1
|
Samiec M, Trzcińska M. From genome to epigenome: Who is a predominant player in the molecular hallmarks determining epigenetic mechanisms underlying ontogenesis? Reprod Biol 2024; 24:100965. [PMID: 39467448 DOI: 10.1016/j.repbio.2024.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
Genetic factors are one of the basic determinants affecting ontogenesis in mammals. Nevertheless, on the one hand, epigenetic factors have been found to exert the preponderant and insightful impact on the intracellular mechanistic networks related to not only initiation and suppression, but also up- and downregulation of gene expression in all the phases of ontogenetic development in a variety of mammalian species. On the other hand, impairments in the epigenetic mechanisms underlying reprogramming of transcriptional activity of genes (termed epimutations) not only give rise to a broad spectrum of acute and chronic developmental abnormalities in mammalian embryos, foetuses and neonates, but also contribute to premature/expedited senescence or neoplastic transformation of cells and even neurodegenerative and mental disorders. The current article is focused on the unveiling the present knowledge aimed at the identification, classification and characterization of epigenetic agents as well as multifaceted interpretation of current and coming trends targeted at recognizing the epigenetic background of proper ontogenesis in mammals. Moreover, the next objective of this paper is to unravel the mechanistic insights into a wide array of disturbances leading to molecular imbalance taking place during epigenetic reprogramming of genomic DNA. The above-indicated imbalance seems to play a predominant role in the initiation and progression of anatomo-, histo-, and physiopathological processes throughout ontogenetic development. Conclusively, different modalities of epigenetically assisted therapeutic procedures that have been exemplified in the current article, might be the powerful and promiseful tools reliable and feasible in the medical treatments of several diseases triggered by dysfunctions in the epigenetic landscapes, e.g., myelodysplastic syndromes or epilepsy.
Collapse
Affiliation(s)
- Marcin Samiec
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice near Kraków, Poland.
| | - Monika Trzcińska
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice near Kraków, Poland.
| |
Collapse
|
2
|
Bonagurio LP, Murakami AE, Pereira-Maróstica HV, Almeida FLA, Santos TC, Pozza PC. Effects of different levels of inosine-5'-monophosphate (5'-IMP) supplementation on the growth performance and meat quality of finishing pigs (75 to 100 kg). Meat Sci 2023; 196:109016. [PMID: 36375320 DOI: 10.1016/j.meatsci.2022.109016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
Abstract
This study aimed to assess the effects of dietary supplementation of inosine-5'-monophosphate (5'-IMP) on energy efficiency, growth performance, carcass characteristics, meat quality, oxidative status, and biochemical profile of blood plasma in finishing pigs. Fifty-four crossbred castrated male pigs were distributed in a randomized block design consisting of nine blocks, with six treatments per block and one animal per treatment per block. Experimental diets were as follows: positive control diet (PC, 3300 kcal ME/kg), negative control diet (NC, 3200 kcal ME/kg), and four diets prepared by supplementing the NC diet with 0.050%, 0.100%, 0.150%, or 0.200% 5'-IMP. Based on regression analysis, supplementation with 0.129% 5'-IMP increased average daily weight gain (1.30 kg). Backfat thickness, pH45minutes and redness of m. Longissimus Lumborum (LL) increased linearly with 5'-IMP supplementation level. Drip loss and pH at 24 h post-slaughter had a quadratic response to 5'-IMP supplementation. It is concluded that 5'-IMP supplementation positively influenced growth performance, carcass characteristics and LL meat quality in finishing barrows.
Collapse
Affiliation(s)
- Lucas P Bonagurio
- Department of Animal Sciences, State University of Maringá, Maringá, Brazil.
| | - Alice E Murakami
- Department of Animal Sciences, State University of Maringá, Maringá, Brazil
| | | | - Fernanda L A Almeida
- Department of Morphological Sciences, State University of Maringá, Maringá, Brazil
| | - Tatiana C Santos
- Department of Animal Sciences, State University of Maringá, Maringá, Brazil
| | - Paulo C Pozza
- Department of Animal Sciences, State University of Maringá, Maringá, Brazil
| |
Collapse
|
3
|
Shi J, Xiao L, Tan B, Luo L, Li Z, Hong L, Yang J, Cai G, Zheng E, Wu Z, Gu T. Comparative evaluation of production performances of cloned pigs derived from superior Duroc boars. Anim Reprod Sci 2022; 244:107049. [DOI: 10.1016/j.anireprosci.2022.107049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
|
4
|
París-Oller E, Matás C, Romar R, Lopes JS, Gadea J, Cánovas S, Coy P. Growth analysis and blood profile in piglets born by embryo transfer. Res Vet Sci 2021; 142:43-53. [PMID: 34861454 DOI: 10.1016/j.rvsc.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/29/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Assisted reproductive technologies (ART), besides solving several reproductive problems, it has also been used as a tool to improve the animal productivity that is required for feeding the human population. One of these techniques, the embryo transfer (ET), has presented limitations in the porcine species, which could constrain its use in the porcine industry. To clarify the potential of this technique, we aimed to compare the impact of using ET or artificial insemination (AI) on the phenotype of the offspring during its first days of age, in terms of growth and blood parameters. At birth, the body weight was higher for ET-females than AI-females, but this difference was no longer observed at day 15. On day 3, it was observed a higher concentration of red blood cells, haemoglobin, and haematocrit in females-ET and a higher concentration of white blood cells in both ET-derived piglets (males and females) when compared to AI groups. On day 3, the biochemical analysis showed a higher level of albumin for ET-derived males, and a lower level of bilirubin for ET-females than AI controls. However, all values were within the normal ranges. Our results indicate that piglets derived from ET seem to be phenotypically similar to those born by AI, which provides preliminary evidence that the ET procedure is a safe technique, but additional studies beyond 15 days of life are requested to conclude its global impact. Furthermore, the presented reference values of blood parameters in this species are interesting data for the pig industry.
Collapse
Affiliation(s)
- Evelyne París-Oller
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain
| | - Carmen Matás
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain; Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Raquel Romar
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain; Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Jordana S Lopes
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain
| | - Joaquín Gadea
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain; Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Sebastián Cánovas
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain; Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Pilar Coy
- Department of Physiology, Faculty of Veterinary Medicine, University of Murcia, Campus Mare Nostrum, Murcia, Spain; Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain.
| |
Collapse
|
5
|
Springer C, Wolf E, Simmet K. A New Toolbox in Experimental Embryology-Alternative Model Organisms for Studying Preimplantation Development. J Dev Biol 2021; 9:15. [PMID: 33918361 PMCID: PMC8167745 DOI: 10.3390/jdb9020015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Preimplantation development is well conserved across mammalian species, but major differences in developmental kinetics, regulation of early lineage differentiation and implantation require studies in different model organisms, especially to better understand human development. Large domestic species, such as cattle and pig, resemble human development in many different aspects, i.e., the timing of zygotic genome activation, mechanisms of early lineage differentiations and the period until blastocyst formation. In this article, we give an overview of different assisted reproductive technologies, which are well established in cattle and pig and make them easily accessible to study early embryonic development. We outline the available technologies to create genetically modified models and to modulate lineage differentiation as well as recent methodological developments in genome sequencing and imaging, which form an immense toolbox for research. Finally, we compare the most recent findings in regulation of the first lineage differentiations across species and show how alternative models enhance our understanding of preimplantation development.
