1
|
Cooper DKC, Pierson RN. Milestones on the path to clinical pig organ xenotransplantation. Am J Transplant 2023; 23:326-335. [PMID: 36775767 PMCID: PMC10127379 DOI: 10.1016/j.ajt.2022.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023]
Abstract
Progress in pig organ xenotransplantation has been made largely through (1) genetic engineering of the organ-source pig to protect its tissues from the human innate immune response, and (2) development of an immunosuppressive regimen based on blockade of the CD40/CD154 costimulation pathway to prevent the adaptive immune response. In the 1980s, after transplantation into nonhuman primates (NHPs), wild-type (genetically unmodified) pig organs were rejected within minutes or hours. In the 1990s, organs from pigs expressing a human complement-regulatory protein (CD55) transplanted into NHPs receiving intensive conventional immunosuppressive therapy functioned for days or weeks. When costimulation blockade was introduced in 2000, the adaptive immune response was suppressed more readily. The identification of galactose-α1,3-galactose as the major antigen target for human and NHP anti-pig antibodies in 1991 allowed for deletion of expression of galactose-α1,3-galactose in 2003, extending pig graft survival for up to 6 months. Subsequent gene editing to overcome molecular incompatibilities between the pig and primate coagulation systems proved additionally beneficial. The identification of 2 further pig carbohydrate xenoantigens allowed the production of 'triple-knockout' pigs that are preferred for clinical organ transplantation. These combined advances enabled the first clinical pig heart transplant to be performed and opened the door to formal clinical trials.
Collapse
Affiliation(s)
- David K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA.
| | - Richard N Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Cooper DKC, Habibabady Z, Kinoshita K, Hara H, Pierson RN. The respective relevance of sensitization to alloantigens and xenoantigens in pig organ xenotransplantation. Hum Immunol 2023; 84:18-26. [PMID: 35817653 PMCID: PMC10154072 DOI: 10.1016/j.humimm.2022.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Antibody-mediated rejection is a major cause of graft injury and contributes to failure of pig xenografts in nonhuman primates (NHPs). Most 'natural' or elicited antibodies found in humans and NHPs are directed against pig glycan antigens, but antibodies binding to swine leukocyte antigens (SLA) have also been detected. Of clinical importance is (i) whether the presence of high levels of antibodies directed towards human leukocyte antigens (HLA) (i.e., high panel-reactive antibodies) would be detrimental to the outcome of a pig organ xenograft; and (ii) whether, in the event of sensitization to pig antigens, a subsequent allotransplant would be at increased risk of graft failure due to elicited anti-pig antibodies that cross-react with human HLA or other antigens. SUMMARY A literature review of pig-to-primate studies indicates that relatively few highly-HLA-sensitized humans have antibodies that cross-react with pigs, predicting that most would not be at increased risk of rejecting an organ xenograft. Furthermore, the existing evidence indicates that sensitization to pig antigens will probably not elicit increased alloantibody titers; if so, 'bridging' with a pig organ could be carried out without increased risk of subsequent antibody-mediated allograft failure. KEY MESSAGE These issues have important implications for the design and conduct of clinical xenotransplantation trials.
Collapse
Affiliation(s)
- D K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| | - Z Habibabady
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - K Kinoshita
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - H Hara
- Yunnan Xenotransplantation Engineering Research Center, Yunnan Agricultural University, Kunming, Yunnan, China
| | - R N Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Negri A, Wilson L. Future Systems of Xenotransplantation: Melding Historical and Bioethical Methodology. Cell Transplant 2023; 32:9636897231170510. [PMID: 37254850 PMCID: PMC10233605 DOI: 10.1177/09636897231170510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/22/2023] [Accepted: 04/03/2023] [Indexed: 06/01/2023] Open
Abstract
The future of xenotransplantation is promising. However, the scientific process behind xenotransplantation, shown through the methodology of history and bioethics, involves stakeholders beyond the laboratory. We present three short vignettes, the history of a 20th-century pioneer in solid organ transplantation, the xenoheart received by David Bennett, and a global system of illegal organ procurement, to highlight the complexity of biomedical practice. Current solid organ transplantation systems are seemingly unsustainable and ineffective in satisfying a growing global demand for organs. Despite the shortcomings of current systems, we argue that the discourse surrounding xenotransplantation science is insufficient to construct a long-lasting and equitable replacement for solid organ transplantation. Xenotransplantation is more than a surgical technique, an interdisciplinary health concern, or a biomedical technology-it is deeply dependent on a series of cultural, historical, and social factors. Incorporating a greater variety of perspectives and disciplines into ongoing discussions of xenotransplantation science, while potentially frustrating in the short term, will act to maximize its potential as a paradigm-shifting science.
Collapse
Affiliation(s)
- Adam Negri
- History of Medicine, University of Minnesota,
Minneapolis, MN, USA
| | - Lauren Wilson
- Philosophy, University of Minnesota,
Minneapolis, MN, USA
| |
Collapse
|
4
|
Leonova EI, Reshetnikov VV, Sopova JV. CRISPR/Cas-edited pigs for personalized medicine: more than preclinical test-system. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.83872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Novel CRISPR-Cas-based genome editing tools made it feasible to introduce a variety of precise genomic modifications in the pig genome, including introducing multiple edits simultaneously, inserting long DNA sequences into specifically targeted loci, and performing nucleotide transitions and transversions. Pigs serve as a vital agricultural resource and animal model in biomedical studies, given their advantages over the other models. Pigs share high similarities to humans regarding body/organ size, anatomy, physiology, and a metabolic profile. The pig genome can be modified to carry the same genetic mutations found in humans to replicate inherited diseases to provide preclinical trials of drugs. Moreover, CRISPR-based modification of pigs antigen profile makes it possible to offer porcine organs for xenotransplantation with minimal transplant rejection responses. This review summarizes recent advances in endonuclease-mediated genome editing tools and research progress of genome-edited pigs as personalized test-systems for preclinical trials and as donors of organs with human-fit antigen profile.
Graphical abstract:
Collapse
|
5
|
Immune Responses of HLA Highly Sensitized and Nonsensitized Patients to Genetically Engineered Pig Cells. Transplantation 2019; 102:e195-e204. [PMID: 29266033 DOI: 10.1097/tp.0000000000002060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND We investigated in vitro whether HLA highly sensitized patients with end-stage renal disease will be disadvantaged immunologically after a genetically engineered pig kidney transplant. METHODS Blood was drawn from patients with a calculated panel-reactive antibody (cPRA) 99% to 100% (Gp1, n = 10) or cPRA 0% (Gp2, n = 12), and from healthy volunteers (Gp3, n = 10). Serum IgM and IgG binding was measured (i) to galactose-α1-3 galactose and N-glycolylneuraminic acid glycans by enzyme-linked immunosorbent assay, and (ii) to pig red blood cell, pig aortic endothelial cells, and pig peripheral blood mononuclear cell from α1,3-galactosyltransferase gene-knockout (GTKO)/CD46 and GTKO/CD46/cytidine monophosphate-N-acetylneuraminic acid hydroxylase-knockout (CMAHKO) pigs by flow cytometry. (iii) T-cell and B-cell phenotypes were determined by flow cytometry, and (iv) proliferation of T-cell and B-cell carboxyfluorescein diacetate succinimidyl ester-mixed lymphocyte reaction. RESULTS (i) By enzyme-linked immunosorbent assay, there was no difference in IgM or IgG binding to galactose-α1-3 galactose or N-glycolylneuraminic acid between Gps1 and 2, but binding was significantly reduced in both groups compared to Gp3. (ii) IgM and IgG binding in Gps1 and 2 was also significantly lower to GTKO/CD46 pig cells than in healthy controls, but there were no differences between the 3 groups in binding to GTKO/CD46/CMAHKO cells. (iii and iv) Gp1 patients had more memory T cells than Gp2, but there was no difference in T or B cell proliferation when stimulated by any pig cells. The proliferative responses in all 3 groups were weakest when stimulated by GTKO/CD46/CMAHKO pig peripheral blood mononuclear cell. CONCLUSIONS (i) End-stage renal disease was associated with low antipig antibody levels. (ii) Xenoreactivity decreased with increased genetic engineering of pig cells. (iii) High cPRA status had no significant effect on antibody binding or T-cell and B-cell response.
Collapse
|
6
|
Smood B, Hara H, Schoel LJ, Cooper DKC. Genetically-engineered pigs as sources for clinical red blood cell transfusion: What pathobiological barriers need to be overcome? Blood Rev 2019; 35:7-17. [PMID: 30711308 DOI: 10.1016/j.blre.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/02/2019] [Accepted: 01/25/2019] [Indexed: 12/27/2022]
Abstract
An alternative to human red blood cells (RBCs) for clinical transfusion would be advantageous, particularly in situations of massive acute blood loss (where availability and compatibility are limited) or chronic hematologic diseases requiring frequent transfusions (resulting in alloimmunization). Ideally, any alternative must be neither immunogenic nor pathogenic, but readily available, inexpensive, and physiologically effective. Pig RBCs (pRBCs) provide a promising alternative due to their several similarities with human RBCs, and our increasing ability to genetically-modify pigs to reduce cellular immunogenicity. We briefly summarize the history of xenotransfusion, the progress that has been made in recent years, and the remaining barriers. These barriers include prevention of (i) human natural antibody binding to pRBCs, (ii) their phagocytosis by macrophages, and (iii) the T cell adaptive immune response (in the absence of exogenous immunosuppressive therapy). Although techniques of genetic engineering have advanced in recent years, novel methods to introduce human transgenes into pRBCs (which do not have nuclei) will need to be developed before clinical trials can be initiated.
