (EGFP) expression (11.8%, 2/17) were both low. When unfrozen sperm heads were used that were removed by sonication, EGFP expression efficiency (11/21, 52.4%) improved significantly (P<0.05). Pretreatment of unfrozen sperm with a surfactant or acrosomal reaction did not further improve the rates of blastocyst formation and EGFP expression. However, use of the heads of sperm frozen-thawed with or without a cryoprotective agent resulted in rates of blastocyst formation and EGFP expression that tended to be generally high (23.0%, 14/61-33.8%, 26/77 and 42.9%, 6/14-66.7%, 10/15). A total of 219 in vitro matured oocytes were fertilized by ICSI-mediated gene transfer using the heads of frozen-thawed sperm and then transferred into two recipient pigs. Seven fetuses were obtained, and EGFP expression and integration of the transgene (10-30 copies) were confirmed in two of the seven fetuses. Use of unfrozen sperm thus confers no advantages on ICSI-mediated gene transfer, and although further investigations are needed, frozen-thawed sperm heads appear to be useful in ICSI-mediated gene transfer.
Collapse
Affiliation(s)
- Mayuko Kurome
- Laboratory of Developmental Engineering, Department of Life Science, School of Agriculture, Meiji University, Kawasaki, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Sansinena MJ, Taylor SA, Taylor PJ, Schmidt EE, Denniston RS, Godke RA. In vitro production of llama (Lama glama) embryos by intracytoplasmic sperm injection: Effect of chemical activation treatments and culture conditions. Anim Reprod Sci 2007; 99:342-53. [PMID: 16846701 DOI: 10.1016/j.anireprosci.2006.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 05/29/2006] [Indexed: 11/22/2022]
Abstract
Assisted reproductive technologies in the llama (Lama glama) are needed to provide alternative methods for the propagation, selection and genetic improvement; however, recovery of adequate quantity and quality of spermatozoa for conventional IVF is problematic. Therefore, an effort was made to adapt the intracytoplasmic sperm injection (ICSI) procedure for the in vitro production of llama embryos. The specific objectives of this study were: (1) to determine in vitro maturation rates of oocytes recovered by transvaginal ultrasound-guided oocyte aspiration (TUGA) or flank laparotomy; (2) to evaluate the effects of activation treatments following ICSI; (3) to evaluate the development of llama ICSI embryos in CR1aa medium or in an oviduct cell co-culture system. Llamas were superstimulated by double dominant follicle reduction followed by oFSH administered in daily descending doses over a 3-day interval. Oocytes were harvested by flank laparotomy or TUGA and matured in vitro for 30 h. Mature oocytes were subjected to ICSI followed by no chemical activation (Treatment A), ionomycin only (Treatment B) or ionomycin/DMAP activation (Treatment C). More oocytes were recovered by flank laparotomy procedure compared with TUGA (94% versus 61%, P<0.05) and a greater number of oocytes harvested by flank laparotomy reached the metaphase-II stage (77% versus 44%, P<0.05). After ICSI, the proportion of cleaved and 4-8-cell stages embryos was significantly greater when injected oocytes were activated with ionomycin/DMAP combination (63% and 38%, respectively, P<0.05). The co-culture of ICSI embryos with llama oviduct epithelial cells resulted in progression to morula (25%) and blastocyst (12%) stages; whereas, all embryos cultured in CR1aa medium arrested at the 8-16-cell developmental stage.
