1
|
Ortega MA, García-Montero C, Fraile-Martinez Ó, De Leon-Oliva D, Boaru DL, Bravo C, De Leon-Luis JA, Saez MA, Asúnsolo A, Romero-Gerechter I, Sanz-Giancola A, Diaz-Pedrero R, Lopez-Gonzalez L, Guijarro LG, Barrena-Blázquez S, Bujan J, García-Honduvilla N, Alvarez-Mon M, Alvarez-Mon MÁ, Lahera G. Assessment of Tissue Expression of the Oxytocin-Vasopressin Pathway in the Placenta of Women with a First-Episode Psychosis during Pregnancy. Int J Mol Sci 2023; 24:10254. [PMID: 37373400 DOI: 10.3390/ijms241210254] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Psychosis refers to a mental health condition characterized by a loss of touch with reality, comprising delusions, hallucinations, disorganized thought, disorganized behavior, catatonia, and negative symptoms. A first-episode psychosis (FEP) is a rare condition that can trigger adverse outcomes both for the mother and newborn. Previously, we demonstrated the existence of histopathological changes in the placenta of pregnant women who suffer an FEP in pregnancy. Altered levels of oxytocin (OXT) and vasopressin (AVP) have been detected in patients who manifested an FEP, whereas abnormal placental expression of these hormones and their receptors (OXTR and AVPR1A) has been proven in different obstetric complications. However, the precise role and expression of these components in the placenta of women after an FEP have not been studied yet. Thus, the purpose of the present study was to analyze the gene and protein expression, using RT-qPCR and immunohistochemistry (IHC), of OXT, OXTR, AVP, and AVPR1a in the placental tissue of pregnant women after an FEP in comparison to pregnant women without any health complication (HC-PW). Our results showed increased gene and protein expression of OXT, AVP, OXTR, and AVPR1A in the placental tissue of pregnant women who suffer an FEP. Therefore, our study suggests that an FEP during pregnancy may be associated with an abnormal paracrine/endocrine activity of the placenta, which can negatively affect the maternofetal wellbeing. Nevertheless, additional research is required to validate our findings and ascertain any potential implications of the observed alterations.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Óscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28007 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Juan A De Leon-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28007 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcalá de Henares, Spain
| | - Angel Asúnsolo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Ignacio Romero-Gerechter
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28801 Alcalá de Henares, Spain
| | - Alejandro Sanz-Giancola
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28801 Alcalá de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, 28806 Alcalá de Henares, Spain
| | - Miguel Ángel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| |
Collapse
|
2
|
Zheng L, Lindsay A, McSweeney K, Aplin J, Forbes K, Smith S, Tunwell R, Mackrill JJ. Ryanodine receptor calcium release channels in trophoblasts and their role in cell migration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119139. [PMID: 34624436 DOI: 10.1016/j.bbamcr.2021.119139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 09/03/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
Trophoblasts are specialized epithelial cells of the placenta that are involved in invasion, communication and the exchange of materials between the mother and fetus. Cytoplasmic Ca2+ ([Ca2+]c) plays critical roles in regulating such processes in other cell types, but relatively little is known about the mechanisms that control this second messenger in trophoblasts. In the current study, the presence of RyRs and their accessory proteins in placental tissues and in the BeWo choriocarcinoma, a model trophoblast cell-line, were examined using immunohistochemistry and Western immunoblotting. Contributions of RyRs to Ca2+ signalling and to random migration in BeWo cells were investigated using fura-2 fluorescent and brightfield videomicroscopy. The effect of RyR inhibition on reorganization of the F-actin cytoskeleton elicited by the hormone angiotensin II, was determined using phalloidin-labelling and confocal microscopy. RyR1 and RyR3 proteins were detected in trophoblasts of human first trimester and term placental villi, along with the accessory proteins triadin and calsequestrin. Similarly, RyR1, RyR3, triadin and calsequestrin were detected in BeWo cells. In this cell-line, activation of RyRs with micromolar ryanodine increased [Ca2+]c, whereas pharmacological inhibition of these channels reduced Ca2+ transients elicited by the peptide hormones angiotensin II, arginine vasopressin and endothelin 1. Angiotensin II increased the velocity, total distance and Euclidean distance of random migration by BeWo cells and these effects were significantly reduced by tetracaine and by inhibitory concentrations of ryanodine. RyRs contribute to reorganization of the F-actin cytoskeleton elicited by angiotensin II, since inhibition of these channels restores the parallelness of these structures to control levels. These findings demonstrate that trophoblasts contain a suite of proteins similar to those in other cell types possessing highly developed Ca2+ signal transduction systems, such as skeletal muscle. They also indicate that these channels regulate the migration of trophoblast cells, a process that plays a key role in development of the placenta.