Collapse
Affiliation(s)
- Benjamin Smood
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leah J Schoel
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
Abstract
Due to the lack of germline transmitting pluripotent stem cells (PSCs) cell lines and the extreme difficulty of somatic cell nuclear transfer (SCNT) in rabbit, the gene targeting technology in rabbit was lagging far behind those in rodents and in farm animals. As a result, the development and application of genetically engineered rabbit model are much limited. With the advent of gene editing nucleases, including ZFN, TALEN, and CRISPR/Cas9, it is now possible to produce gene targeting (i.e., knockout, knockin) rabbits with high success rates. In this chapter, we describe a comprehensive, step-by-step protocol for rabbit genome editing based on gene editing nucleases with specific emphasis of CRISPR/Cas9.
Collapse
|
8
|
Immunological Compatibility of Bone Tissues from Alpha-1,3-galactosyltransferase Knockout Pig for Xenotransplantation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1597531. [PMID: 29967767 PMCID: PMC6008681 DOI: 10.1155/2018/1597531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/20/2018] [Accepted: 04/15/2018] [Indexed: 01/08/2023]
Abstract
We investigated whether the lack of galactosyltransferase (α-Gal) expression in bone tissue is associated with reduced immune response of human peripheral blood mononuclear cells (PBMCs) against pig bone tissue. When human PBMC obtained from heparinized blood of healthy volunteers was stimulated with bone extracts of pigs with α-1,3-galactosyltransferase knock out (α-Gal KO), the proliferation of human PBMCs and production of proinflammatory cytokines such as TNF-α and IL-1β were significantly reduced compared to those stimulated with bone extracts of wild type (WT) pigs. In addition, activation of CD4+ helper T cells and production of IL-2, IFN-γ, and IL-17 were reduced upon stimulation with bone tissue extracts from α-Gal KO pigs. This is possibly due to the lowered activities of the NF-κB, p38, ERK, and JNK signaling pathways. Our findings can be used to evaluate the compatibility of bone tissues from α-Gal KO pigs with human bone grafting as novel natural biomaterials, thereby increasing the feasibility of future clinical applications.
Collapse
|
9
|
Generation of Venus fluorochrome expressing transgenic handmade cloned buffalo embryos using Sleeping Beauty transposon. Tissue Cell 2018; 51:49-55. [DOI: 10.1016/j.tice.2018.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/27/2022]
|
10
|
ABO blood group A transferases catalyze the biosynthesis of FORS blood group FORS1 antigen upon deletion of exon 3 or 4. Blood Adv 2017; 1:2756-2766. [PMID: 29296927 DOI: 10.1182/bloodadvances.2017009795] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/30/2017] [Indexed: 12/18/2022] Open
Abstract
Evolutionarily related ABO and GBGT1 genes encode, respectively, A and B glycosyltransferases (AT and BT) and Forssman glycolipid synthase (FS), which catalyze the biosynthesis of A and B, and Forssman (FORS1) oligosaccharide antigens responsible for the ABO and FORS blood group systems. Humans are a Forssman antigen-negative species; however, rare individuals with Apae phenotype express FORS1 on their red blood cells. We previously demonstrated that the replacement of the LeuGlyGly tripeptide sequence at codons 266 to 268 of human AT with GBGT1-encoded FS-specific GlyGlyAla enabled the enzyme to produce FORS1 antigen, although the FS activity was weak. We searched for additional molecular mechanisms that might allow human AT to express FORS1. A variety of derivative expression constructs of human AT were prepared. DNA was transfected into COS1 (B3GALNT1) cells, and cell-surface expression of FORS1 was immunologically monitored. To our surprise, the deletion of exon 3 or 4, but not of exon 2 or 5, of human AT transcripts bestowed moderate FS activity, indicating that the A allele is inherently capable of producing a protein with FS activity. Because RNA splicing is frequently altered in cancer, this mechanism may explain, at least partially, the appearance of FORS1 in human cancer. Furthermore, strong FS activity was attained, in addition to AT and BT activities, by cointroducing 1 of those deletions and the GlyGlyAla substitution, possibly by the synergistic effects of altered intra-Golgi localization/conformation by the former and modified enzyme specificity by the latter.
Collapse
|
11
|
Kim YJ, Ahn KS, Kim M, Kim MJ, Ahn JS, Ryu J, Heo SY, Park SM, Kang JH, Choi YJ, Shim H. Alpha-1,3-galactosyltransferase-deficient miniature pigs produced by serial cloning using neonatal skin fibroblasts with loss of heterozygosity. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:439-445. [PMID: 27165032 PMCID: PMC5337925 DOI: 10.5713/ajas.16.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/09/2016] [Accepted: 03/29/2016] [Indexed: 11/30/2022]
Abstract
Objective Production of alpha-1,3-galactosyltransferase (αGT)-deficient pigs is essential to overcome xenograft rejection in pig-to-human xenotransplantation. However, the production of such pigs requires a great deal of cost, time, and labor. Heterozygous αGT knockout pigs should be bred at least for two generations to ultimately obtain homozygote progenies. The present study was conducted to produce αGT-deficient miniature pigs in much reduced time using mitotic recombination in neonatal ear skin fibroblasts. Methods Miniature pig fibroblasts were transfected with αGT gene-targeting vector. Resulting gene-targeted fibroblasts were used for nuclear transfer (NT) to produce heterozygous αGT gene-targeted piglets. Fibroblasts isolated from ear skin biopsies of these piglets were cultured for 6 to 8 passages to induce loss of heterozygosity (LOH) and treated with biotin-conjugated IB4 that binds to galactose-α-1,3-galactose, an epitope produced by αGT. Using magnetic activated cell sorting, cells with monoallelic disruption of αGT were removed. Remaining cells with LOH carrying biallelic disruption of αGT were used for the second round NT to produce homozygous αGT gene-targeted piglets. Results Monoallelic mutation of αGT gene was confirmed by polymerase chain reaction in fibroblasts. Using these cells as nuclear donors, three heterozygous αGT gene-targeted piglets were produced by NT. Fibroblasts were collected from ear skin biopsies of these piglets, and homozygosity was induced by LOH. The second round NT using these fibroblasts resulted in production of three homozygous αGT knockout piglets. Conclusion The present study demonstrates that the time required for the production of αGT-deficient miniature pigs could be reduced significantly by postnatal skin biopsies and subsequent selection of mitotic recombinants. Such procedure may be beneficial for the production of homozygote knockout animals, especially in species, such as pigs, that require a substantial length of time for breeding.
Collapse
Affiliation(s)
- Young June Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea.,Institute of Green Bioscience and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Kwang Sung Ahn
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Minjeong Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Min Ju Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Jin Seop Ahn
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Junghyun Ryu
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Soon Young Heo
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Sang-Min Park
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Jee Hyun Kang
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - You Jung Choi
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Hosup Shim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea.,Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Korea.,Department of Physiology, Dankook University School of Medicine, Cheonan 31116, Korea
| |
Collapse
|
12
|
Alessio AP, Fili AE, Garrels W, Forcato DO, Olmos Nicotra MF, Liaudat AC, Bevacqua RJ, Savy V, Hiriart MI, Talluri TR, Owens JB, Ivics Z, Salamone DF, Moisyadi S, Kues WA, Bosch P. Establishment of cell-based transposon-mediated transgenesis in cattle. Theriogenology 2015; 85:1297-311.e2. [PMID: 26838464 DOI: 10.1016/j.theriogenology.2015.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/10/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022]
Abstract
Transposon-mediated transgenesis is a well-established tool for genome modification in small animal models. However, translation of this active transgenic method to large animals warrants further investigations. Here, the piggyBac (PB) and sleeping beauty (SB) transposon systems were assessed for stable gene transfer into the cattle genome. Bovine fibroblasts were transfected either with a helper-independent PB system or a binary SB system. Both transposons were highly active in bovine cells increasing the efficiency of DNA integration up to 88 times over basal nonfacilitated integrations in a colony formation assay. SB transposase catalyzed multiplex transgene integrations in fibroblast cells transfected with the helper vector and two donor vectors carrying different transgenes (fluorophore and neomycin resistance). Stably transfected fibroblasts were used for SCNT and on in vitro embryo culture, morphologically normal blastocysts that expressed the fluorophore were obtained with both transposon systems. The data indicate that transposition is a feasible approach for genetic engineering in the cattle genome.