Collapse
Affiliation(s)
- M J Sansinena
- Embryo Biotechnology Laboratory, Reproductive Biology Center, LSU Agricultural Center, St. Gabriel, LA 70776, USA
| | | | | | | | | | | |
Collapse
|
39
|
Silvestre MA, Alfonso J, García-Mengual E, Salvador I, Duque CC, Molina I. Effect of recombinant human follicle-stimulating hormone and luteinizing hormone on in vitro maturation of porcine oocytes evaluated by the subsequent in vitro development of embryos obtained by in vitro fertilization, intracytoplasmic sperm injection, or parthenogenetic activation1. J Anim Sci 2007. [DOI: 10.2527/jas.2006-645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
Katayama M, Rieke A, Cantley T, Murphy C, Dowell L, Sutovsky P, Day BN. Improved fertilization and embryo development resulting in birth of live piglets after intracytoplasmic sperm injection and in vitro culture in a cysteine-supplemented medium. Theriogenology 2007; 67:835-47. [PMID: 17137619 DOI: 10.1016/j.theriogenology.2006.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 10/06/2006] [Indexed: 01/22/2023]
Abstract
The effects of cysteine treatment on fertilization rate, intracellular concentration of glutathione, and embryo development in vitro and after embryo transfer were examined following intracytoplasmic sperm injection (ICSI) of in vitro-matured porcine oocytes using a piezo drive unit. Culture of presumed zygotes after ICSI with 1.71-3.71 mM cysteine for 3-12h improved (P<0.05) fertilization rates as compared to treatment with 0.57 mM cysteine or to controls (0mM) (56 to 68%, 48%, 35%, respectively). Extension of treatment time with cysteine beyond 3h did not further increase fertilization rates, suggesting that cysteine promoted early developmental events after ICSI (e.g. decondensation of sperm chromatin). There was no effect of cysteine supplementation on oocyte glutathione levels after ICSI. Pretreatment of spermatozoa for 3h with 1.71 mM cysteine did not improve fertilization rates. The incidence of blastocysts formation when cultured in 1.71 mM cysteine for 3h after ICSI was 31%, which was higher (P<0.05) than controls (18%). Transfer of 20-38 embryos cultured with 1.71 mM cysteine for 3h after ICSI to each of seven recipients yielded three deliveries with an average litter size of 4.0. We concluded that cysteine supplementation for the first 3h after ICSI improved fertilization and embryo development rates, with no influence on glutathione levels in oocytes, and that the cysteine-treated ICSI embryos developed to full term. The study also showed that porcine oocytes matured in a chemically defined medium had the ability for full-term development after piezo-ICSI without additional treatments for oocyte activation.
Collapse
Affiliation(s)
- Mika Katayama
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, MO, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
García-Roselló E, Coy P, García Vázquez FA, Ruiz S, Matás C. Analysis of different factors influencing the intracytoplasmic sperm injection (ICSI) yield in pigs. Theriogenology 2006; 66:1857-65. [PMID: 16769105 DOI: 10.1016/j.theriogenology.2006.04.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Revised: 04/24/2006] [Accepted: 04/26/2006] [Indexed: 11/19/2022]
Abstract
Intracytoplasmic sperm injection (ICSI) in pigs is a technique with potential application in diverse fields of animal production and biomedicine. Even though there are some cases of live offspring resulting from this technique, its yield is still quite low compared to other species. The aim of this study was to evaluate different factors affecting the ICSI performance. This was done by studying (1) the sequence of culture media for the oocytes after injection; (2) modifications in the in vitro maturation system (IVM) through meiotic inhibitors such as roscovitine, and changes in the IVM time; (3) oocyte activation through injection of inositol triphosphate (InsP(3)) together with the sperm. In vitro matured oocytes were employed. All the ICSI experiments were performed with fresh ejaculated semen. Results showed that porcine ICSI zygotes give an improved proportion of two-cell embryos using the sequence IVF medium-embryo culture medium (NCSU-23) rather than transferring directly to NCSU-23. Pronuclear formation ability was not affected by prematuration, but a faster embryo development was observed in roscovitine treated oocytes. In relation to IVM times, oocytes matured for 36 h can achieve better fertilization percentages than oocytes matured for 44 h. These results were independent of the roscovitine treatment. Finally, no influence on embryo development was observed until the blastocyst stage with the use of the InsP(3) as an exogenous activating factor.
Collapse
Affiliation(s)
- Empar García-Roselló
- Department of Veterinary Physiology, Faculty of Veterinary Science, University of Murcia, 30071 Murcia, Spain
| | | | | | | | | |
Collapse
|
42
|
Jiménez-Macedo AR, Anguita B, Izquierdo D, Mogas T, Paramio MT. Embryo development of prepubertal goat oocytes fertilised by intracytoplasmic sperm injection (ICSI) according to oocyte diameter. Theriogenology 2006; 66:1065-72. [PMID: 16580715 DOI: 10.1016/j.theriogenology.2006.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 03/02/2006] [Accepted: 03/04/2006] [Indexed: 11/19/2022]
Abstract
The aim of this study was to evaluate embryo development of prepubertal goat oocytes fertilised by ICSI according to their diameter. Three experiments were carried out to achieve this objective. In all experiments, oocytes were matured in TCM199 supplemented with hormones, cysteamine and serum for 27 h at 38.5 degrees C. In Experiment 1, we studied the nuclear stage of goat zygotes produced by conventional ICSI and IVF using 20 nM ionomycin plus 10 microM heparin as sperm treatment. A group of Sham-injected oocytes was used as control. Results showed differences in the percentage of 2 PN (zygotes with male and female pronuclei) between ICSI, IVF and Sham (40.9, 26.6 and 3.0%, respectively; P<0.05). In Experiment 2, we evaluated the embryo development of prepubertal goat oocytes produced by ICSI and IVF after 192 h of culture in SOF medium. The percentage of morulae plus blastocysts obtained was higher in the ICSI than in the IVF group (13.4 and 5.1%, respectively; P<0.05). In Experiment 3, IVM-oocytes were classified in four groups depending on their diameter (Group A: <110 microm; Group B: 110-125 microm; Group C: 125-135 microm; Group D: >135 microm), fertilised by ICSI and cultured for 192 h. Results showed a positive correlation between oocyte diameter and embryo development (morulae+blastocysts: Group A: 0%; Group B: 6.2%; Group C: 46.4% and Group D: 33.3%). In conclusion, sperm treatment with ionomycin plus heparin using the conventional ICSI protocol improved fertilisation rates in comparison to IVF. Oocytes smaller than 125 microm were unable to develop up to blastocyst stage.