Collapse
Affiliation(s)
- Claudia Springer
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| | - Kilian Simmet
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
| |
Collapse
|
6
|
Vogt G. Epigenetic variation in animal populations: Sources, extent, phenotypic implications, and ecological and evolutionary relevance. J Biosci 2021. [DOI: 10.1007/s12038-021-00138-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Shi J, Tan B, Luo L, Li Z, Hong L, Yang J, Cai G, Zheng E, Wu Z, Gu T. Assessment of the Growth and Reproductive Performance of Cloned Pietrain Boars. Animals (Basel) 2020; 10:E2053. [PMID: 33171943 PMCID: PMC7694642 DOI: 10.3390/ani10112053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
How to maximize the use of the genetic merits of the high-ranking boars (also called superior ones) is a considerable question in the pig breeding industry, considering the money and time spent on selection. Somatic cell nuclear transfer (SCNT) is one of the potential ways to answer the question, which can be applied to produce clones with genetic resources of superior boar for the production of commercial pigs. For practical application, it is essential to investigate whether the clones and their progeny keep behaving better than the "normal boars", considering that in vitro culture and transfer manipulation would cause a series of harmful effects to the development of clones. In this study, 59,061 cloned embryos were transferred into 250 recipient sows to produce the clones of superior Pietrain boars. The growth performance of 12 clones and 36 non-clones and the semen quality of 19 clones and 28 non-clones were compared. The reproductive performance of 21 clones and 25 non-clones were also tested. Furthermore, we made a comparison in the growth performance between 466 progeny of the clones and 822 progeny of the non-clones. Our results showed that no significant difference in semen quality and reproductive performance was observed between the clones and the non-clones, although the clones grew slower and exhibited smaller body size than the non-clones. The F1 progeny of the clones showed a greater growth rate than the non-clones. Our results demonstrated through the large animal population showed that SCNT manipulation resulted in a low growth rate and small body size, but the clones could normally produce F1 progeny with excellent growth traits to bring more economic benefits. Therefore, SCNT could be effective in enlarging the merit genetics of the superior boars and increasing the economic benefits in pig reproduction and breeding.
Collapse
Affiliation(s)
- Junsong Shi
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.S.); (B.T.); (Z.L.); (L.H.); (J.Y.); (G.C.); (E.Z.)
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu 527300, China;
| | - Baohua Tan
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.S.); (B.T.); (Z.L.); (L.H.); (J.Y.); (G.C.); (E.Z.)
| | - Lvhua Luo
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu 527300, China;
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.S.); (B.T.); (Z.L.); (L.H.); (J.Y.); (G.C.); (E.Z.)
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.S.); (B.T.); (Z.L.); (L.H.); (J.Y.); (G.C.); (E.Z.)
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.S.); (B.T.); (Z.L.); (L.H.); (J.Y.); (G.C.); (E.Z.)
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.S.); (B.T.); (Z.L.); (L.H.); (J.Y.); (G.C.); (E.Z.)
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu 527300, China;
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.S.); (B.T.); (Z.L.); (L.H.); (J.Y.); (G.C.); (E.Z.)
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.S.); (B.T.); (Z.L.); (L.H.); (J.Y.); (G.C.); (E.Z.)
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu 527300, China;
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.S.); (B.T.); (Z.L.); (L.H.); (J.Y.); (G.C.); (E.Z.)
| |
Collapse
|
8
|
Uh K, Ryu J, Farrell K, Wax N, Lee K. TET family regulates the embryonic pluripotency of porcine preimplantation embryos by maintaining the DNA methylation level of NANOG. Epigenetics 2020; 15:1228-1242. [PMID: 32397801 DOI: 10.1080/15592294.2020.1762392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The ten-eleven translocation (TET) family (TET1/2/3) initiates conversion of 5-methylcytosine to 5-hydroxymethylcytosine, thereby orchestrating the DNA demethylation process and changes in epigenetic marks during early embryogenesis. In this study, CRISPR/Cas9 technology and a TET-specific inhibitor were applied to elucidate the role of TET family in regulating pluripotency in preimplantation embryos using porcine embryos as a model. Disruption of TET1 unexpectedly resulted in the upregulation of NANOG and ESRRB transcripts, although there was no change to the level of DNA methylation in the promoter of NANOG. Surprisingly, a threefold increase in the transcript level of TET3 was observed in blastocysts carrying modified TET1, which may explain the upregulation of NANOG and ESRRB. When the activity of TET enzymes was inhibited by dimethyloxalylglycine (DMOG) treatment, a dioxygenase inhibitor, to investigate the role of TET1 while eliminating the potential compensatory activation of TET3, reduced level of pluripotency genes including NANOG and ESRRB, and increased level of DNA methylation in the NANOG promoter was detected. Blastocysts treated with DMOG also presented a lower inner cell mass/TE ratio, implying the involvement of TET family in lineage specification in blastocysts. Our results indicate that the TET family modulates proper expression of NANOG, a key pluripotency marker, by controlling its DNA methylation profile in the promoter during embryogenesis. This study suggests that TET family is a critical component in pluripotency network of porcine embryos by regulating gene expression involved in pluripotency and early lineage specification.