Collapse
Affiliation(s)
- Ana P Alessio
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina
| | - Alejandro E Fili
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina
| | - Wiebke Garrels
- Department of Biotechnology, Friedrich-Loeffler-Institut, Institut für Nutztiergenetik, Neustadt, Germany
| | - Diego O Forcato
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina
| | - María F Olmos Nicotra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina
| | - Ana C Liaudat
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina
| | - Romina J Bevacqua
- Laboratorio de Biotecnología Animal, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, República Argentina
| | - Virginia Savy
- Laboratorio de Biotecnología Animal, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, República Argentina
| | - María I Hiriart
- Laboratorio de Biotecnología Animal, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, República Argentina
| | - Thirumala R Talluri
- Department of Biotechnology, Friedrich-Loeffler-Institut, Institut für Nutztiergenetik, Neustadt, Germany
| | - Jesse B Owens
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Daniel F Salamone
- Laboratorio de Biotecnología Animal, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, República Argentina
| | - Stefan Moisyadi
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institut, Institut für Nutztiergenetik, Neustadt, Germany
| | - Pablo Bosch
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, República Argentina.
| |
Collapse
|
13
|
Jang H, Jang WG, Kim EJ, Do M, Oh KB, Hwang S, Shim H, Choo YK, Kwon DJ, Lee JW. Methylation and expression changes in imprinted genesH19andIgf2during serial somatic cell nuclear transfer using piglet fibroblasts. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2014.995706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
14
|
Li P, Estrada JL, Burlak C, Montgomery J, Butler JR, Santos RM, Wang ZY, Paris LL, Blankenship RL, Downey SM, Tector M, Tector AJ. Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection. Xenotransplantation 2015; 22:20-31. [PMID: 25178170 DOI: 10.1111/xen.12131] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/18/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND Manipulating the pig genome to increase compatibility with human biology may facilitate the clinical application of xenotransplantation. Genetic modifications to pig cells have been made by sequential recombination in fetal fibroblasts and liver-derived cells followed by cross-breeding or somatic cell nuclear transfer. The generation of pigs for research or organ donation by these methods is slow, expensive and requires technical expertise. A novel system incorporating the bacterial nuclease Cas9 and single-guide RNA targeting a 20 nucleotide site within a gene can be expressed from a single plasmid leading to a double-strand break and gene disruption. Coexpression of multiple unique single-guide RNA can modify several genetic loci in a single step. We describe a process for increasing the efficiency of selecting cells with multiple genetic modifications. METHODS We used the CRISPR/Cas system to target the GGTA1, CMAH and putative iGb3S genes in pigs that have been naturally deleted in humans. Cells lacking galactose α-1,3 galactose (α-Gal) were negatively selected by an IB4 lectin/magnetic bead. α-Gal negative multiplexed single-guide RNA-treated cells were used for somatic cell nuclear transfer (SCNT) and transferred to fertile sows. We examined the levels of α-Gal and Neu5Gc expression of 32 day fetuses and piglets and analyzed the targeted genes by DNA sequencing. RESULTS Liver-derived cells treated with multiple single-guide RNA and selected for an α-Gal null phenotype were significantly more likely to also carry mutations in simultaneously targeted genes. Multiplex single-guide RNA-treated cells used directly for SCNT without further genetic selection produced piglets with deletions in the targeted genes but also created double- and triple-gene KO variations. CRISPR/Cas-treated cells grew normally and yielded normal liters of healthy piglets via somatic cell nuclear transfer. CONCLUSIONS The CRISPR/Cas system allows targeting of multiple genes in a single reaction with the potential to create pigs of one genetic strain or multiple genetic modifications in a single pregnancy. The application of this phenotypic selection strategy with multiplexed sgRNA and the Cas9 nuclease has accelerated our ability to produce and evaluate pigs important to xenotransplantation.
Collapse
Affiliation(s)
- Ping Li
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Procedure used for denuding pig oocytes influences oocyte damage, and development of in vitro and nuclear transfer embryos. Anim Reprod Sci 2014; 152:65-76. [PMID: 25487568 DOI: 10.1016/j.anireprosci.2014.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 11/20/2022]
Abstract
The effects of different denuding procedures used during the in vitro culture of porcine embryos on oocyte damage and aspects of porcine embryo development were investigated in a series of studies. Oocytes were denuded by vortexing or pipetting after 44h in vitro maturation (IVM) or pre-denuded after 22h IVM. The total oocyte death rate was significantly (P<0.05) higher for pre-denuded (27.3±1.4%) than for vortexed (20.3±1.2%) or pipetted (16.2±2.2%) oocytes. There was no significant difference between the treatments in the percentage of oocytes that extruded the first polar body. The type I cortical granule distribution (reflecting complete maturity) and normal spindle formation rates were significantly lower in the pre-denuding than in the vortexing and pipetting treatments. Blastocyst formation rates were significantly lower for the pre-denuding treatment in PA (25.7±4.5%) and IVF (6.1±1.5%) culture than in the vortexing (PA 42.0±4.5%; IVF 11.2±0.5%) and pipetting (PA 43.4±3.1%; IVF 9.4±1.6%) treatments. The proportion of oocytes developing to blastocysts in SCNT culture was not significantly different between treatments ranging from 9.9±1.8% for pre-denuding to 12.3±2.7% for vortexing. No significant differences in apoptosis or embryonic fragmentation were observed. This study shows that the denuding procedure used for porcine oocytes during the in vitro production of embryos can significantly affect oocyte damage, spindle patterns, oocyte maturation, embryo development but not embryonic apoptosis or the frequency of fragmentation.
Collapse
|
16
|
Boksa M, Zeyland J, Słomski R, Lipiński D. Immune modulation in xenotransplantation. Arch Immunol Ther Exp (Warsz) 2014; 63:181-92. [PMID: 25354539 PMCID: PMC4429136 DOI: 10.1007/s00005-014-0317-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/22/2014] [Indexed: 01/17/2023]
Abstract
The use of animals as donors of tissues and organs for xenotransplantations may help in meeting the increasing demand for organs for human transplantations. Clinical studies indicate that the domestic pig best satisfies the criteria of organ suitability for xenotransplantation. However, the considerable phylogenetic distance between humans and the pig causes tremendous immunological problems after transplantation, thus genetic modifications need to be introduced to the porcine genome, with the aim of reducing xenotransplant immunogenicity. Advances in genetic engineering have facilitated the incorporation of human genes regulating the complement into the porcine genome, knockout of the gene encoding the formation of the Gal antigen (α1,3-galactosyltransferase) or modification of surface proteins in donor cells. The next step is two-fold. Firstly, to inhibit processes of cell-mediated xenograft rejection, involving natural killer cells and macrophages. Secondly, to inhibit rejection caused by the incompatibility of proteins participating in the regulation of the coagulation system, which leads to a disruption of the equilibrium in pro- and anti-coagulant activity. Only a simultaneous incorporation of several gene constructs will make it possible to produce multitransgenic animals whose organs, when transplanted to human recipients, would be resistant to hyperacute and delayed xenograft rejection.
Collapse
Affiliation(s)
- Magdalena Boksa
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland,
| | | | | | | |
Collapse
|
17
|
Garas LC, Murray JD, Maga EA. Genetically engineered livestock: ethical use for food and medical models. Annu Rev Anim Biosci 2014; 3:559-75. [PMID: 25387117 DOI: 10.1146/annurev-animal-022114-110739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent advances in the production of genetically engineered (GE) livestock have resulted in a variety of new transgenic animals with desirable production and composition changes. GE animals have been generated to improve growth efficiency, food composition, and disease resistance in domesticated livestock species. GE animals are also used to produce pharmaceuticals and as medical models for human diseases. The potential use of these food animals for human consumption has prompted an intense debate about food safety and animal welfare concerns with the GE approach. Additionally, public perception and ethical concerns about their use have caused delays in establishing a clear and efficient regulatory approval process. Ethically, there are far-reaching implications of not using genetically engineered livestock, at a detriment to both producers and consumers, as use of this technology can improve both human and animal health and welfare.
Collapse
|
18
|
Kim SE, Choi GH, Shim KM, Choi SH, Lee SM, Kang SS. Evaluation of biocompatibility of α-1,3 galactosyltransferase knockout pig bone graft in a rat calvarial defect model. J Biomed Res 2014. [DOI: 10.12729/jbr.2014.15.2.086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Adachi N, Yamaguchi D, Watanabe A, Miura N, Sunaga S, Oishi H, Hashimoto M, Oishi T, Iwamoto M, Hanada H, Kubo M, Onishi A. Growth, reproductive performance, carcass characteristics and meat quality in F1 and F2 progenies of somatic cell-cloned pigs. J Reprod Dev 2014; 60:100-5. [PMID: 24492641 PMCID: PMC3999388 DOI: 10.1262/jrd.2012-167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/04/2013] [Indexed: 12/04/2022] Open
Abstract
The objective of this study was to examine the health and meat production of cloned sows and their progenies in order to demonstrate the application of somatic cell cloning to the pig industry. This study compared the growth, reproductive performance, carcass characteristics and meat quality of Landrace cloned sows, F1 progenies and F2 progenies. We measured their body weight, growth rate and feed conversion and performed a pathological analysis of their anatomy to detect abnormalities. Three of the five cloned pigs were used for a growth test. Cloned pigs grew normally and had characteristics similar to those of the control purebred Landrace pigs. Two cloned gilts were bred with a Landrace boar and used for a progeny test. F1 progenies had characteristics similar to those of the controls. Two of the F1 progeny gilts were bred with a Duroc or Large White boar and used for the progeny test. F2 progenies grew normally. There were no biological differences in growth, carcass characteristics and amino acid composition among cloned sows, F1 progenies, F2 progenies and conventional pigs. The cloned sows and F1 progenies showed normal reproductive performance. No specific abnormalities were observed by pathological analysis, with the exception of periarteritis in the F1 progenies. All pigs had a normal karyotype. These results demonstrate that cloned female pigs and their progenies have similar growth, reproductive performance and carcass quality characteristics and that somatic cell cloning could be a useful technique for conserving superior pig breeds in conventional meat production.