Collapse
Affiliation(s)
- Limian Zheng
- Department of Physiology, University College Cork, Ireland
| | - Andrew Lindsay
- School of Biochemistry and Cell Biology, University College Cork, Ireland
| | - Kate McSweeney
- Department of Physiology, University College Cork, Ireland
| | - John Aplin
- Maternal and Fetal Health Research Centre, University of Manchester, UK
| | - Karen Forbes
- Maternal and Fetal Health Research Centre, University of Manchester, UK; Leeds Centre for Reproduction and Early Development, University of Leeds, UK
| | - Samantha Smith
- Maternal and Fetal Health Research Centre, University of Manchester, UK
| | - Richard Tunwell
- Division of Biosciences, University College London, Gower Street, London, UK
| | | |
Collapse
|
3
|
Watanabe S, Matsuda T, Hanita T, Ikeda H, Koshinami S, Sato S, Usuda H, Saito M, Kemp MW, Kobayashi Y. Organ blood flow in response to infusion of arginine vasopressin in premature fetal sheep. Pediatr Int 2020; 62:688-693. [PMID: 31916650 DOI: 10.1111/ped.14141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/26/2019] [Accepted: 01/07/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Arginine vasopressin (AVP) infusion has been shown to be a useful strategy for the management of systemic perfusion failure in premature infants. Our objective was to determine the characteristics of the blood flow redistribution induced by AVP infusion in premature fetal sheep. METHODS Nine sheep fetuses at 99 to 113 days of gestation were continuously infused with AVP. Measurement of blood flow to individual fetal organs was performed using a colored microsphere technique, with measurements performed at 30 min before and 90 min after the initiation of AVP infusions. RESULTS The AVP infusion significantly increased blood flow to the medulla oblongata (P < 0.05), and significantly decreased flow to the adrenal glands (from 492.0 ± 239.6 to 364.9 ± 143.3 mL/min/100 g, P < 0.05) and heart (from 592.6 ± 184.5 to 435.6 ± 137.4 mL/min/100 g, P < 0.05). The infusion significantly increased the vascular resistance in adrenal glands, kidneys, ileum, colon, heart, and cerebellum. In the brain, except for the cerebellum, no significant increase in resistance was identified. CONCLUSIONS There was no significant response to AVP infusion in cerebral blood flow in mid-gestation fetal sheep. Our observations suggest that, under AVP stimulation, the blood flow to the adrenal glands and myocardium might be decreased due to an increase in vascular resistance.