Collapse
Affiliation(s)
- Kyungjun Uh
- Department of Animal and Poultry Sciences, Virginia Tech , Blacksburg, VA, USA
| | - Junghyun Ryu
- Department of Animal and Poultry Sciences, Virginia Tech , Blacksburg, VA, USA
| | - Kayla Farrell
- Department of Animal and Poultry Sciences, Virginia Tech , Blacksburg, VA, USA
| | - Noah Wax
- Department of Animal and Poultry Sciences, Virginia Tech , Blacksburg, VA, USA
| | - Kiho Lee
- Department of Animal and Poultry Sciences, Virginia Tech , Blacksburg, VA, USA
| |
Collapse
|
9
|
Matsunari H, Honda M, Watanabe M, Fukushima S, Suzuki K, Miyagawa S, Nakano K, Umeyama K, Uchikura A, Okamoto K, Nagaya M, Toyo-oka T, Sawa Y, Nagashima H. Pigs with δ-sarcoglycan deficiency exhibit traits of genetic cardiomyopathy. J Transl Med 2020; 100:887-899. [PMID: 32060408 PMCID: PMC7280178 DOI: 10.1038/s41374-020-0406-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/19/2020] [Accepted: 01/19/2020] [Indexed: 01/14/2023] Open
Abstract
Genetic cardiomyopathy is a group of intractable cardiovascular disorders involving heterogeneous genetic contribution. This heterogeneity has hindered the development of life-saving therapies for this serious disease. Genetic mutations in dystrophin and its associated glycoproteins cause cardiomuscular dysfunction. Large animal models incorporating these genetic defects are crucial for developing effective medical treatments, such as tissue regeneration and gene therapy. In the present study, we knocked out the δ-sarcoglycan (δ-SG) gene (SGCD) in domestic pig by using a combination of efficient de novo gene editing and somatic cell nuclear transfer. Loss of δ-SG expression in the SGCD knockout pigs caused a concomitant reduction in the levels of α-, β-, and γ-SG in the cardiac and skeletal sarcolemma, resulting in systolic dysfunction, myocardial tissue degeneration, and sudden death. These animals exhibited symptoms resembling human genetic cardiomyopathy and are thus promising for use in preclinical studies of next-generation therapies.
Collapse
Affiliation(s)
- Hitomi Matsunari
- grid.411764.10000 0001 2106 7990Meiji University International Institute for Bio-Resource Research, Kawasaki, 214-8571 Japan ,grid.411764.10000 0001 2106 7990Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
| | - Michiyo Honda
- grid.411764.10000 0001 2106 7990Meiji University International Institute for Bio-Resource Research, Kawasaki, 214-8571 Japan
| | - Masahito Watanabe
- grid.411764.10000 0001 2106 7990Meiji University International Institute for Bio-Resource Research, Kawasaki, 214-8571 Japan
| | - Satsuki Fukushima
- grid.136593.b0000 0004 0373 3971Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871 Japan
| | - Kouta Suzuki
- grid.136593.b0000 0004 0373 3971Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871 Japan
| | - Shigeru Miyagawa
- grid.136593.b0000 0004 0373 3971Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871 Japan
| | - Kazuaki Nakano
- grid.411764.10000 0001 2106 7990Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
| | - Kazuhiro Umeyama
- grid.411764.10000 0001 2106 7990Meiji University International Institute for Bio-Resource Research, Kawasaki, 214-8571 Japan
| | - Ayuko Uchikura
- grid.411764.10000 0001 2106 7990Meiji University International Institute for Bio-Resource Research, Kawasaki, 214-8571 Japan
| | - Kazutoshi Okamoto
- grid.411764.10000 0001 2106 7990Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
| | - Masaki Nagaya
- grid.411764.10000 0001 2106 7990Meiji University International Institute for Bio-Resource Research, Kawasaki, 214-8571 Japan
| | - Teruhiko Toyo-oka
- grid.410786.c0000 0000 9206 2938Department of Cardioangiology, Kitasato University, Sagamihara, 252-0375 Japan
| | - Yoshiki Sawa
- grid.136593.b0000 0004 0373 3971Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871 Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, 214-8571, Japan. .,Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571, Japan.
| |
Collapse
|
10
|
Study on Hematological and Biochemical Characters of Cloned Duroc Pigs and Their Progeny. Animals (Basel) 2019; 9:ani9110912. [PMID: 31684083 PMCID: PMC6912288 DOI: 10.3390/ani9110912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Cloning is the most promising technique for passing the excellent phenotypes of the best individuals in the population. Here we studied the effects of cloning on Duroc pig, which is the most popular sire used in pig production due to its good growth and meat quality. Understanding the changes of cloned Duroc pigs and their progenies is of great importance for animal breeding and public acceptance. The results of this study suggested that there were no difference in blood parameters between the cloned Duroc and the conventionally bred Duroc and their progenies. Abstract To increase public understanding in cloned animals produced by somatic cell nuclear transfer technology, our previous study investigated the carcass trait and meat quality of the clones (paper accepted), and this study we further evaluate differences by investigating the blood parameters in cloned pigs and their progeny. We collected blood samples from the clones and conventionally bred non-clones and their progeny, and investigated their hematological and blood biochemical characters. Our results supported the hypothesis that there was no significant difference between clones and non-clones, or their progeny. Taken together, the data demonstrated that the clones or their progeny were similar with their controls in terms of blood parameters, although there were still other kinds of disorders, such as abnormal DNA methylation or histone modifications that needs further investigation. The data in this study agreed that cloning technique could be used to preserve and enlarge the genetics of the superior boars in pig breeding industry, especially in facing of the deadly threat of African Swine fever happened in China.
Collapse
|
11
|
Polkoff K, Piedrahita JA. The transformational impact of site-specific DNA modifiers on biomedicine and agriculture. Anim Reprod 2018; 15:171-179. [PMID: 34178139 PMCID: PMC8202236 DOI: 10.21451/1984-3143-ar2018-0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The development of genetically modified livestock has been dependent on incremental technological
advances such as embryo transfer, homologous recombination, and somatic cell nuclear transfer
(SCNT). This development rate has increased exponentially with the advent of targeted gene
modifiers such as zinc finger nucleases, TAL-effector nucleases (TALENs) and clustered
regularly interspaced short palindromic repeats (CRISPR-Cas). CRISPR-Cas based systems
in particular have broad applicability, and have low technical and economic barriers for
their implementation. As a result, they are having, and will continue to have, a transformational
impact in the field of gene editing in domestic animals. With these advances also comes the
responsibility to properly apply this technology so it has a beneficial effect throughout
all levels of society.