Collapse
Affiliation(s)
- Noritaka Adachi
- Ibaraki Prefecture Livestock Research Center, Ibaraki 315-0132, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ko N, Lee JW, Hwang SS, Kim B, Ock SA, Lee SS, Im GS, Kang MJ, Park JK, Oh SJ, Oh KB. Nucleofection-mediated α1,3-galactosyltransferase gene inactivation and membrane cofactor protein expression for pig-to-primate xenotransplantation. Anim Biotechnol 2014; 24:253-67. [PMID: 23947662 DOI: 10.1080/10495398.2012.752741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Xenotransplantation of pig organs into primates leads to hyperacute rejection (HAR). Functional ablation of the pig α 1,3-galactosyltransferase (GalT) gene, which abrogates expression of the Gal α 1-3Gal β 1-4GlcNAc-R (Gal) antigen, which inhibits HAR. However, antigens other than Gal may induce immunological rejection by their cognate antibody responses. Ultimately, overexpression of complement regulatory proteins reduces acute humoral rejection by non-Gal antibodies when GalT is ablated. In this study, we developed a vector-based strategy for ablation of GalT function and concurrent expression of membrane cofactor protein (MCP, CD46). We constructed an MCP expression cassette (designated as MCP-IRESneo) and inserted between the left and the right homologous arms to target exon 9 of the GalT gene. Nucleofection of porcine ear skin fibroblasts using the U-023 and V-013 programs resulted in high transfection efficiency and cell survival. We identified 28 clones in which the MCP-IRESneo vector had been successfully targeted to exon 9 of the GalT gene. Two of those clones, with apparent morphologically mitotic fibroblast features were selected through long-term culture. GalT gene expression was downregulated in these 2 clones. Importantly, MCP was shown to be efficiently expressed at the cell surface and to efficiently protect cell lysis against normal human complement serum attack in vitro.
Collapse
Affiliation(s)
- Nayoung Ko
- a Animal Biotechnology Division , National Institute of Animal Science , RDA , Suwon , South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sato M, Miyoshi K, Nagao Y, Nishi Y, Ohtsuka M, Nakamura S, Sakurai T, Watanabe S. The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the α-1,3-galactosyltransferase gene in porcine embryonic fibroblasts. Xenotransplantation 2014; 21:291-300. [PMID: 24919525 DOI: 10.1111/xen.12089] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/20/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND The recent development of the type II clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has enabled genome editing of mammalian genomes including those of mice and human; however, its applicability and efficiency in the pig have not been studied in depth. Here, using the CRISPR/Cas9 system, we aimed to destroy the function of the porcine α-1,3-galactosyltransferase (α-GalT) gene (GGTA1) whose product is responsible for the synthesis of the α-Gal epitope, a causative agent for hyperacute rejection upon pig-to-human xenotransplantation. METHODS Porcine embryonic fibroblasts were transfected with a Cas9 expression vector and guide RNA specifically designed to target GGTA1. At 4 days after transfection, the cells were incubated with IB4 conjugated with saporin (IB4SAP), which eliminates α-Gal epitope-expressing cells. Therefore, the cells surviving after IB4SAP treatment would be those negative for α-Gal epitope expression, which in turn indicates the generation of GGTA1 biallelic knockout (KO) cells. RESULTS Of the 1.0 × 10(6) cells transfected, 10-33 colonies survived after IB4SAP treatment, and almost all colonies (approximately 90%) were negative for staining with red fluorescence-labeled IB4. Sequencing of the mutated portion of GGTA1 revealed a frameshift of the α-GalT protein. Porcine blastocysts derived from the somatic cell nuclear transfer of these α-Gal epitope-negative cells also lacked the α-Gal epitope on their surface. CONCLUSIONS These results demonstrated that the CRISPR/Cas9 system can efficiently induce the biallelic conversion of GGTA1 in the resulting somatic cells and is thus a promising tool for the creation of KO cloned piglets.
Collapse
Affiliation(s)
- Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Brooks SA. Protein glycosylation in diverse cell systems: implications for modification and analysis of recombinant proteins. Expert Rev Proteomics 2014; 3:345-59. [PMID: 16771706 DOI: 10.1586/14789450.3.3.345] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A major challenge for the biotechnology industry is to engineer the glycosylation pathways of expression systems to synthesize recombinant proteins with human glycosylation. Inappropriate glycosylation can result in reduced activity, limited half-life in circulation and unwanted immunogenicity. In this review, the complexities of glycosylation in human cells are explained and compared with glycosylation in bacteria, yeasts, fungi, insects, plants and nonhuman mammalian species. Key advances in the engineering of the glycosylation of expression systems are highlighted. Advances in the challenging and technically complex field of glycan analysis are also described. The emergence of a new generation of expression systems with sophisticated engineering for humanized glycosylation of glycoproteins appears to be on the horizon.
Collapse
Affiliation(s)
- Susan A Brooks
- Oxford Brookes University, School of Biological & Molecular Sciences, Gipsy Lane, Headington, Oxford, OX3 0BP, UK.
| |
Collapse
|
23
|
Diswall M, Benktander J, Ångström J, Teneberg S, Breimer ME. The alpha1,3GalT knockout/alpha1,2FucT transgenic pig does not appear to have an advantage over the alpha1,3GalT knockout pig with respect to glycolipid reactivity with human serum antibodies. Xenotransplantation 2013; 21:57-71. [PMID: 24219248 DOI: 10.1111/xen.12071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/02/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND The human H-transferase (α2FucT) was introduced in Gal-negative pigs to produce pig organs not only free from Gal-antigens, but also in which the uncapped N-acetyllactosamine precursor had been transformed into non-xenogenic blood group H type 2 compounds. This work is the first descriptive analysis of glycolipids from the GalT-KO/FucT-TG pig. The aim was to investigate the cell membrane antigens in GalT-KO/FucT-TG tissues to explore its efficacy as an organ donor. Also, detailed knowledge on the correlation between the cellular glycosyltransferase configuration and the resulting carbohydrate phenotype expression is valuable from a basic glycobiological perspective. METHODS Neutral and acidic glycolipids from GalT-KO/FucT-TG small intestine were compared with glycolipids from two wildtype and two GalT-KO pig intestines. Glycolipid reactivity was tested on thin layer chromatography plates using chemical reagents, antibodies, lectins, and human serum. Structural characterization of neutral glycolipids was performed by LC-ESI/MS and proton NMR spectroscopy. RESULTS Characterization of the glycolipid expression in GalT-KO/FucT-TG intestine showed absence of Gal antigens and decreased/unchanged levels of the N-acetyllactosamine precursor and the blood group H type 2 expression, when compared with the wildtype. The reactivity of human serum antibodies to GalT-KO/FucT-TG derived glycolipids was similar or slightly elevated when compared with GalT-KO glycolipids. Results from LC-ESI/MS and proton NMR spectroscopy revealed no established neutral xenogenic antigens in the GalT-KO/FucT-TG pig, and could thus not explain the immunologic reactivity to human serum antibodies. The antibody binding to acidic glycolipids is most likely to be explained by the abundance of N-glycolylneuraminic acid epitopes in pig tissues. Six neutral complex biantennary glycolipids with blood group H type 1, 2, Lewis(x) and Lewis(y) determinants were found, of which three were identified in this work for the first time. One of these was a nonaglycosylceramide with blood group H type 2 and lactosyl determinants linked to a lactotetraosyl core, and the other two were decaglycosylceramides with blood group H type 1 and H type 2 determinants linked to a neolactotetraosyl core, and Lewis(x) and blood group H type 1 determinants on a lactotetraosyl core, respectively. CONCLUSIONS Lipid-linked carbohydrate antigens in the GalT-KO/FucT-TG pig intestine showed no or minor qualitative difference when compared with GalT-KO pigs. The GalT-KO/FucT-TG pig did not appear to have an advantage over the GalT-KO pig with respect to reactivity with human antibodies from a xenotransplantation perspective.