Collapse
Affiliation(s)
- Shimpei Watanabe
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Tadashi Matsuda
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Takushi Hanita
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Hideyuki Ikeda
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shouta Koshinami
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shinichi Sato
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Haruo Usuda
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan.,School of Women's and Infants' Health, University of Western Australia, Perth, Western Australia, Australia
| | - Masatoshi Saito
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Matthew W Kemp
- School of Women's and Infants' Health, University of Western Australia, Perth, Western Australia, Australia
| | - Yoshiyasu Kobayashi
- Department of Veterinary Pathology, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
4
|
Tsuchiya H, Fujimura S, Fujiwara Y, Koshimizu TA. Critical role of V1a vasopressin receptor in murine parturition†. Biol Reprod 2020; 102:923-934. [PMID: 31836900 DOI: 10.1093/biolre/ioz220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/16/2019] [Accepted: 12/09/2019] [Indexed: 11/15/2022] Open
Abstract
The precise mechanisms of the reproductive physiological processes, such as labor initiation, are poorly understood. Oxytocin (OT) is one of the well-known uterotonics and is clinically adopted as a medication to facilitate childbirth. Vasopressin (VP), a posterior pituitary hormone similar to OT, has also been proposed to be involved in the reproductive physiology. In this study, we found that a total deficiency of V1a receptor subtype (V1aR) in mice resulted in a reduced number of pups, delayed labor initiation, and increased post-delivery hemorrhage compared with those in wild-type mice. Among the VP receptor subtypes, only V1aR was found to be expressed in the murine uterus, and its distribution pattern was different from that of the oxytocin receptor (OTR); V1aR expression was mainly distributed in the circular myometrium, whereas OTR was strongly expressed in both the circular and longitudinal myometrium. The maximum contractile force of the circular myometrium, induced by VP or OT, was attenuated in the pregnant uterus of Avpr1a-deficient mice. Contrarily, while OT expression was decreased in the Avpr1a-deficient uterus, OTR expression was significantly increased. These results suggest that V1aR deficiency not only reduces the uterine contractile force but also perturbs the expression of genes responsible for the reproductive physiology. Therefore, V1aR is necessary to exert the maximum contraction of the circular myometrium to deliver pups. This study revealed an important role of V1aR in physiological contraction and term parturition in mice.
Collapse
Affiliation(s)
- Hiroyoshi Tsuchiya
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shyota Fujimura
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yoko Fujiwara
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Taka-Aki Koshimizu
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
5
|
Creeth HDJ, John RM. The placental programming hypothesis: Placental endocrine insufficiency and the co-occurrence of low birth weight and maternal mood disorders. Placenta 2020; 98:52-59. [PMID: 33039032 DOI: 10.1016/j.placenta.2020.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022]
Abstract
Polypeptide hormones and steroid hormones, either expressed by the placenta or dependant on the placenta for their synthesis, are key to driving adaptations in the mother during pregnancy that support growth in utero. These adaptations include changes in maternal behaviour that take place in pregnancy and after the birth to ensure that offspring receive appropriate care and nutrition. Placentally-derived hormones implicated in the programming of maternal caregiving in rodents include prolactin-related hormones and steroid hormones. Neuromodulators produced by the placenta may act directly on the fetus to support brain development. A number of imprinted genes function antagonistically in the placenta to regulate the development of key placental endocrine lineages expressing these hormones. Gain-in-expression of the normally maternally expressed gene Phlda2 or loss-of-function of the normally paternally expressed gene Peg3 results in fewer endocrine cells in the placenta, and pups are born low birth weight. Importantly, wild type dams carrying these genetically altered pups display alterations in their behaviour with decreased focus on nurturing (Phlda2) or heightened anxiety (Peg3). These same genes may regulate placental hormones in human pregnancies, with the potential to influence birth weight and maternal mood. Consequently, the aberrant expression of imprinted genes in the placenta may underlie the reported co-occurrence of low birth weight with maternal prenatal depression.