Collapse
Affiliation(s)
- Kathryn Polkoff
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA.,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| | - Jorge A Piedrahita
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA.,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| |
Collapse
|
12
|
Chen T, Sun M, Wang JQ, Cui JJ, Liu ZH, Yu B. A novel swine model for evaluation of dyslipidemia and atherosclerosis induced by human CETP overexpression. Lipids Health Dis 2017; 16:169. [PMID: 28893253 PMCID: PMC5594531 DOI: 10.1186/s12944-017-0563-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/04/2017] [Indexed: 01/01/2023] Open
Abstract
Background The mechanism of cholesteryl ester transfer protein (CETP) in lipid metabolism is still unclear. Furthermore, the relationship of CETP and atherosclerosis (AS) has been controversial. As pigs are a good model for both lipid and AS research, we investigated the lipid metabolism of human CETP (hCETP) transgenic pigs and explored the mechanism of CETP in lipid modulation. Methods Plasmids expressing the hCETP gene were designed, successfully constructed, and transfected into porcine fetal fibroblasts by liposomes. Using somatic cell nuclear transfer technology and embryonic transfer, hCETP transgenic pigs were generated. After the DNA, RNA, and protein levels were identified, positive hCETP transgenic pigs were selected. Blood samples were collected at different ages to evaluate the phenotypes of biochemical markers, and the metabolomes of plasma samples were analyzed by liquid mass spectrometry. Results Eight positive hCETP transgenic pigs and five negative cloned pigs were generated by transgenic technology. Finally, five hCETP transgenic and five cloned pigs were grown healthily. After feeding with a normal diet, hCETP transgenic pigs compared with unmodified pigs had no significant differences in body weight, liver function, kidney function, or plasma ions, while total cholesterol and low-density lipoprotein were higher than in unmodified pigs, and high-density lipoprotein was significantly decreased. Metabolomics analysis showed that there were differences in metabolic components between hCETP transgenic pigs, cloned pigs, and unmodified pigs. Conclusions In this study, we created hCETP transgenic pigs that could serve as an excellent model for lipid disorders and atherosclerosis. Electronic supplementary material The online version of this article (10.1186/s12944-017-0563-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Chen
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China.,Cardiology Division, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang, 150086, China
| | - Meng Sun
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China.,Cardiology Division, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang, 150086, China
| | - Jia-Qiang Wang
- College of life science, Northeast Agricultural University of China, Harbin, China
| | - Jin-Jin Cui
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China.,Cardiology Division, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang, 150086, China
| | - Zhong-Hua Liu
- College of life science, Northeast Agricultural University of China, Harbin, China
| | - Bo Yu
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, Heilongjiang, China. .,Cardiology Division, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, Heilongjiang, 150086, China.
| |
Collapse
|
13
|
Wang C, Agrawal S, Laudien J, Häussermann V, Held C. Discrete phenotypes are not underpinned by genome-wide genetic differentiation in the squat lobster Munida gregaria (Crustacea: Decapoda: Munididae): a multi-marker study covering the Patagonian shelf. BMC Evol Biol 2016; 16:258. [PMID: 27903261 PMCID: PMC5131467 DOI: 10.1186/s12862-016-0836-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/21/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND DNA barcoding has demonstrated that many discrete phenotypes are in fact genetically distinct (pseudo)cryptic species. Genetically identical, isogenic individuals, however, can also express similarly different phenotypes in response to a trigger condition, e.g. in the environment. This alternative explanation to cryptic speciation often remains untested because it requires considerable effort to reject the hypothesis that the observed underlying genetic homogeneity of the different phenotypes may be trivially caused by too slowly evolving molecular markers. The widespread squat lobster Munida gregaria comprises two discrete ecotypes, gregaria s. str. and subrugosa, which were long regarded as different species due to marked differences in morphological, ecological and behavioral traits. We studied the morphometry and genetics of M. gregaria s. l. and tested (1) whether the phenotypic differences remain stable after continental-scale sampling and inclusion of different life stages, (2) and whether each phenotype is underpinned by a specific genotype. RESULTS A total number of 219 gregaria s. str. and subrugosa individuals from 25 stations encompassing almost entire range in South America were included in morphological and genetic analyses using nine unlinked hypervariable microsatellites and new COI sequences. Results from the PCA and using discriminant functions demonstrated that the morphology of the two forms remains discrete. The mitochondrial data showed a shallow, star-like haplotype network and complete overlap of genetic distances within and among ecotypes. Coalescent-based species delimitation methods, PTP and GMYC, coherently suggested that haplotypes of both ecotypes forms a single species. Although all microsatellite markers possess sufficient genetic variation, AMOVA, PCoA and Bayesian clustering approaches revealed no genetic clusters corresponding to ecotypes or geographic units across the entire South-American distribution. No evidence of isolation-by-distance could be detected for this species in South America. CONCLUSIONS Despite their pronounced bimodal morphologies and different lifestyles, the gregaria s. str. and subrugosa ecotypes form a single, dimorphic species M. gregaria s. l.. Based on adequate geographic coverage and multiple independent polymorphic loci, there is no indication that each phenotype may have a unique genetic basis, leaving phenotypic plasticity or localized genomic islands of speciation as possible explanations.
Collapse
Affiliation(s)
- Chen Wang
- Alfred Wegener Institute, Helmholtz Center for Polar- and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Shobhit Agrawal
- Alfred Wegener Institute, Helmholtz Center for Polar- and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Jürgen Laudien
- Alfred Wegener Institute, Helmholtz Center for Polar- and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Vreni Häussermann
- Universidad Católica de Valparaíso, Facultad de Recursos Naturales, Escuela de Ciencias del Mar, Avda. Brasil 2950, Valparaíso, Chile
- Huinay Scientific Field Station, Huinay, Los Lagos Chile
| | - Christoph Held
- Alfred Wegener Institute, Helmholtz Center for Polar- and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| |
Collapse
|
14
|