Collapse
Affiliation(s)
- Ana-Raquel Jiménez-Macedo
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra 08183, Barcelona, Spain
| | | | | | | | | |
Collapse
|
43
|
Tian JH, Wu ZH, Liu L, Cai Y, Zeng SM, Zhu SE, Liu GS, Li Y, Wu CX. Effects of oocyte activation and sperm preparation on the development of porcine embryos derived from in vitro-matured oocytes and intracytoplasmic sperm injection. Theriogenology 2006; 66:439-48. [PMID: 16426671 DOI: 10.1016/j.theriogenology.2005.10.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 10/09/2005] [Indexed: 10/25/2022]
Abstract
The objective was to determine the effects of various methods of oocyte activation and sperm pretreatment on development of porcine embryos derived from in vitro-matured oocytes and intracytoplasmic sperm injection (ICSI). The second polar body was extruded in the majority (>78.4%) of in vitro-matured (IVM) oocytes 4h after electrical pulse activation. In embryos generated by ICSI and sham-ICSI, a combination of an electrical pulse, with various chemical activators 4 h later, improved (P < 0.05) blastocyst formation rate compared to activation only with a pulse. Treatment with 6-dimethylaminopurine (DMAP) after electrical activation significantly increased the oocyte activation rate. The effects of exposure of sperm to repeated freeze-thaw cycles (without cryoprotectant) on oocyte activation and the effects of sperm pre-incubated with dithiothreitol (DTT) or Triton X-100 on early embryo development were also examined. Blastocyst formation rates after ICSI did not differ between motile sperm and those rendered immotile by one-time freezing and thawing without cryoprotectant. However, sperm rendered immotile by three cycles of freezing/thawing without cryoprotectant had a significantly lower blastocyst formation rate. Although oocytes injected with sperm pre-incubated with Triton X-100 had a higher normal fertilization rate than those pre-incubated with DTT or one-time frozen/thawed sperm, rates of blastocyst formation and cell numbers were similar among the three groups. In conclusion, various methods of oocyte activation and sperm preparation significantly affected the developmental capacity of early porcine embryos derived from IVM and ICSI.
Collapse
Affiliation(s)
- Jian-Hui Tian
- Key Laboratory of Animal Genetics and Breeding of The Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100094, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kobayashi M, Lee ES, Fukui Y. Cysteamine or β-mercaptoethanol added to a defined maturation medium improves blastocyst formation of porcine oocytes after intracytoplasmic sperm injection. Theriogenology 2006; 65:1191-9. [PMID: 16154628 DOI: 10.1016/j.theriogenology.2005.06.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 06/27/2005] [Indexed: 10/25/2022]
Abstract
The present study was carried out to investigate the effect of adding 100 microM cysteamine (Cys) or 100 microM beta-mercaptoethanol (beta-ME) to a defined maturation medium on in vitro maturation (IVM), and fertilization and developmental competence of in vitro matured porcine oocytes following intracytoplasmic sperm injection (ICSI). The two control media for IVM culture were modified TCM199 containing 10% (v/v) porcine follicular fluid (pFF) or 0.05% (w/v) polyvinyl alcohol (PVA), and Cys or beta-ME was supplemented to the PVA-control medium. There was no significant difference in the proportions of in vitro matured oocytes among the four treatment groups (94.5-98.4%). The percentages of pronuclear formation (51.0-64.2%) after ICSI were also not significantly different among the four groups. The cleavage rate (72.8%) in the oocytes treated with Cys showed no significant difference compared with those of the two control media containing pFF (72.2%) or PVA (61.5%), but was higher (P<0.05) than that in the oocytes treated with beta-ME (56.3%). However, the rates of blastocyst formation of Cys (36.7%), beta-ME (27.1%) and pFF (31.4%) were higher (P<0.05) than that using the control medium containing PVA (15.6%). The mean cell number of blastocysts ranged from 42 to 52 among the four groups, without significant differences. In conclusion, the addition of Cys or beta-ME to a defined maturation medium enhanced blastocyst formation after ICSI, to a level similar to that achieved by adding pFF.