Collapse
Affiliation(s)
- H D J Creeth
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - R M John
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
6
|
Szczepanska-Sadowska E, Cudnoch-Jedrzejewska A, Wsol A. The role of oxytocin and vasopressin in the pathophysiology of heart failure in pregnancy and in fetal and neonatal life. Am J Physiol Heart Circ Physiol 2020; 318:H639-H651. [PMID: 32056469 DOI: 10.1152/ajpheart.00484.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pregnancy and early life create specific psychosomatic challenges for the mother and child, such as changes in hemodynamics, resetting of the water-electrolyte balance, hypoxia, pain, and stress, that all play an important role in the regulation of the release of oxytocin and vasopressin. Both of these hormones regulate the water-electrolyte balance and cardiovascular functions, maturation of the cardiovascular system, and cardiovascular responses to stress. These aspects may be of particular importance in a state of emergency, such as hypertension in the mother or severe heart failure in the child. In this review, we draw attention to a broad spectrum of actions exerted by oxytocin and vasopressin in the pregnant mother and the offspring during early life. To this end, we discuss the following topics: 1) regulation of the secretion of oxytocin and vasopressin and expression of their receptors in the pregnant mother and child, 2) direct and indirect effects of oxytocin and vasopressin on the cardiovascular system in the healthy mother and fetus, and 3) positive and negative consequences of altered secretion of oxytocin and vasopressin in the mother with cardiovascular pathology and in the progeny with heart failure. The present survey provides evidence that moderate stimulation of the oxytocin and vasopressin receptors plays a beneficial role in the healthy pregnant mother and fetus; however, under pathophysiological conditions the inappropriate action of these hormones exerts several negative effects on the cardiovascular system of the mother and progeny and may potentially contribute to the pathophysiology of heart failure in early life.
Collapse
Affiliation(s)
- E Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - A Cudnoch-Jedrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - A Wsol
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Creeth HDJ, McNamara GI, Isles AR, John RM. Imprinted genes influencing the quality of maternal care. Front Neuroendocrinol 2019; 53:100732. [PMID: 30553874 DOI: 10.1016/j.yfrne.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/15/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022]
Abstract
In mammals successful rearing imposes a cost on later reproductive fitness specifically on the mother creating the potential for parental conflict. Loss of function of three imprinted genes in the dam results in deficits in maternal care suggesting that, like maternal nutrients, maternal care is a resource over which the parental genomes are in conflict. The induction of maternal care is a complex, highly regulated process and it is unsurprising that many gene disruptions and environmental adversities result in maternal care deficits. However, recent compelling evidence for a more purposeful imprinting phenomenon comes from observing alterations in the mother's behaviour when expression of the imprinted genes Phlda2 and Peg3 has been manipulated solely in the offspring. This explicit demonstration that imprinted genes expressed in the offspring influence maternal behaviour lends significant weight to the hypothesis that maternal care is a resource that has been manipulated by the paternal genome.
Collapse
Affiliation(s)
- H D J Creeth
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - G I McNamara
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - A R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff CF24 4HQ, UK
| | - R M John
- Biomedicine Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
8
|
Maternal care boosted by paternal imprinting in mammals. PLoS Biol 2018; 16:e2006599. [PMID: 30063711 PMCID: PMC6067684 DOI: 10.1371/journal.pbio.2006599] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022] Open
Abstract
In mammals, mothers are the primary caregiver, programmed, in part, by hormones produced during pregnancy. High-quality maternal care is essential for the survival and lifelong health of offspring. We previously showed that the paternally silenced imprinted gene pleckstrin homology-like domain family A member 2 (Phlda2) functions to negatively regulate a single lineage in the mouse placenta called the spongiotrophoblast, a major source of hormones in pregnancy. Consequently, the offspring's Phlda2 gene dosage may influence the quality of care provided by the mother. Here, we show that wild-type (WT) female mice exposed to offspring with three different doses of the maternally expressed Phlda2 gene-two active alleles, one active allele (the extant state), and loss of function-show changes in the maternal hypothalamus and hippocampus during pregnancy, regions important for maternal-care behaviour. After birth, WT dams exposed in utero to offspring with the highest Phlda2 dose exhibit decreased nursing and grooming of pups and increased focus on nest building. Conversely, 'paternalised' dams, exposed to the lowest Phlda2 dose, showed increased nurturing of their pups, increased self-directed behaviour, and a decreased focus on nest building, behaviour that was robustly maintained in the absence of genetically modified pups. This work raises the intriguing possibility that imprinting of Phlda2 contributed to increased maternal care during the evolution of mammals.