Vogt G. Stochastic developmental variation, an epigenetic source of phenotypic diversity with far-reaching biological consequences. J Biosci 2015; 40:159-204. [PMID: 25740150 DOI: 10.1007/s12038-015-9506-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This article reviews the production of different phenotypes from the same genotype in the same environment by stochastic cellular events, nonlinear mechanisms during patterning and morphogenesis, and probabilistic self-reinforcing circuitries in the adult life. These aspects of phenotypic variation are summarized under the term 'stochastic developmental variation' (SDV) in the following. In the past, SDV has been viewed primarily as a nuisance, impairing laboratory experiments, pharmaceutical testing, and true-to-type breeding. This article also emphasizes the positive biological effects of SDV and discusses implications for genotype-to-phenotype mapping, biological individuation, ecology, evolution, and applied biology. There is strong evidence from experiments with genetically identical organisms performed in narrowly standardized laboratory set-ups that SDV is a source of phenotypic variation in its own right aside from genetic variation and environmental variation. It is obviously mediated by molecular and higher-order epigenetic mechanisms. Comparison of SDV in animals, plants, fungi, protists, bacteria, archaeans, and viruses suggests that it is a ubiquitous and phylogenetically old phenomenon. In animals, it is usually smallest for morphometric traits and highest for life history traits and behaviour. SDV is thought to contribute to phenotypic diversity in all populations but is particularly relevant for asexually reproducing and genetically impoverished populations, where it generates individuality despite genetic uniformity. In each generation, SDV produces a range of phenotypes around a well-adapted target phenotype, which is interpreted as a bet-hedging strategy to cope with the unpredictability of dynamic environments. At least some manifestations of SDV are heritable, adaptable, selectable, and evolvable, and therefore, SDV may be seen as a hitherto overlooked evolution factor. SDV is also relevant for husbandry, agriculture, and medicine because most pathogens are asexuals that exploit this third source of phenotypic variation to modify infectivity and resistance to antibiotics. Since SDV affects all types of organisms and almost all aspects of life, it urgently requires more intense research and a better integration into biological thinking.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 230, D-69120, Heidelberg, Germany,
| |
Collapse
|
15
|
Generation of recombination activating gene-1-deficient neonatal piglets: a model of T and B cell deficient severe combined immune deficiency. PLoS One 2014; 9:e113833. [PMID: 25437445 PMCID: PMC4249935 DOI: 10.1371/journal.pone.0113833] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/30/2014] [Indexed: 12/23/2022] Open
Abstract
Although severe combined immune deficiency (SCID) is a very important research model for mice and SCID mice are widely used, there are only few reports describing the SCID pig models. Therefore, additional research in this area is needed. In this study, we describe the generation of Recombination activating gene-1 (Rag-1)-deficient neonatal piglets in Duroc breed using somatic cell nuclear transfer (SCNT) with gene targeting and analysis using fluorescence-activated cell sorting (FACS) and histology. We constructed porcine Rag-1 gene targeting vectors for the Exon 2 region and obtained heterozygous/homozygous Rag-1 knockout cell colonies using SCNT. We generated two Rag-1-deficient neonatal piglets and compared them with wild-type neonatal piglets. FACS analysis showed that Rag-1 disruption causes a lack of Immunoglobulin M-positive B cells and CD3-positive T cells in peripheral blood mononuclear cells. Consistent with FACS analysis, histological analysis revealed structural defects and an absence of mature lymphocytes in the spleen, mesenteric lymph node (MLNs), and thymus in Rag-1-deficient piglets. These results confirm that Rag-1 is necessary for the generation of lymphocytes in pigs, and Rag-1-deficient piglets exhibit a T and B cell deficient SCID (T-B-SCID) phenotype similar to that of rodents and humans. The T-B-SCID pigs with Rag-1 deficiency generated in this study could be a suitably versatile model for laboratory, translational, and biomedical research, including the development of a humanized model and assessment of pluripotent stem cells.
Collapse
|
16
|
Adachi N, Yamaguchi D, Watanabe A, Miura N, Sunaga S, Oishi H, Hashimoto M, Oishi T, Iwamoto M, Hanada H, Kubo M, Onishi A. Growth, reproductive performance, carcass characteristics and meat quality in F1 and F2 progenies of somatic cell-cloned pigs. J Reprod Dev 2014; 60:100-5. [PMID: 24492641 PMCID: PMC3999388 DOI: 10.1262/jrd.2012-167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/04/2013] [Indexed: 12/04/2022] Open
Abstract
The objective of this study was to examine the health and meat production of cloned sows and their progenies in order to demonstrate the application of somatic cell cloning to the pig industry. This study compared the growth, reproductive performance, carcass characteristics and meat quality of Landrace cloned sows, F1 progenies and F2 progenies. We measured their body weight, growth rate and feed conversion and performed a pathological analysis of their anatomy to detect abnormalities. Three of the five cloned pigs were used for a growth test. Cloned pigs grew normally and had characteristics similar to those of the control purebred Landrace pigs. Two cloned gilts were bred with a Landrace boar and used for a progeny test. F1 progenies had characteristics similar to those of the controls. Two of the F1 progeny gilts were bred with a Duroc or Large White boar and used for the progeny test. F2 progenies grew normally. There were no biological differences in growth, carcass characteristics and amino acid composition among cloned sows, F1 progenies, F2 progenies and conventional pigs. The cloned sows and F1 progenies showed normal reproductive performance. No specific abnormalities were observed by pathological analysis, with the exception of periarteritis in the F1 progenies. All pigs had a normal karyotype. These results demonstrate that cloned female pigs and their progenies have similar growth, reproductive performance and carcass quality characteristics and that somatic cell cloning could be a useful technique for conserving superior pig breeds in conventional meat production.
Collapse
Affiliation(s)
- Noritaka Adachi
- Ibaraki Prefecture Livestock Research Center, Ibaraki 315-0132, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nikitin SV, Knyazev SP, Yermolaev VI. Genetic components and the uncertainty of the phenotypic realization of the mass of newborns in domestic pigs Sus scrofa L. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Chen CH, Jiang BH, Huang SY, Yang TS, Lee KH, Tu CF, Wu SC. Genetic polymorphisms, growth performance, hematological parameters, serum enzymes, and reproductive characteristics in phenotypically normal Landrace boars produced by somatic cell nuclear transfer. Theriogenology 2013; 80:1088-96. [PMID: 24055399 DOI: 10.1016/j.theriogenology.2013.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/24/2013] [Accepted: 08/10/2013] [Indexed: 11/29/2022]
Abstract
Understanding the performances of cloned pigs and their offspring is critical to evaluate the practical applications of somatic cell nuclear transfer. In this study, genetic polymorphism, growth performance, hematological parameters, and reproduction characteristics of cloned Landrace boars were compared with those of controls. In addition, the growth performance of clone offspring was also evaluated. A total of 479 reconstructed embryos were transferred to five recipient pigs and resulted in the delivery of 14 piglets (overall cloning of 2.9%) from two litters. Analyses of microsatellite markers and polymorphisms of the specific genes confirmed that the 14 clones were genetically identical to the nuclear donor and maintained the desirable genotypes. Growth performance of five healthy, phenotypically normal cloned boars from one litter and eight of their male offspring did not differ from age, breed, and management-matched controls. Although some significant differences were observed between cloned and control boars in hematological and serum enzymes, most of these parameters were within the normal range. Cloned boars had less (P < 0.05) normal sperm in the ejaculated boars than in control boars (71.4% vs. 77.9%, respectively), but sperm production (ejaculate volume, sperm concentration, and total sperm) did not differ between these groups. In addition, use of frozen-thawed semen from cloned boars for insemination produced results that seemed comparable to a control. In conclusion, the present study reported that somatic cell nuclear transfer is effective in reproducing preferred genetic traits and has potential applications to conserve elite bloodlines in a routine pig breeding program.