Collapse
Affiliation(s)
- Mariko Kobayashi
- Laboratory of Animal Reproduction, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | | | | |
Collapse
|
45
|
Nakai M, Kashiwazaki N, Takizawa A, Maedomari N, Ozawa M, Noguchi J, Kaneko H, Shino M, Kikuchi K. Morphologic changes in boar sperm nuclei with reduced disulfide bonds in electrostimulated porcine oocytes. Reproduction 2006; 131:603-11. [PMID: 16514203 DOI: 10.1530/rep.1.01001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In pigs, failure of sperm nuclear decondensation has been reported after injection into oocytes. We examined the effects of pretreating sperm heads with Triton X-100 (TX-100) and dithiothreitol (DTT) and of electrical stimulation of oocytes after sperm head injection on time-dependent morphologic changes in sperm nuclei andin vitrodevelopment to the blastocyst stage. In experiment 1, spermatozoa were pretreated with 1% TX-100 and 5 mM DTT (T + D) or not treated, and then injected intoin vitromatured oocytes. Electrical stimulation (1.5 kV/cm, 20 μs DC pulse) was applied to the oocytes 1 h after injection (stimulated group) or was not applied (unstimulated group). Some of the oocytes in each group were evaluated at hourly intervals until 10 h after injection for morphologic changes in the sperm nuclei. Unstimulated oocytes injected with untreated spermatozoa showed a delayed peak in the rate of nuclear decondensation (39.4–44.1%, 3–6 h after injection) compared with oocytes injected with T + D-treated spermatozoa (57.0% and 52.6%, 1 and 2 h, respectively). The rate of male pronucleus formation peaked 6 h after stimulation (by 40–60%) after injected oocytes had been stimulated with an electrical pulse, irrespective of whether or not the spermatozoa had been pretreated. In unstimulated oocytes, the rate of male pronucleus formation did not increase and stayed at the basal level (less than 20%) throughout the culture period, regardless of the sperm treatment. Thus, T + D treatment of spermatozoa did not affect completion of fertilization. In experiment 2, we evaluated the effects of electrical stimulation and sperm treatment with T + D on the rate of blastocyst formation and the mean number of cells per blastocyst. Oocytes stimulated after injection with either T + D-treated or untreated spermatozoa showed significantly higher percentages of blastocyst formation (24.8% and 27.1% respectively) than did unstimulated oocytes (1.1% and 4.1% for T + D-treated and untreated respectively;P< 0.01 by Duncan’s multiple-range test). The rate of blastocyst formation did not differ between the T + D-treated and untreated groups. The mean number of cells per blastocyst did not differ among any of the groups (14.0–29.4 cells). These results suggest that pretreatment of sperm with TX-100 and DTT shifted the timing of sperm nuclear decondensation forward. However, pronucleus formation and development to the blastocyst stagein vitrowere not improved by sperm treatment. Thus, electrical stimulation of injected oocytes enhancesin vitrodevelopment to the blastocyst stage in pigs.