Collapse
Affiliation(s)
- Mette Diswall
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy/Gothenburg University, Gothenburg, Sweden; Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
24
|
Zeyland J, Gawrońska B, Juzwa W, Jura J, Nowak A, Słomski R, Smorąg Z, Szalata M, Woźniak A, Lipiński D. Transgenic pigs designed to express human α-galactosidase to avoid humoral xenograft rejection. J Appl Genet 2013; 54:293-303. [PMID: 23780397 PMCID: PMC3720986 DOI: 10.1007/s13353-013-0156-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 04/18/2013] [Accepted: 05/27/2013] [Indexed: 12/01/2022]
Abstract
The use of animals as a source of organs and tissues for xenotransplantation can overcome the growing shortage of human organ donors. However, the presence of xenoreactive antibodies in humans directed against swine Gal antigen present on the surface of xenograft donor cells leads to the complement activation and immediate xenograft rejection as a consequence of hyperacute reaction. To prevent hyperacute rejection, it is possible to change the swine genome by a human gene modifying the set of donor’s cell surface proteins. The gene construct pGal-GFPBsd containing the human gene encoding α-galactosidase enzyme under the promoter of EF-1α elongation factor ensuring systemic expression was introduced by microinjection into a male pronucleus of the fertilised porcine oocyte. As a result, the founder male pig was obtained with the transgene mapping to chromosome 11p12. The polymerase chain reaction (PCR) analysis revealed and the Southern analysis confirmed transgene integration estimating the approximate number of transgene copies as 16. Flow cytometry analysis revealed a reduction in the level of epitope Gal on the cell surface of cells isolated from F0 and F1 transgenic animals. The complement-mediated cytotoxicity assay showed increased viability of the transgenic cells in comparison with the wild-type, which confirmed the protective influence of α-galactosidase expression.
Collapse
Affiliation(s)
- J Zeyland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632, Poznan, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jang KS, Kim YG, Adhya M, Park HM, Kim BG. The sweets standing at the borderline between allo- and xenotransplantation. Xenotransplantation 2013; 20:199-208. [PMID: 23551837 DOI: 10.1111/xen.12030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/28/2013] [Indexed: 01/06/2023]
Abstract
Animal cells are densely covered with glycoconjugates, such as N-glycan, O-glycan, and glycosphingolipids, which are important for various biological and immunological events at the cell surface and in the extracellular matrix. Endothelial α-Gal carbohydrate epitopes (Galα3Gal-R) expressed on porcine tissue or cell surfaces are such glycoconjugates and directly mediate hyperacute immunological rejection in pig-to-human xenotransplantation. Although researchers have been able to develop α1,3-galactosyltransferase (GalT) gene knockout (KO) pigs, there remain unclarified non-Gal antigens that prevent xenotransplantation. Based on our expertise in the structural analysis of xenoantigenic carbohydrates, we describe the immunologically significant non-human carbohydrate antigens, including α-Gal antigens, analyzed as part of efforts to assess the antigens responsible for hyperacute immunological rejection in pig-to-human xenotransplantation. The importance of studying human, pig, and GalT-KO pig glycoprofiles, and of developing adequate pig-to-human glycan databases, is also discussed.
Collapse
Affiliation(s)
- Kyoung-Soon Jang
- Institute of Molecular Biology and Genetics, Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|
26
|
Nagashima H, Matsunari H, Nakano K, Watanabe M, Umeyama K, Nagaya M. Advancing pig cloning technologies towards application in regenerative medicine. Reprod Domest Anim 2013; 47 Suppl 4:120-6. [PMID: 22827360 DOI: 10.1111/j.1439-0531.2012.02065.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regenerative medicine is expected to make a significant contribution by development of novel therapeutic treatments for intractable diseases and for improving the quality of life of patients. Many advances in regenerative medicine, including basic and translational research, have been developed and tested in experimental animals; pigs have played an important role in various aspects of this work. The value of pigs as a model species is being enhanced by the generation of specially designed animals through cloning and genetic modifications, enabling more sophisticated research to be performed and thus accelerating the clinical application of regenerative medicine. This article reviews the significant aspects of the creation and application of cloned and genetically modified pigs in regenerative medicine research and considers the possible future directions of the technology. We also discuss the importance of reproductive biology as an interface between basic science and clinical medicine.
Collapse
Affiliation(s)
- H Nagashima
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Kawarasaki T, Enya S, Otsu Y. The effect of estrogen administration during early pregnancy upon the survival of single implanted pig embryos. J Anim Sci 2012; 90:4781-7. [DOI: 10.2527/jas.2012-5178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- T. Kawarasaki
- Swine and Poultry Research Center, Shizuoka Prefectural Research Institute of Animal Industry, Kikugawa, Shizuoka, 439-0037, Japan
- School of Agriculture, Tokai University, Minamiaso, Kumamoto, 869-1404, Japan
| | - S. Enya
- Swine and Poultry Research Center, Shizuoka Prefectural Research Institute of Animal Industry, Kikugawa, Shizuoka, 439-0037, Japan
| | - Y. Otsu
- Swine and Poultry Research Center, Shizuoka Prefectural Research Institute of Animal Industry, Kikugawa, Shizuoka, 439-0037, Japan
- Shizuoka Prefectural Tobu Livestock Hygiene Service Center, Kannami, Shizuoka 419-0114, Japan
| |
Collapse
|
28
|
Walters EM, Wolf E, Whyte JJ, Mao J, Renner S, Nagashima H, Kobayashi E, Zhao J, Wells KD, Critser JK, Riley LK, Prather RS. Completion of the swine genome will simplify the production of swine as a large animal biomedical model. BMC Med Genomics 2012; 5:55. [PMID: 23151353 PMCID: PMC3499190 DOI: 10.1186/1755-8794-5-55] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/28/2011] [Indexed: 12/25/2022] Open
Abstract
Background Anatomic and physiological similarities to the human make swine an excellent large animal model for human health and disease. Methods Cloning from a modified somatic cell, which can be determined in cells prior to making the animal, is the only method available for the production of targeted modifications in swine. Results Since some strains of swine are similar in size to humans, technologies that have been developed for swine can be readily adapted to humans and vice versa. Here the importance of swine as a biomedical model, current technologies to produce genetically enhanced swine, current biomedical models, and how the completion of the swine genome will promote swine as a biomedical model are discussed. Conclusions The completion of the swine genome will enhance the continued use and development of swine as models of human health, syndromes and conditions.
Collapse
Affiliation(s)
- Eric M Walters
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Samiec M, Skrzyszowska M. Roscovitine is a novel agent that can be used for the activation of porcine oocytes reconstructed with adult cutaneous or fetal fibroblast cell nuclei. Theriogenology 2012; 78:1855-67. [PMID: 22979963 DOI: 10.1016/j.theriogenology.2012.06.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 06/18/2012] [Accepted: 06/21/2012] [Indexed: 02/05/2023]
Abstract
The present study was undertaken to investigate the preimplantation developmental competence of cloned pig embryos that were derived from fibroblast cell nuclei by different methods for the activation of reconstructed oocytes. In subgroups IA and IB, nuclear-transferred (NT) oocytes derived from either adult cutaneous or fetal fibroblast cells that had been classified as nonapoptotic by intra vitam analysis for programmed cell death using the YO-PRO-1 DNA fluorochrome underwent sequential physical (i.e., electrical) and chemical activation (SE-CA). This novel method of SE-CA, which was developed and optimized in our laboratory, involves treatment of reconstituted oocytes with direct current pulses and subsequent exposure to 7.5 μM calcium ionomycin, followed by incubation with 30 μM R-roscovitine (R-RSCV), 0.7 mM 6-dimethylaminopurine and 3.5 μg/mL cycloheximide. In subgroups IIA and IIB, NT oocytes were subjected to the standard method of simultaneous fusion and activation mediated by direct current pulses. The proportion of cloned embryos in subgroup IA that reached the morula and blastocyst stages was 145/248 (58.5%) and 78/248 (31.5%), respectively. The proportions of cloned embryos in subgroup IB that reached the morula and blastocyst stages were 186/264 (70.5%) and 112/264 (42.4%), respectively. In turn, subgroup IIA yielded proportions at the morula and blastocyst stages of 110/234 (47.0%) and 49/234 (20.9%), respectively. Subgroup IIB yielded proportions at the morula and blastocyst stages of 144/243 (59.3%) and 74/243 (30.5%), respectively. In summary, the SE-CA of NT oocytes reconstructed from either type of nonapoptotic/nonnecrotic (i.e., YO-PRO-1-negative) fibroblast cell resulted in porcine cloned embryos with considerably better in vitro developmental outcomes than those of cloned embryos generated using the simultaneous fusion and activation approach. To our knowledge, this is the first report of the successful stimulation of porcine NT oocytes using electric pulses followed by an additional activation with a higher dose (1.5 times) of calcium ionomycin and subsequent exposure to a combination of 30 μM R-RSCV and lower concentrations (by 3 times) of 6-dimethylaminopurine and cycloheximide. Moreover, we report here the first use of R-RSCV, a novel meiosis-promoting factor-related p34(cdc2) kinase inhibitor, in the oocyte activation protocol for the somatic cell cloning of pigs.