Collapse
Affiliation(s)
- C H Chen
- Animal Technology Institute Taiwan, Miaoli, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
19
|
Pedersen R, Andersen AD, Hermann-Bank ML, Stagsted J, Boye M. The effect of high-fat diet on the composition of the gut microbiota in cloned and non-cloned pigs of lean and obese phenotype. Gut Microbes 2013; 4:371-81. [PMID: 23974297 PMCID: PMC3839981 DOI: 10.4161/gmic.26108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The aim of this study was to investigate the effect of high-far-high-energy diet on cloned and non-cloned domestic pigs of both lean and obese phenotype and to evaluate if the lean cloned pigs had a lower inter-individual variation as compared with non-cloned pigs. The microbiota of colon and terminal ileum was investigated in cloned and non-cloned pigs that received a high-far-high-energy diet with either restricted or ad libitum access to feed, resulting in lean and obese phenotypes, respectively. The fecal microbiota of lean pigs was investigated by terminal restriction fragment length polymorphism (T-RFLP). The intestinal microbiota of lean and obese cloned and non-cloned pigs was analyzed by quantitative real time PCR and a novel high-throughput qPCR platform (Fluidigm). Principal component analysis (PCA) of the T-RFLP profiles revealed that lean cloned and non-cloned pigs had a different overall composition of their gut microbiota. The colon of lean cloned pigs contained relatively more bacteria belonging to the phylum Firmicutes and less from the phylum Bacteroidetes than obese cloned pigs as estimated by qPCR. Fluidigm qPCR results revealed differences in specific bacterial groups in the gut microbiota of both lean and obese pigs. Our results suggest that high-far-high-energy diet is associated with changes in the gut microbiota even in the absence of obesity. Overall, the cloned pigs had a different gut microbiota from that of non-cloned pigs. To our knowledge this is the first study to investigate the gut microbiota of cloned domestic pigs of lean and obese phenotype.
Collapse
Affiliation(s)
- Rebecca Pedersen
- National Veterinary Institute; Technical University of Denmark; Frederiksberg, Denmark,Correspondence to: Rebecca Pedersen, and
| | | | | | - Jan Stagsted
- Institute of Food Chemistry and Technology; University of Aarhus; Tjele, Denmark
| | - Mette Boye
- National Veterinary Institute; Technical University of Denmark; Frederiksberg, Denmark
| |
Collapse
|
20
|
Zhou W, Tan Y, Anderson DJ, Crist EM, Ruohola-Baker H, Salipante SJ, Horwitz MS. Use of somatic mutations to quantify random contributions to mouse development. BMC Genomics 2013; 14:39. [PMID: 23327737 PMCID: PMC3564904 DOI: 10.1186/1471-2164-14-39] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 01/11/2013] [Indexed: 01/14/2023] Open
Abstract
Background The C. elegans cell fate map, in which the lineage of its approximately 1000 cells is visibly charted beginning from the zygote, represents a developmental biology milestone. Nematode development is invariant from one specimen to the next, whereas in mammals, aspects of development are probabilistic, and development exhibits variation between even genetically identical individuals. Consequently, a single defined cell fate map applicable to all individuals cannot exist. Results To determine the extent to which patterns of cell lineage are conserved between different mice, we have employed the recently developed method of “phylogenetic fate mapping” to compare cell fate maps in siblings. In this approach, somatic mutations arising in individual cells are used to retrospectively deduce lineage relationships through phylogenetic and—as newly investigated here—related analytical approaches based on genetic distance. We have cataloged genomic mutations at an average of 110 mutation-prone polyguanine (polyG) tracts for about 100 cells clonally isolated from various corresponding tissues of each of two littermates of a hypermutable mouse strain. Conclusions We find that during mouse development, muscle and fat arise from a mixed progenitor cell pool in the germ layer, but, contrastingly, vascular endothelium in brain derives from a smaller source of progenitor cells. Additionally, formation of tissue primordia is marked by establishment of left and right lateral compartments, with restricted cell migration between divisions. We quantitatively demonstrate that development represents a combination of stochastic and deterministic events, offering insight into how chance influences normal development and may give rise to birth defects.
Collapse
Affiliation(s)
- Wenyu Zhou
- Department of Pathology, University of Washington, Box 358056, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Niemann H, Lucas-Hahn A. Somatic cell nuclear transfer cloning: practical applications and current legislation. Reprod Domest Anim 2013; 47 Suppl 5:2-10. [PMID: 22913555 DOI: 10.1111/j.1439-0531.2012.02121.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Somatic cloning is emerging as a new biotechnology by which the opportunities arising from the advances in molecular genetics and genome analysis can be implemented in animal breeding. Significant improvements have been made in SCNT protocols in the past years which now allow to embarking on practical applications. The main areas of application of SCNT are: Reproductive cloning, therapeutic cloning and basic research. A great application potential of SCNT based cloning is the production of genetically modified (transgenic) animals. Somatic cell nuclear transfer based transgenic animal production has significant advances over the previously employed microinjection of foreign DNA into pronuclei of zygotes. This cell based transgenesis is compatible with gene targeting and allows both, the addition of a specific gene and the deletion of an endogenous gene. Efficient transgenic animal production provides numerous opportunities for agriculture and biomedicine. Regulatory agencies around the world have agreed that food derived from cloned animals and their offspring is safe and there is no scientific basis for questioning this. Commercial application of somatic cloning within the EU is via the Novel Food regulation EC No. 258/97. Somatic cloning raises novel questions regarding the ethical and moral status of animals and their welfare which has prompted a controversial discussion in Europe which has not yet been resolved.
Collapse
Affiliation(s)
- H Niemann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Mariensee, Neustadt, Germany.
| | | |
Collapse
|
22
|
Nikitin SV, Knyazev SP, Ermolaev VI. Model of genetic control of the number and location of nipples in domestic pig. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412110075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Rødgaard T, Skovgaard K, Stagsted J, Heegaard PMH. Expression of innate immune response genes in liver and three types of adipose tissue in cloned pigs. Cell Reprogram 2012; 14:407-17. [PMID: 22928970 DOI: 10.1089/cell.2012.0026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The pig has been proposed as a relevant model for human obesity-induced inflammation, and cloning may improve the applicability of this model. We tested the assumptions that cloning would reduce interindividual variation in gene expression of innate immune factors and that their expression would remain unaffected by the cloning process. We investigated the expression of 40 innate immune factors by high-throughput quantitative real-time PCR in samples from liver, abdominal subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and neck SAT in cloned pigs compared to normal outbred pigs. The variation in gene expression was found to be similar for the two groups, and the expression of a small number of genes was significantly affected by cloning. In the VAT and abdominal SAT, six out of seven significantly differentially expressed genes were downregulated in the clones. In contrast, most differently expressed genes in both liver and neck SAT were upregulated (seven out of eight). Remarkably, acute phase proteins (APPs) dominated the upregulated genes in the liver, whereas APP expression was either unchanged or downregulated in abdominal SAT and VAT. The general conclusion from this work is that cloning leads to subtle changes in specific subsets of innate immune genes. Such changes, even if minor, may have phenotypic effects over time, e.g., in models of long-term inflammation related to obesity.