Collapse
Affiliation(s)
- Michiko Nakai
- Genetic Diversity Department, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Watanabe H, Fukui Y. Effects of dithiothreitol and boar on pronuclear formation and embryonic development following intracytoplasmic sperm injection in pigs. Theriogenology 2006; 65:528-39. [PMID: 16009412 DOI: 10.1016/j.theriogenology.2005.04.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Accepted: 04/01/2005] [Indexed: 11/24/2022]
Abstract
The objective of this study was to improve normal fertilization, male pronuclear formation and embryonic development following intracytoplasmic injection of dithiothreitol (DTT)-treated boar spermatozoa. To determine the effect of DTT treatment, frozen-thawed boar spermatozoa were treated with DTT for 0, 10, 30, and 60 min, and injected into porcine oocytes. The effects of DTT and male difference on normal fertilization and embryonic development were investigated. The mean normal fertilization rate in the groups treated with DTT for 30 min (73.8%) and 60 min (74.9%) was higher (P < 0.05) than that in the control group (49.3%). The mean blastocyst formation rate in the group treated with DTT for 30 min (23.2%) was higher (P < 0.05) than that in the other groups (8.7-10.9%). Among boars there was no difference in normal fertilization, but there was a significant difference between the non-treated and the DTT-treated groups. The mean rate of blastocyst formation was different (P < 0.05) among boars, and between the non-treated and DTT-treated groups. The mean number of cells in blastocysts was similar among the boars and between the non-treated and the DTT-treated groups. In conclusion, DTT treatment for 30 min increased the rate of normal fertilization and embryonic development to the blastocyst stage. Furthermore, the rate of blastocyst formation of oocytes injected with spermatozoa differed among boars.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Laboratory of Animal Reproduction, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | | |
Collapse
|
47
|
Katayama M, Sutovsky P, Yang BS, Cantley T, Rieke A, Farwell R, Oko R, Day BN. Increased disruption of sperm plasma membrane at sperm immobilization promotes dissociation of perinuclear theca from sperm chromatin after intracytoplasmic sperm injection in pigs. Reproduction 2005; 130:907-16. [PMID: 16322550 DOI: 10.1530/rep.1.0680] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effects of sperm-immobilization methods on decondensation of sperm chromatin and retention of subacrosomal sperm perinuclear theca (SAR-PT) after intracytoplasmic sperm injection (ICSI) were examined in pigs. Sperm membrane damage caused by different immobilization methods by rubbing with a micropipette without piezo pulses (R), or with a low (L) or high (H) intensity of piezo pulses while rubbing, was assessed by the time required for staining of sperm heads with eosin Y solution. The average time for staining of sperm heads immobilized by the R, L or H treatments was 76, 41 or 26 s, respectively. The fertilization rate following ICSI was increased by sperm immobilization by piezo pulses compared with R, but increased intensity of pulses from L to H did not cause further improvements (29, 48 and 47%, respectively). An immunofluorescence study revealed that H immobilization promoted the dissociation of SAR-PT from sperm chromatin compared with L and R, and it increased the frequency of male pronuclear formation in which chromatin appeared uniformly decondensed. Within vitrofertilization (IVF), SAR-PT disassembled coordinately with sperm chromatin decondensation and it was not detectable around male pronuclei. This was different from most of the oocytes after ICSI in which remnants SAR-PT were detected adjacent to male pronuclei. We concluded that increased damage on the sperm plasma membrane at immobilization improved fertilization rates and decondensation of sperm chromatin after ICSI due to the accelerated dissociation of SAR-PT from the sperm nucleus. Also, the behavior of SAR-PT after ICSI was different from that observed in oocytes after IVF.
Collapse
Affiliation(s)
- Mika Katayama
- Division of Animal Science, Obstetrics & Gynecology, University of Missouri-Columbia, 920 East Campus Drive, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Jiménez-Macedo AR, Izquierdo D, Anguita B, Paramio MT. Comparison between intracytoplasmic sperm injection and in vitro fertilisation employing oocytes derived from prepubertal goats. Theriogenology 2005; 64:1249-62. [PMID: 16139602 DOI: 10.1016/j.theriogenology.2004.11.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 11/09/2004] [Accepted: 11/10/2004] [Indexed: 11/23/2022]
Abstract
The objective of this study was to compare the embryo development of prepubertal goat oocytes after ICSI and IVF procedures. Three experiments were carried out to achieve this objective. (1) An analysis of the efficiency of ICSI with or without chemical stimulation (5 microM ionomycin for 5 min and 2 mM 6-DMAP for 4 h). In this experiment, Sham and parthenogenetic oocyte groups were used as controls. (2) According to the results from experiment 1, we investigated the nuclear stage of zygotes obtained with ICSI and IVF, and their further embryo development. (3) We compared two embryo culture media (G1.3/G2.3 and TCM199 with granulosa cells) on the embryo development of zygotes obtained from ICSI and IVF procedures. Experiment 1 demonstrated that prepubertal goat oocytes needed additional chemical stimulation, after conventional ICSI, to form zygotes with male and female pronuclei (2PN). Experiment 2 showed that significantly higher percentages of -zygotes were found in ICSI-oocytes than IVF-oocytes (40.0 and 25.1%, respectively; P < 0.005). The percentage of embryos obtained and developed beyond the 8-cell stage was significantly higher for ICSI than for IVF and parthenogenetic embryos (22.8, 10.3 and 3.8%, respectively; P < 0.05). Experiment 3 showed that G1.3/G2.3 medium improved the embryo development of ICSI- and IVF-oocytes compared to co-culture with granulosa cells in TCM medium. The highest percentage of embryo development beyond 8-16 cells was found in ICSI-oocytes cultured in G1.3/G2.3 medium. However, a reduced number of morulae were found in this study.