Collapse
|
9
|
Ritchie HE, Oakes DJ, Kennedy D, Polson JW. Early Gestational Hypoxia and Adverse Developmental Outcomes. Birth Defects Res 2018; 109:1358-1376. [PMID: 29105381 DOI: 10.1002/bdr2.1136] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/01/2017] [Indexed: 12/14/2022]
Abstract
Hypoxia is a normal and essential part of embryonic development. However, this state may leave the embryo vulnerable to damage when oxygen supply is disturbed. Embryofetal response to hypoxia is dependent on duration and depth of hypoxia, as well as developmental stage. Early postimplantation rat embryos were resilient to hypoxia, with many surviving up to 1.5 hr of uterine clamping, while most mid-gestation embryos were dead after 1 hour of clamping. Survivors were small and many had a range of defects, principally terminal transverse limb reduction defects. Similar patterns of malformations occurred when embryonic hypoxia was induced by maternal hypoxia, interruption of uteroplacental flow, or perfusion and embryonic bradycardia. There is good evidence that high altitude pregnancies are associated with smaller babies and increased risk of some malformations, but these results are complicated by increased risk of pre-eclampsia. Early onset pre-eclampsia itself is associated with small for dates and increased risk of atrio-ventricular septal defects. Limb defects have clearly been associated with chorionic villus sampling, cocaine, and misoprostol use. Similar defects are also observed with increased frequency among fetuses who are homozygous for thalassemia. Drugs that block the potassium current, whether as the prime site of action or as a side effect, are highly teratogenic in experimental animals. They induce embryonic bradycardia, hypoxia, hemorrhage, and blisters, leading to transverse limb defects as well as craniofacial and cardiovascular defects. While evidence linking these drugs to birth defects in humans is not compelling, the reason may methodological rather than biological. Birth Defects Research 109:1358-1376, 2017.© 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Helen E Ritchie
- Discipline of Biomedical Science, Sydney Medical School, University of Sydney, Sydney, NSW
| | - Diana J Oakes
- Discipline of Biomedical Science, Sydney Medical School, University of Sydney, Sydney, NSW
| | | | - Jaimie W Polson
- Discipline of Biomedical Science, Sydney Medical School, University of Sydney, Sydney, NSW
| |
Collapse
|
10
|
Scroggins SM, Santillan DA, Lund JM, Sandgren JA, Krotz LK, Hamilton WS, Devor EJ, Davis HA, Pierce GL, Gibson-Corley KN, Sigmund CD, Grobe JL, Santillan MK. Elevated vasopressin in pregnant mice induces T-helper subset alterations consistent with human preeclampsia. Clin Sci (Lond) 2018; 132:419-436. [PMID: 29371289 PMCID: PMC5947858 DOI: 10.1042/cs20171059] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 01/08/2023]
Abstract
The pathogenesis of preeclampsia (PreE), a hypertensive disorder of pregnancy, involves imbalanced T helper (TH) cell populations and resultant changes in pro- and anti-inflammatory cytokine release. Elevated copeptin (an inert biomarker of arginine vasopressin (AVP)), secretion precedes the development of symptoms in PreE in humans, and infusion of AVP proximal to and throughout gestation is sufficient to initiate cardiovascular and renal phenotypes of PreE in wild-type C57BL/6J mice. We hypothesize that AVP infusion in wild-type mice is sufficient to induce the immune changes observed in human PreE. AVP infusion throughout gestation in mice resulted in increased pro-inflammatory interferon γ (IFNg) (TH1) in the maternal plasma. The TH17-associated cytokine interleukin (IL)-17 was elevated in the maternal plasma, amniotic fluid, and placenta following AVP infusion. Conversely, the TH2-associated anti-inflammatory cytokine IL-4 was decreased in the maternal and fetal kidneys from AVP-infused dams, while IL-10 was decreased in the maternal kidney and all fetal tissues. Collectively, these results demonstrate the sufficiency of AVP to induce the immune changes typical of PreE. We investigated if T cells can respond directly to AVP by evaluating the expression of AVP receptors (AVPRs) on mouse and human CD4+ T cells. Mouse and human T cells expressed AVPR1a, AVPR1b, and AVPR2. The expression of AVPR1a was decreased in CD4+ T cells obtained from PreE-affected women. In total, our data are consistent with a potential initiating role for AVP in the immune dysfunction typical of PreE and identifies putative signaling mechanism(s) for future investigation.