Collapse
Affiliation(s)
- Tina Rødgaard
- Innate Immunology Group, National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
24
|
Yang BC, Lee SH, Hwang S, Lee HC, Im GS, Kim DH, Lee DK, Lee KT, Jeon IS, Oh SJ, Park SB. Phenotypic characterization of Hanwoo (native Korean cattle) cloned from somatic cells of a single adult. BMB Rep 2012; 45:38-43. [PMID: 22281011 DOI: 10.5483/bmbrep.2012.45.1.38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated phenotypic differences in Hanwoo cattle cloned from somatic cells of a single adult. Ten genetically identical Hanwoo were generated by somatic cell nuclear transfer from a single adult. Weights at birth, growing pattern, horn and noseprint patterns were characterized to investigate phenotypic differences. The weights of clones at 6 and 12 months were slightly heavier than that of the donor. A horn pattern analysis revealed that seven clones had exactly the same horn pattern as the donor cow, whereas three were different. Although similarities such as general appearance can often be used to identify individual cloned animals, no study has characterized noseprint patterns for this end. A noseprint pattern analysis of all surviving clones showed that all eight animals had distinct noseprints. Four were similar to the donor, and the remaining four had more secondary-like characteristics.
Collapse
Affiliation(s)
- Byoung-Chul Yang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Suwon, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Christensen KL, Hedemann MS, Jørgensen H, Stagsted J, Knudsen KEB. Liquid Chromatography–Mass Spectrometry Based Metabolomics Study of Cloned versus Normal Pigs Fed Either Restricted or Ad Libitum High-Energy Diets. J Proteome Res 2012; 11:3573-80. [DOI: 10.1021/pr201253h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Mette S. Hedemann
- Department of Animal Science, Aarhus University, Blichers Allé 20, DK-8830
Tjele, Denmark
| | - Henry Jørgensen
- Department of Animal Science, Aarhus University, Blichers Allé 20, DK-8830
Tjele, Denmark
| | - Jan Stagsted
- Department
of Food Science, Aarhus University, Blichers
Allé 20, DK-8830
Tjele, Denmark
| | - Knud Erik B. Knudsen
- Department of Animal Science, Aarhus University, Blichers Allé 20, DK-8830
Tjele, Denmark
| |
Collapse
|
26
|
Abstract
The successful production of viable progeny following adult somatic cell nuclear transfer (cloning) provides exciting new opportunities for basic research for investigating early embryogenesis, for the propagation of valuable or endangered animals, for the production of genetically engineered animals, and possibly for developing therapeutically valuable stem cells. Successful cloning requires efficient reprogramming of gene expression to silence donor cell gene expression and activate an embryonic pattern of gene expression. Recent observations indicate that reprogramming may be initiated by early events that occur soon after nuclear transfer, but then continues as development progresses through cleavage and probably to gastrulation. Because reprogramming is slow and progressive, cloned embryos have dramatically altered characteristics in comparison with fertilized embryos. Events that occur early following nuclear transfer may be essential prerequisites for the later events. Additionally, the later reprogramming events may be inhibited by sub-optimum culture environments that exist because of the altered characteristics of cloned embryos. By addressing the unique requirements of cloned embryos, the entire process of reprogramming may be accelerated, thus increasing cloning efficiency.
Collapse
Affiliation(s)
- Keith E Latham
- The Fels Institute for Cancer Research and Molecular Biology, and Department of Biochemistry, Temple University School of Medicine, 3307 North Broadway, Philadelphia, PA 19140, USA.
| |
Collapse
|
27
|
Smith GD. Epidemiology, epigenetics and the 'Gloomy Prospect': embracing randomness in population health research and practice. Int J Epidemiol 2011; 40:537-62. [PMID: 21807641 DOI: 10.1093/ije/dyr117] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Epidemiologists aim to identify modifiable causes of disease, this often being a prerequisite for the application of epidemiological findings in public health programmes, health service planning and clinical medicine. Despite successes in identifying causes, it is often claimed that there are missing additional causes for even reasonably well-understood conditions such as lung cancer and coronary heart disease. Several lines of evidence suggest that largely chance events, from the biographical down to the sub-cellular, contribute an important stochastic element to disease risk that is not epidemiologically tractable at the individual level. Epigenetic influences provide a fashionable contemporary explanation for such seemingly random processes. Chance events-such as a particular lifelong smoker living unharmed to 100 years-are averaged out at the group level. As a consequence population-level differences (for example, secular trends or differences between administrative areas) can be entirely explicable by causal factors that appear to account for only a small proportion of individual-level risk. In public health terms, a modifiable cause of the large majority of cases of a disease may have been identified, with a wild goose chase continuing in an attempt to discipline the random nature of the world with respect to which particular individuals will succumb. The quest for personalized medicine is a contemporary manifestation of this dream. An evolutionary explanation of why randomness exists in the development of organisms has long been articulated, in terms of offering a survival advantage in changing environments. Further, the basic notion that what is near-random at one level may be almost entirely predictable at a higher level is an emergent property of many systems, from particle physics to the social sciences. These considerations suggest that epidemiological approaches will remain fruitful as we enter the decade of the epigenome.
Collapse
Affiliation(s)
- George Davey Smith
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| |
Collapse
|
28
|
|
29
|
Clausen MR, Christensen KL, Hedemann MS, Liu Y, Purup S, Schmidt M, Callesen H, Stagsted J, Bertram HC. Metabolomic phenotyping of a cloned pig model. BMC PHYSIOLOGY 2011; 11:14. [PMID: 21859467 PMCID: PMC3174869 DOI: 10.1186/1472-6793-11-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/22/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pigs are widely used as models for human physiological changes in intervention studies, because of the close resemblance between human and porcine physiology and the high degree of experimental control when using an animal model. Cloned animals have, in principle, identical genotypes and possibly also phenotypes and this offer an extra level of experimental control which could possibly make them a desirable tool for intervention studies. Therefore, in the present study, we address how phenotype and phenotypic variation is affected by cloning, through comparison of cloned pigs and normal outbred pigs. RESULTS The metabolic phenotype of cloned pigs (n = 5) was for the first time elucidated by nuclear magnetic resonance (NMR)-based metabolomic analysis of multiple bio-fluids including plasma, bile and urine. The metabolic phenotype of the cloned pigs was compared with normal outbred pigs (n = 6) by multivariate data analysis, which revealed differences in the metabolic phenotypes. Plasma lactate was higher for cloned vs control pigs, while multiple metabolites were altered in the bile. However a lower inter-individual variability for cloned pigs compared with control pigs could not be established. CONCLUSIONS From the present study we conclude that cloned and normal outbred pigs are phenotypically different. However, it cannot be concluded that the use of cloned animals will reduce the inter-individual variation in intervention studies, though this is based on a limited number of animals.