Collapse
Affiliation(s)
- Ana-Raquel Jiménez-Macedo
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | | | | | | |
Collapse
|
49
|
Park CY, Uhm SJ, Song SJ, Kim KS, Hong SB, Chung KS, Park C, Lee HT. Increase of ICSI efficiency with hyaluronic acid binding sperm for low aneuploidy frequency in pig. Theriogenology 2005; 64:1158-69. [PMID: 16125559 DOI: 10.1016/j.theriogenology.2005.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 12/23/2004] [Accepted: 01/31/2005] [Indexed: 10/25/2022]
Abstract
The present study was designed to evaluate the ability of hyaluronic acid binding sperm (HABS) in increasing the efficiency of intracytoplasmic sperm injection (ICSI) in terms of the production of chromosomally normal porcine embryos. Porcine embryos were produced by in vitro fertilization (IVF), ICSI and ICSI using hyaluronic acid binding sperm (ICSI-HABS). Chromosome aneuploidy in sperm and embryos was evaluated using chromosome 1 submetacentric probe for fluorescence in situ hybridization (FISH) analysis. No significant differences were observed in the blastocysts rates (18.6, 23.6 and 23.8%) and cell numbers (61.8+/-12.5, 55.5+/-7.3 and 59.3+/-9.6) among embryos derived from IVF, ICSI, and ICSI-HABS. However, the frequency of normal diploidy in ICSI-HABS (75.5%) was significantly higher (P<0.05) than that in IVF (57.0%) and ICSI (68.2%). Embryos from ICSI-HABS showed significantly lower chromosome abnormality rate (P<0.05). Both ICSI and IVF embryos showed higher rates of polyploidy, and hence chromosomally abnormal embryos, in comparison to ICSI-HABS embryos. In addition, we investigated the chromosomal complement of porcine spermatozoa by FISH. The rate of chromosome number abnormality in porcine sperm was found to be 6.25% (70/1120). Thus, we conclude that the use of hyaluronic acid binding sperm is superior to morphological sperm selection for ICSI in producing chromosomally normal embryos and increasing the ICSI efficiency by lowering the aneuploidy frequency. Our results indicate that the selection of normal sperm with hyaluronic acid binding assay might help to reduce the early embryonic mortality due to chromosomal aneuploidy thereby increasing the success rate of embryo transfer technology in pigs.
Collapse
Affiliation(s)
- Chun Young Park
- Department of Animal Science and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ito J, Shimada M. Timing of MAP kinase inactivation effects on emission of polar body in porcine oocytes activated by Ca2+ ionophore. Mol Reprod Dev 2005; 70:64-9. [PMID: 15515060 DOI: 10.1002/mrd.20182] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Artificial activation is required for successful intracytoplasmic sperm injection (ICSI) to induce haploidy pronuclear formation with extraction of second polar body. The present study showed that an additional treatment with Phorbol 12-myristate 13-acetate (PMA) followed by Ca(2+) ionophore treatment improved the rate of pronuclear formation, however, these oocytes had more than two pronuclei because of the suppression of polar body emission. The cultivation with MEK inhibitor U0126 followed by Ca(2+) ionophore also increased the rate of pronuclear formation but suppressed the emission of second polar body. These results suggested that the decrease of MAP kinase activity at early stage of artificial activation, concomitantly with decreasing p34(cdc2) kinase activity, prevented the second polar body extraction. We investigated that the timing of MAP kinase inactivation affected the extraction of the polar body and pronuclear formation rate. The addition of PMA 8 hr after Ca(2+) ionophore treatment induced the delay of MAP kinase inactivation, which resulted in haploidy pronuclear formation with emission of polar body. These results demonstrated for the first time that the delay of MAP kinase inactivation induced by PMA improved pronuclear formation with the extraction of second polar body in porcine oocytes activated by Ca(2+) ionophore. This method can be available for successfully ICSI in low response species of oocyte activation to Ca(2+) ionophore including pig.
Collapse
Affiliation(s)
- Junya Ito
- Department of Applied Animal Science, Graduate School of Biosphere Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | | |
Collapse
|