Collapse
Affiliation(s)
- M Samiec
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, Balice n. Kraków, Poland.
| | | |
Collapse
|
30
|
Giraldo AM, Ball S, Bondioli KR. Production of transgenic and knockout pigs by somatic cell nuclear transfer. Methods Mol Biol 2012; 885:105-23. [PMID: 22565993 DOI: 10.1007/978-1-61779-845-0_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Xenotransplantation is one alternative to transplantation of human organs which has been investigated. It is generally accepted that the pig represents the most logical choice of animals to serve as organ donors for xenotransplantation. Moreover, the implementation of cloning by somatic cell nuclear transfer (SCNT) and transgenic techniques have resulted in the production of numerous transgenic pigs than can be used for xenotransplantation purposes as well as models for human diseases.
Collapse
|
31
|
Park JY, Park MR, Bui HT, Kwon DN, Kang MH, Oh M, Han JW, Cho SG, Park C, Shim H, Kim HM, Kang MJ, Park JK, Lee JW, Lee KK, Kim JH. α1,3-galactosyltransferase deficiency in germ-free miniature pigs increases N-glycolylneuraminic acids as the xenoantigenic determinant in pig-human xenotransplantation. Cell Reprogram 2012; 14:353-63. [PMID: 22775484 DOI: 10.1089/cell.2011.0083] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this study, we examined whether Hanganutziu-Deicher (H-D) antigens are important as an immunogenic non-α1,3-galactose (Gal) epitope in pigs with a disrupted α1,3-galactosyltransferase gene. The targeting efficiency of the AO blood genotype was achieved (2.2%) in pig fibroblast cells. A total of 1800 somatic cell nuclear transfer (SCNT) embryos were transferred to 10 recipients. One recipient developed to term and naturally delivered two piglets. The α1,3-galactosyltransferase activity in lung, liver, spleen, and testis of heterozygote α1,3-galactosyltransferase gene knockout (GalT-KO) pigs was significantly decreased, whereas brain and heart showed very low decreasing levels of α1,3-galactosyltransferase activity when compared to those of control. Enzyme-linked lectinosorbent assay showed that the heterozygote GalT-KO pig had more sialylα2,6- and sialylα2,3-linked glycan than the control. Furthermore, the heart, liver, and kidney of the heterozygote GalT-KO pig had a higher N-glycolylneuraminic acid (Neu5Gc) content than the control, whereas the lung of the heterozygote GalT-KO pig had Neu5Gc content similar to the control. Collectively, the data strongly indicated that Neu5Gc is a more critical xenoantigen to overcoming the next acute immune rejection in pig to human xenotransplantation.
Collapse
Affiliation(s)
- Jong-Yi Park
- Department of Animal Biotechnology, Konkuk University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Beaton BP, Mao J, Murphy CN, Samuel MS, Prather RS, Wells KD. Use of single stranded targeting DNA or negative selection does not further increase the efficiency of a GGTA1 promoter trap. ACTA ACUST UNITED AC 2012; 2. [PMID: 25309937 DOI: 10.4172/2325-9787.1000101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although several techniques have been developed to create gene knockouts in pigs, homologous recombination will continue to be required for site-specific genome modifications that are more sophisticated than gene disruption (base changes, domain exchanges, conditional knockouts). The objective of the present paper was to improve the efficiency of homologous recombination in porcine fetal fibroblasts, which would be used to produce gene knockout pigs by somatic cell nuclear transfer. A promoter-trap was used to enable selection of GGTA1 targeted cells. Cells were transfected with either a single stranded or double stranded targeting vector, or a vector, with or without a negative selectable marker gene (diphtheria toxin-A). Although targeting efficiencies were numerically lower for single stranded targeting vectors, statistical differences could not be detected. Similarly, the use of a negative selectable marker (in cis or trans) provided numerically lower targeting efficiencies, statistical differences again could not be detected. Overall, the targeting efficiencies ranged from 1.5×10-5 to 2.5×10-6 targeting events per transfected cell. Given the results, it may be applicable to investigate multiple enrichment techniques for homologous recombination, given that every targeted locus is different.
Collapse
Affiliation(s)
- Benjamin P Beaton
- Division of Animal Sciences, Animal Science Research Center, University of Missouri, 920 East Campus Drive, Columbia, MO 65211, USA
| | - Jiude Mao
- Division of Animal Sciences, Animal Science Research Center, University of Missouri, 920 East Campus Drive, Columbia, MO 65211, USA
| | - Clifton N Murphy
- Division of Animal Sciences, Animal Science Research Center, University of Missouri, 920 East Campus Drive, Columbia, MO 65211, USA
| | - Melissa S Samuel
- Division of Animal Sciences, Animal Science Research Center, University of Missouri, 920 East Campus Drive, Columbia, MO 65211, USA
| | - Randall S Prather
- Division of Animal Sciences, Animal Science Research Center, University of Missouri, 920 East Campus Drive, Columbia, MO 65211, USA
| | - Kevin D Wells
- Division of Animal Sciences, Animal Science Research Center, University of Missouri, 920 East Campus Drive, Columbia, MO 65211, USA
| |
Collapse
|
34
|
Tan WS, Carlson DF, Walton MW, Fahrenkrug SC, Hackett PB. Precision editing of large animal genomes. ADVANCES IN GENETICS 2012; 80:37-97. [PMID: 23084873 PMCID: PMC3683964 DOI: 10.1016/b978-0-12-404742-6.00002-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transgenic animals are an important source of protein and nutrition for most humans and will play key roles in satisfying the increasing demand for food in an ever-increasing world population. The past decade has experienced a revolution in the development of methods that permit the introduction of specific alterations to complex genomes. This precision will enhance genome-based improvement of farm animals for food production. Precision genetics also will enhance the development of therapeutic biomaterials and models of human disease as resources for the development of advanced patient therapies.
Collapse
Affiliation(s)
- Wenfang Spring Tan
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
35
|
Ryu JM, Yoon W, Park JH, Yun SP, Jang MW, Han HJ. Multidetector computed tomographic angiography evaluation of micropig major systemic vessels for xenotransplantation. J Vet Sci 2011; 12:209-14. [PMID: 21897092 PMCID: PMC3165148 DOI: 10.4142/jvs.2011.12.3.209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Due primarily to the increasing shortage of allogeneic donor organs, xenotransplantation has become the focus of a growing field of research. Currently, micropigs are the most suitable donor animal for humans. However, no standard method has been developed to evaluate the systemic vascular anatomy of micropigs and standard reference values to aid in the selection of normal healthy animals as potential organ donors are lacking. Using 64-channel multidetector row computed tomographic angiography (MDCTA), we evaluated morphological features of the major systemic vessels in micropigs and compared our results to published human data. The main vasculature of the animals was similar to that of humans, except for the iliac arterial system. However, diameters of the major systemic vessels were significantly different between micropigs and humans. Specifically, the diameter of the aortic arch, abdominal aorta, external iliac artery, and femoral artery, were measured as 1.50 ± 0.07 cm, 0.85 ± 0.06 cm, 0.52 ± 0.05 cm, and 0.48 ± 0.05 cm, respectively, in the micropigs. This MDCTA data for micropig major systemic vessels can be used as standard reference values for xenotransplantation studies. The use of 64-channel MDCTA enables accurate evaluation of the major systemic vasculature in micropigs.
Collapse
Affiliation(s)
- Jung Min Ryu
- College of Veterinary Medicine, Biotherapy Human Resources Center, Chonnam National University, Gwangju 500-757, Korea
| | | | | | | | | | | |
Collapse
|
36
|
Sato M, Ohtsuka M, Miura H, Miyoshi K, Watanabe S. Determination of the optimal concentration of several selective drugs useful for generating multi-transgenic porcine embryonic fibroblasts. Reprod Domest Anim 2011; 47:759-65. [PMID: 22136322 DOI: 10.1111/j.1439-0531.2011.01964.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Porcine embryonic fibroblasts (PEFs) are widely used as donor cells for somatic cell nuclear transfer (SCNT) in pigs. Transfection of PEFs with exogenous DNA is essential for producing genetically modified (GM; transgenic or knockout) pigs via SCNT. In this case, selectable markers are strictly required selecting and enriching stably transfected cells. The most frequently used selective drug for this purpose is a neomycin analogue (G418/geneticin); neo has been widely used as a selectable marker gene in the genomic manipulation of pigs. However, little is known about optimal concentrations of other selection drugs. This often hampers functional analysis of the porcine genome and development of individual GM pigs. This study explores the optimal concentrations of selective drugs, other than neomycin, that can be used for the selection of transfected PEFs. Porcine embryonic fibroblasts were incubated in media containing different concentrations of drugs for up to 10 days, to determine the optimal drug concentrations fatal for PEFs. The following concentrations were found to be optimal selective concentrations for use with PEFs: G418/geneticin, 400 μg/ml; blasticidin S, 8 μg/ml; hygromycin B, 40 μg/ml; puromycin, 2 μg/ml; and zeocin, 800 μg/ml. Repeated transfections with plasmids carrying selectable markers resulted in the generation of multidrug-resistant swine transfectants. Furthermore, these markers were found to be independent. The present information will be useful for the production of SCNT-mediated GM piglets that express multiple transgenes.