Collapse
Affiliation(s)
- Sabrina M Scroggins
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, U.S.A
- Center for Immunology and Immune Based Diseases, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Donna A Santillan
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, U.S.A
- Center for Immunology and Immune Based Diseases, University of Iowa, Iowa City, IA 52242, U.S.A
- Center for Hypertension Research, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Jenna M Lund
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Jeremy A Sandgren
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242, U.S.A
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Lindsay K Krotz
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Wendy S Hamilton
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Eric J Devor
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Heather A Davis
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Gary L Pierce
- Center for Hypertension Research, University of Iowa, Iowa City, IA 52242, U.S.A
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, U.S.A
| | | | - Curt D Sigmund
- Center for Hypertension Research, University of Iowa, Iowa City, IA 52242, U.S.A
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Justin L Grobe
- Center for Hypertension Research, University of Iowa, Iowa City, IA 52242, U.S.A.
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, U.S.A
- Obesity Research and Education Initiative, University of Iowa, Iowa City, IA 52242, U.S.A
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, U.S.A
| | - Mark K Santillan
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, U.S.A.
- Center for Immunology and Immune Based Diseases, University of Iowa, Iowa City, IA 52242, U.S.A
- Center for Hypertension Research, University of Iowa, Iowa City, IA 52242, U.S.A
| |
Collapse
|
11
|
Baker RS, Lam CT, Heeb EA, Eghtesady P. Dynamic fluid shifts induced by fetal bypass. J Thorac Cardiovasc Surg 2009; 137:714-22. [PMID: 19258095 DOI: 10.1016/j.jtcvs.2008.09.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 08/20/2008] [Accepted: 09/10/2008] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Fluid shifts have been suggested to occur with fetal bypass. The degree or mechanisms behind these volume changes (or location) have not been defined. We characterized the preceding and correlated the findings to plasma vasopressin concentrations, the critical peptide of osmoregulation. METHODS Seventeen ovine fetuses (105-111 days' gestation) were started on bypass and followed 2 hours after bypass. Hemodynamics and volume replacements needed to maintain minimum reservoir volume during bypass and normal physiologic parameters after bypass were recorded. Serial blood samples were collected to assess gas exchange and vasopressin levels. Changes in total tissue water content were measured for several organs and the placenta. Plasma volume, fluid shifts, and osmolarity were calculated. RESULTS Hematocrit values decreased by 15 minutes of bypass to 28% from 33% and then increased to 34% by 120 minutes after bypass, corresponding to a decreased fetal plasma volume of 79 to 72 mL/kg by 120 minutes after bypass. The majority of volume shifts (approximately 100 mL/kg) occurred during bypass, but additional volume replacements were required after bypass to maintain normal hemodynamics, resulting in overall losses of 0.8 mL x kg(-1) x min(-1). Losses were not accounted for by placental or organ edema. Vasopressin levels increased dramatically with bypass (39-51.5 pg/mL) and were strongly predicted by increased fetal plasma volumes (R(2) = 0.90), whereas osmolarity was not significantly associated with plasma volumes. CONCLUSION Fetal bypass leads to significant fluid shifts that correlate strongly with increasing vasopressin levels (but not changes in osmolarity). The placenta is not the primary site of volume loss. Rehydration of the fetus is necessary after bypass.