Collapse
Affiliation(s)
- M Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima, Japan.
| | | | | | | | | |
Collapse
|
37
|
Shimizu A, Yamada K, Robson SC, Sachs DH, Colvin RB. Pathologic characteristics of transplanted kidney xenografts. J Am Soc Nephrol 2011; 23:225-35. [PMID: 22114174 DOI: 10.1681/asn.2011040429] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
For xenotransplantation to become a clinical reality, we need to better understand the mechanisms of graft rejection or acceptance. We examined pathologic changes in α1,3-galactosyltransferase gene-knockout pig kidneys transplanted into baboons that were treated with a protocol designed to induce immunotolerance through thymic transplantation (n=4) or were treated with long-term immunosuppressants (n=3). Hyperacute rejection did not occur in α1,3-galactosyltransferase gene-knockout kidney xenografts. By 34 days, acute humoral rejection led to xenograft loss in all three xenografts in the long-term immunosuppression group. The failing grafts exhibited thrombotic microangiopathic glomerulopathy with multiple platelet-fibrin microthrombi, focal interstitial hemorrhage, and acute cellular xenograft rejection. Damaged glomeruli showed IgM, IgG, C4d, and C5b-9 deposition. They also demonstrated endothelial cell death, diffuse endothelial procoagulant activation with high expression of tissue factor and vWF, and low expression of the ectonucleotidase CD39. In contrast, in the immunotolerance group, two of four grafts had normal graft function and no pathologic findings of acute or chronic rejection at 56 and 83 days. One of the remaining kidneys had mild but transient graft dysfunction with reversible, mild microangiopathic glomerulopathy, probably associated with preformed antibodies. The other kidney in the immunotolerance group developed unstable graft function at 81 days and developed chronic xenograft glomerulopathy. In summary, the success of pig-to-primate xenotransplantation may necessitate immune tolerance to inhibit acute humoral and cellular xenograft rejection.
Collapse
Affiliation(s)
- Akira Shimizu
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA.
| | | | | | | | | |
Collapse
|
38
|
CHI H, SATO M, YOSHIDA M, MIYOSHI K. Expression analysis of an α-1, 3-galactosyltransferase, an enzyme that creates xenotransplantation-related α-Gal epitope, in pig preimplantation embryos. Anim Sci J 2011; 83:88-93. [DOI: 10.1111/j.1740-0929.2011.00964.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Chi H, Shinohara M, Yokomine T, Sato M, Takao S, Yoshida M, Miyoshi K. Successful suppression of endogenous α-1,3-galactosyltransferase expression by RNA interference in pig embryos generated in vitro. J Reprod Dev 2011; 58:69-76. [PMID: 21997138 DOI: 10.1262/jrd.10-165m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA interference (RNAi) technology using small interfering RNAs (siRNA) has been widely used as a powerful tool to knock down gene expression in various organisms. In pig preimplantation embryos, no attempt to suppress the target gene expression with such technology has been made. The purpose of this study is to demonstrate that the RNAi technology is useful for suppression of endogenous target gene expression at an early stage of development in pigs. Alpha-1,3-Galactosyltransferase (α-GalT) is an enzyme that creates the Galα1-3Gal (α-Gal) epitope on the cell surface in some mammalian species, and removal of the epitope is considered to be a prerequisite for pig-to-human xenotransplantation. We decided to suppress the endogenous α-GalT mRNA expression in pig early embryos, since reduction of α-GalT synthesis is easily monitored by cytochemical staining with Bandeiraea simplicifolia isolectin-B(4), a lectin that specifically binds to the α-Gal epitope, and by RT-PCR analysis. Cytoplasmic microinjection of double-stranded RNA and pronuclear injection of an siRNA expression vector into the embryos generated in vitro resulted in a significant reduction in expression of the α-GalT gene and α-Gal epitope in blastocysts, at which stage the α-Gal epitope is abundantly expressed. Somatic cell nuclear transfer of embryonic fibroblasts stably transfected with an siRNA expression vector also led to a significant reduction in the level of α-GalT mRNA synthesis together with decreased amounts of the α-Gal epitope at the blastocyst stage. These results indicate that the RNAi technology is useful for efficient suppression of a target gene expression during embryogenesis in pigs and suggest the possibility of production of siRNA-expressing pigs for use in xenotransplantation.
Collapse
Affiliation(s)
- Haiying Chi
- Laboratory of Animal Reproduction, Kagoshima University, Kagoshima 890-0065, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Whyte JJ, Prather RS. Genetic modifications of pigs for medicine and agriculture. Mol Reprod Dev 2011; 78:879-91. [PMID: 21671302 PMCID: PMC3522184 DOI: 10.1002/mrd.21333] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/09/2011] [Indexed: 12/18/2022]
Abstract
Genetically modified swine hold great promise in the fields of agriculture and medicine. Currently, these swine are being used to optimize production of quality meat, to improve our understanding of the biology of disease resistance, and to reduced waste. In the field of biomedicine, swine are anatomically and physiologically analogous to humans. Alterations of key swine genes in disease pathways provide model animals to improve our understanding of the causes and potential treatments of many human genetic disorders. The completed sequencing of the swine genome will significantly enhance the specificity of genetic modifications, and allow for more accurate representations of human disease based on syntenic genes between the two species. Improvements in both methods of gene alteration and efficiency of model animal production are key to enabling routine use of these swine models in medicine and agriculture.
Collapse
Affiliation(s)
- Jeffrey J. Whyte
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, U.S.A
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, U.S.A
- Division of Animal Science, University of Missouri, Columbia, MO, U.S.A
| | - Randall S. Prather
- National Swine Resource and Research Center, University of Missouri, Columbia, MO, U.S.A
- Division of Animal Science, University of Missouri, Columbia, MO, U.S.A
| |
Collapse
|
41
|
Yamamoto F, Cid E, Yamamoto M, Blancher A. ABO research in the modern era of genomics. Transfus Med Rev 2011; 26:103-18. [PMID: 21945157 DOI: 10.1016/j.tmrv.2011.08.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Research on ABO has advanced significantly in recent years. A database was established to manage the sequence information of an increasing number of novel alleles. Genome sequencings have identified ABO orthologues and paralogues in various organisms and enhanced the knowledge on the evolution of the ABO and related genes. The most prominent advancements include clarification of the association between ABO and different disease processes. For instance, ABO status affects the infectivity of certain strains of Helicobacter pylori and Noroviruses as well as the sequestration and rosetting of red blood cells infected with Plasmodium falciparum. Genome-wide association studies have conclusively linked the ABO locus to pancreatic cancer, venous thromboembolism, and myocardial infarction in the presence of coronary atherosclerosis. These findings suggest ABO's important role in determining an individual's susceptibility to such diseases. Furthermore, our understanding of the structures of A and B transferases and their enzymology has been dramatically improved. ABO has also become a research subject in neurobiology and the preparation of artificial/universal blood and became a topic in the pseudoscience of "blood type diets." With such new progress, it has become evident that ABO is a critical player in the modern era of genomic medicine. This article provides the most up-to-date information regarding ABO genomics.
Collapse
Affiliation(s)
- Fumiichiro Yamamoto
- Institut de Medicina Predictiva i Personalitzada delCàncer (IMPPC), Badalona, Spain.
| | | | | | | |
Collapse
|
42
|
Waghmare SK, Estrada J, Reyes L, Li P, Ivary B, Sidner RA, Burlak C, Tector AJ. Gene targeting and cloning in pigs using fetal liver derived cells. J Surg Res 2011; 171:e223-9. [PMID: 21962810 DOI: 10.1016/j.jss.2011.07.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/08/2011] [Accepted: 07/29/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND Since there are no pig embryonic stem cells, pig genetic engineering is done in fetal fibroblasts that remain totipotent for only 3 to 5 wk. Nuclear donor cells that remain totipotent for longer periods of time would facilitate complicated genetic engineering in pigs. The goal of this study was to test the feasibility of using fetal liver-derived cells (FLDC) to perform gene targeting, and create a genetic knockout pig. MATERIALS AND METHODS FLDC were isolated and processed using a human liver stem cell protocol. Single copy α-1,3-galactosyl transferase knockout (GTKO) FLDCs were created using electroporation and neomycin resistant colonies were screened using PCR. Homozygous GTKO cells were created through loss of heterozygosity mutations in single GTKO FLDCs. Double GTKO FLDCs were used in somatic cell nuclear transfer (SCNT) to create GTKO pigs. RESULTS FLDCs grew for more than 80 population doublings, maintaining normal karyotype. Gene targeting and loss of heterozygosity mutations produced homozygous GTKO FLDCs. FLDCs used in SCNT gave rise to homozygous GTKO pigs. CONCLUSIONS FDLCs can be used in gene targeting and SCNT to produce genetically modified pigs. The increased life span in culture compared to fetal fibroblasts may facilitate genetic engineering in the pig.