Collapse
Affiliation(s)
- R Scott Baker
- Division of Cardiothoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| | | | | | | |
Collapse
|
12
|
Belkacemi L, Beall MH, Magee TR, Pourtemour M, Ross MG. AQP1 gene expression is upregulated by arginine vasopressin and cyclic AMP agonists in trophoblast cells. Life Sci 2008; 82:1272-80. [PMID: 18538351 DOI: 10.1016/j.lfs.2008.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/05/2008] [Accepted: 04/22/2008] [Indexed: 12/22/2022]
Abstract
Aquaporins (AQPs) are water channels that regulate water flow in many tissues. As AQP1 is a candidate to regulate placental fluid exchange, we sought to investigate the effect of arginine vasopressin (AVP) and cAMP agonists on AQP1 gene expression in first trimester-derived extravillous cytotrophoblasts (HTR-8/Svneo) and two highly proliferative carcinoma trophoblast-like cell lines but with a number of functional features of the syncytiotrophoblast namely; JAR and JEG-3 cells. Our data demonstrated that AVP (0.1 nM) significantly increased the expression of AQP1 mRNA at 10 h in HTR-8/SVneo and JEG-3 cells (P<0.05). Both SP-cAMP, a membrane-permeable and phosphodiesterase resistant cAMP, and forskolin, an adenylate cyclase stimulator significantly increased AQP1 mRNA expression in all cell lines after 2 h in a dose-dependent manner (P<0.05) with a parallel increase in protein expression. In the time course study, 5 microM of either SP-cAMP or forskolin significantly stimulated AQP1 mRNA expression after 2 h in HTR-8/SVneo cells and after 10 h in JAR and JEG-3 cells. AQP1 protein expression was highest after 20 h in both HTR-8/SVneo and JEG-3 cells (P<0.05). AVP-stimulated cAMP elevation was blocked in the presence of 9-(tetrahydro-2'-furyl) adenine (SQ22536) (100 microM), a cell-permeable adenylate cyclase inhibitor (P<0.05). These results indicate that in trophoblasts-like cells AQP1 gene expression is upregulated by both AVP and cAMP agonists. Furthermore, our data demonstrate that a cAMP-dependent pathway is responsible for the AVP effect on AQP1. Thus, modulation of AQP1 expression by maternal hormones may regulate invasion and fetal-placental-amnion water homeostasis during gestation.
Collapse
Affiliation(s)
- Louiza Belkacemi
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, David-Geffen School of Medicine, University of California, Los Angeles, CA 90502, USA.
| | | | | | | | | |
Collapse
|
13
|
Lam CT, Sharma S, Baker RS, Hilshorst J, Lombardi J, Clark KE, Eghtesady P. Fetal Stress Response to Fetal Cardiac Surgery. Ann Thorac Surg 2008; 85:1719-27. [DOI: 10.1016/j.athoracsur.2008.01.096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 01/24/2008] [Accepted: 01/28/2008] [Indexed: 10/22/2022]
|
14
|
Abstract
Ruminants are widespread in hot, arid regions. This demands adaptation to large circadian temperature fluctuations and recurrent periods of food and water shortage. Pregnancy and lactation add to the demands on the adaptive mechanisms due to the greater need for food, water, and electrolytes. The blood volume increases to meet the requirements of the fetoplacental unit and the mammary glands. Unlike urine, the milk cannot be concentrated by antidiuretic hormone (vasopressin). During water deprivation, lactating animals therefore become dehydrated more rapidly than nonlactating animals. Nevertheless, desert-adapted lactating ruminants endure frequent periods of water deprivation without incurring bad health. For the offspring living in hot and dry conditions, it is an advantage that the milk is not concentrated, even if the mother has a high antidiuretic hormone concentration to enable her to concentrate the urine. Since ruminants are prey, they need to drink rapidly when they get access to water. The forestomach allows the animals to store water in the reticulorumen. There is no danger of water intoxication even if they drink to satisfaction in a couple of minutes after having lost as much as 30% of their body weight.
Collapse
Affiliation(s)
- Kerstin Olsson
- Department of Anatomy and Physiology, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|