Collapse
Affiliation(s)
- Sanjeev K Waghmare
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Gock H, Nottle M, Lew AM, d'Apice AJ, Cowan P. Genetic modification of pigs for solid organ xenotransplantation. Transplant Rev (Orlando) 2011; 25:9-20. [DOI: 10.1016/j.trre.2010.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 08/13/2010] [Accepted: 10/01/2010] [Indexed: 10/18/2022]
|
44
|
Resurrection of an alpha-1,3-galactosyltransferase gene-targeted miniature pig by recloning using postmortem ear skin fibroblasts. Theriogenology 2010; 75:933-9. [PMID: 21196043 DOI: 10.1016/j.theriogenology.2010.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/23/2010] [Accepted: 11/02/2010] [Indexed: 11/22/2022]
Abstract
Animals with a targeted disruption of genes can be produced by somatic cell nuclear transfer (SCNT). However, difficulties in clonal selection of somatic cells with a targeted mutation often result in heterogeneous nuclear donor cells, including gene-targeted and non-targeted cells, and impose a risk of producing undesired wildtype cloned animals after SCNT. In addition, the efficiency of cloning by SCNT has remained extremely low. Most cloned embryos die in utero, and the few that develop to term show a high incidence of postnatal death and abnormalities. In the present study, resurrection of an alpha-1,3-galactosyltransferase (αGT) gene-targeted miniature pig by recloning using postmortem ear skin fibroblasts was attempted. Three cloned piglets were produced from the first round of SCNT, including one stillborn and two who died immediately after birth due to respiratory distress syndrome and cardiac dysfunction. Among the three piglets, two were confirmed to be αGT gene-targeted. Fibroblasts derived from postmortem ear skin biopsies were used as nuclear donor cells for the second round of SCNT, and a piglet was produced. As expected, PCR and Southern analyses confirmed that the piglet produced from recloning was αGT gene-targeted. Currently, the piglet is fourteen months of age, and no overt health problems have been observed. Results from the present study demonstrate that loss of an invaluable animal, such as a gene-targeted miniature pig, may be rescued by recloning, with assurance of the desired genetic modification.
Collapse
|
45
|
Sato M, Yoshida M, Miyoshi K, Ohtsuka M, Watanabe S. Cultivation with Untransfected Fibroblasts Stimulates Proliferation of a Single Gene-Modified Fibroblast Derived from a Clawn Miniature Swine Foetus. Reprod Domest Anim 2010; 46:911-6. [DOI: 10.1111/j.1439-0531.2010.01727.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
46
|
Shimizu A, Yamada K. Histopathology of xenografts in pig to non-human primate discordant xenotransplantation. Clin Transplant 2010; 24 Suppl 22:11-5. [PMID: 20590687 DOI: 10.1111/j.1399-0012.2010.01270.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Xenotransplantation could provide a solution to the critical shortage of organs for transplantation in humans. Swine have been proposed as a suitable donor species. Swine organs, however, when transplanted to primates, are rapidly rejected by hyperacute rejection (HAR) and acute humoral xenograft rejection (AHXR). Both HAR and AHXR are triggered by xenoreactive natural antibodies directed against a specific epitope (galactose alpha1-3 galactose: Gal) on porcine vascular endothelium. In attempt to prevent HAR and AHXR, alpha1,3-galactosyltransferase gene knockout (GalT-KO) pigs have been produced. GalT-KO pig organs do not express the Gal epitope (antigen), and it therefore can eliminate the anti-Gal antibody--Gal antigen immunoreaction in xenotransplantation. We reported our initial study of kidney transplantation from GalT-KO miniature swine to baboons with either immunosuppression protocol or with a tolerance inducing protocol. Here, we discussed the pathology of xenografts in GalT-KO pig to non-human primate kidney transplantation.
Collapse
Affiliation(s)
- Akira Shimizu
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
47
|
Li P, Estrada J, Zhang F, Waghmare SK, Mir B. Isolation, Characterization, and Nuclear Reprogramming of Cell Lines Derived from Porcine Adult Liver and Fat. Cell Reprogram 2010; 12:599-607. [DOI: 10.1089/cell.2010.0006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Ping Li
- Department of Transplant Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jose Estrada
- Department of Transplant Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Fan Zhang
- Department of Transplant Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sanjeev K. Waghmare
- Department of Transplant Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Bashir Mir
- Department of Transplant Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
48
|
Ramsoondar J, Mendicino M, Phelps C, Vaught T, Ball S, Monahan J, Chen S, Dandro A, Boone J, Jobst P, Vance A, Wertz N, Polejaeva I, Butler J, Dai Y, Ayares D, Wells K. Targeted disruption of the porcine immunoglobulin kappa light chain locus. Transgenic Res 2010; 20:643-53. [PMID: 20872247 DOI: 10.1007/s11248-010-9445-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 09/13/2010] [Indexed: 10/19/2022]
Abstract
Inactivation of the endogenous pig immunoglobulin (Ig) loci, and replacement with their human counterparts, would produce animals that could alleviate both the supply and specificity issues of therapeutic human polyclonal antibodies (PAbs). Platform genetics are being developed in pigs that have all endogenous Ig loci inactivated and replaced by human counterparts, in order to address this unmet clinical need. This report describes the deletion of the porcine kappa (κ) light chain constant (Cκ) region in pig primary fetal fibroblasts (PPFFs) using gene targeting technology, and the generation of live animals from these cells via somatic cell nuclear transfer (SCNT) cloning. There are only two other targeted loci previously published in swine, and this is the first report of a targeted disruption of an Ig light chain locus in a livestock species. Pigs with one targeted Cκ allele (heterozygous knockout or ±) were bred together to generate Cκ homozygous knockout (-/-) animals. Peripheral blood mononuclear cells (PBMCs) and mesenteric lymph nodes (MLNs) from Cκ -/- pigs were devoid of κ-containing Igs. Furthermore, there was an increase in lambda (λ) light chain expression when compared to that of wild-type littermates (Cκ +/+). Targeted inactivation of the Ig heavy chain locus has also been achieved and work is underway to inactivate the pig lambda light chain locus.
Collapse
Affiliation(s)
- J Ramsoondar
- Revivicor, Inc., 1700 Kraft Drive, Blacksburg, VA 24060, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ahn KS, Won JY, Park JK, Sorrell AM, Heo SY, Kang JH, Woo JS, Choi BH, Chang WK, Shim H. Production of human CD59-transgenic pigs by embryonic germ cell nuclear transfer. Biochem Biophys Res Commun 2010; 400:667-72. [PMID: 20816662 DOI: 10.1016/j.bbrc.2010.08.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 08/27/2010] [Indexed: 11/20/2022]
Abstract
This study was performed to produce transgenic pigs expressing the human complement regulatory protein CD59 (hCD59) using the nuclear transfer (NT) of embryonic germ (EG) cells, which are undifferentiated stem cells derived from primordial germ cells. Because EG cells can be cultured indefinitely in an undifferentiated state, they may provide an inexhaustible source of nuclear donor cells for NT to produce transgenic pigs. A total of 1980 NT embryos derived from hCD59-transgenic EG cells were transferred to ten recipients, resulting in the birth of fifteen piglets from three pregnancies. Among these offspring, ten were alive without overt health problems. Based on PCR analysis, all fifteen piglets were confirmed as hCD59 transgenic. The expression of the hCD59 transgene in the ten living piglets was verified by RT-PCR. Western analysis showed the expression of the hCD59 protein in four of the ten RT-PCR-positive piglets. These results demonstrate that hCD59-transgenic pigs could effectively be produced by EG cell NT and that such transgenic pigs may be used as organ donors in pig-to-human xenotransplantation.
Collapse
Affiliation(s)
- Kwang Sung Ahn
- Department of Physiology, Dankook University School of Medicine, Cheonan, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Himaki T, Watanabe S, Chi H, Yoshida M, Miyoshi K, Sato M. Production of genetically modified porcine blastocysts by somatic cell nuclear transfer: preliminary results toward production of xenograft-competent miniature pigs. J Reprod Dev 2010; 56:630-8. [PMID: 20814171 DOI: 10.1262/jrd.09-227a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Galα1-3Gal (α-Gal epitope) is the major xenoantigenic epitope responsible for hyperacute rejection upon pig-to-human xenotransplantation. Endo-β-galactosidase C (EndoGalC) from Clostridium perfringens can digest the α-Gal epitope. In this study, gene-engineered primary cultured porcine embryonic fibroblasts (PEF) expressing EndoGalC were obtained and subjected to somatic cell nuclear transfer (SCNT) to test whether xenograft-competent pigs can be created. The EndoGalC-expressing PEF clones exhibited highly reduced expression of α-Gal epitope, as revealed by cytochemical staining with BS-I-B(4) isolectin, a lectin that specifically binds to α-Gal epitope, and FACS analysis. The pattern of low level of α-Gal epitope expression continued for at least 6 months (more than 10 generations) after isolation. SCNT of nuclei from these cells resulted in the generation of blastocysts that displayed nearly complete loss of α-Gal epitope from their cell surface. This is the first study to demonstrate that SCNT using EndoGalC-expressing PEFs as donors would be useful for production of genetically modified cloned pigs suitable for xenotransplantation.
Collapse
Affiliation(s)
- Takehiro Himaki
- Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | |
Collapse
|