Collapse
Affiliation(s)
- Morten R Clausen
- Department of Food Science, Science and Technology, Aarhus University, Aarslev, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang H, Zhang J, Zhao M, Zhang X, Sun Q, Chen D. Production and health assessment of second-generation cloned Holstein cows derived by somatic cell nuclear transfer. Anim Reprod Sci 2011; 126:11-8. [DOI: 10.1016/j.anireprosci.2011.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 04/14/2011] [Accepted: 04/20/2011] [Indexed: 10/18/2022]
|
31
|
Park J, Lai L, Samuel M, Wax D, Bruno RS, French R, Prather RS, Yang X, Tian XC. Altered gene expression profiles in the brain, kidney, and lung of one-month-old cloned pigs. Cell Reprogram 2011; 13:215-23. [PMID: 21453050 DOI: 10.1089/cell.2010.0088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although numerous mammalian species have been successfully cloned by somatic cell nuclear transfer (SCNT), little is known about gene expression of cloned pigs by SCNT. In the present study, expression profiles of 1-month-old cloned pigs generated from fetal fibroblasts (n = 5) were compared to those of age-matched controls (n = 5) using a 13K oligonucleotide microarray. The brain, kidney, and lung were chosen for microarray analysis to represent tissues from endoderm, mesoderm, and ectoderm in origin. In clones, 179 and 154 genes were differentially expressed in the kidney and the lung, respectively (fold change >2, p < 0.05, false discovery rate = 0.05), whereas only seven genes were differentially expressed in the brain of clones. Functional analysis of the differentially expressed genes revealed that they were enriched in diabetic nephropathy in the kidney, delayed alveologenesis as well as downregulated MAPK signaling pathways in the lung, which was accompanied with collapsed alveoli in the histological examination of the lung. To evaluate whether the gene expression anomalies are associated with changes in DNA methylation, global concentration of the methylated cytosine was measured in lung DNA by HPLC. Clones were significantly hypermethylated (5.72%) compared to the controls (4.13%). Bisulfite-pyrosequencing analyses of the promoter regions of differentially expressed genes, MYC and Period 1 (PER1), however, did not show any differences in the degree of DNA methylation between controls and clones. Together, these findings demonstrate that cloned pigs have altered gene expression that may potentially cause organ dysfunction.
Collapse
Affiliation(s)
- Joonghoon Park
- Center for Regenerative Biology, Department of Animal Science, University of Connecticut, Storrs, 06269, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Park J, Marjani SL, Lai L, Samuel M, Wax D, Davis SR, Bruno RS, Prather RS, Yang X, Tian XC. Altered gene expression profiles in the brain, kidney, and lung of deceased neonatal cloned pigs. Cell Reprogram 2011; 12:589-97. [PMID: 20726773 DOI: 10.1089/cell.2010.0004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Limited studies have been published analyzing the gene expression patterns of cloned pigs. We compared the expression profiles of brain, kidney, and lung tissues, representing each of the three germ layers, of deceased neonatal cloned pigs with those of age-matched controls using a 13K oligonucleotide microarray. We found 42 (0.7% of total genes analyzed), 178 (2.9%), and 121 (1.9%) genes differentially expressed in the brain, kidney, and lung of clones, respectively, when compared with the corresponding organs from controls (fold change >1.5, p < 0.05, false discovery rate (FDR) = 0.05). These expression aberrations could potentially cause the following pathological anomalies in clones: diabetic nephropathy in the kidney and dysregulated surfactant homeostasis in the lung. Interestingly, upregulated expression of genes belonging to the MAPK pathway was observed in all three organs. To investigate whether the differences in levels of gene expression were caused by differential DNA methylation, the global DNA methylation level was measured by high-performance liquid chromatography. In controls, global concentration of methylated cytosine was 5.35%, whereas clones had significantly hypomethylated genomic DNA (4.57%). Bisulfite-pyrosequencing analyses of the promoter regions of differentially expressed candidate genes, c-MYC, Period 1 (PER1), Cathepsin L (CTSL), and Follistatin (FS), however, did not show any differences in the degree of DNA methylation between controls and clones. Our findings demonstrate that deceased neonatal cloned pigs have considerable gene expression abnormalities, which may have contributed to the death of the animals.
Collapse
Affiliation(s)
- Joonghoon Park
- Center for Regenerative Biology, Department of Animal Science, University of Connecticut , Storrs, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kan KJ, Ploeger A, Raijmakers MEJ, Dolan CV, Van Der Maas HLJ. Nonlinear epigenetic variance: review and simulations. Dev Sci 2010; 13:11-27. [DOI: 10.1111/j.1467-7687.2009.00858.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Farin CE, Farmer WT, Farin PW. Pregnancy recognition and abnormal offspring syndrome in cattle. Reprod Fertil Dev 2010; 22:75-87. [DOI: 10.1071/rd09217] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Development of the post-hatching conceptus in ruminants involves a period of morphological expansion that is driven by complex interactions between the conceptus and its intrauterine environment. As a result of these interactions, endometrial physiology is altered, leading to establishment of the pregnancy and continued development of the placenta. Disruption of normal fetal and placental development can occur when embryos are exposed to manipulations in vitro or when inappropriate endocrine sequencing occurs in vivo during the pre- and peri-implantation periods. The present review addresses the development of the post-hatching bovine conceptus, its interactions with the maternal system and changes in development that can occur as a result of in vivo and in vitro manipulations of the bovine embryo.
Collapse
|
35
|
Curchoe CL, Zhang S, Yang L, Page R, Tian XC. Hypomethylation trends in the intergenic region of the imprinted IGF2 and H19 genes in cloned cattle. Anim Reprod Sci 2009; 116:213-25. [DOI: 10.1016/j.anireprosci.2009.02.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 01/27/2009] [Accepted: 02/03/2009] [Indexed: 11/27/2022]
|
36
|
Bischoff SR, Tsai S, Hardison N, Motsinger-Reif AA, Freking BA, Nonneman D, Rohrer G, Piedrahita JA. Characterization of conserved and nonconserved imprinted genes in swine. Biol Reprod 2009; 81:906-20. [PMID: 19571260 DOI: 10.1095/biolreprod.109.078139] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To increase our understanding of imprinted genes in swine, we carried out a comprehensive analysis of this gene family using two complementary approaches: expression and phenotypic profiling of parthenogenetic fetuses, and analysis of imprinting by pyrosequencing. The parthenote placenta and fetus were smaller than those of controls but had no obvious morphological differences at Day 28 of gestation. By Day 30, however, the parthenote placentas had decreased chorioallantoic folding, decreased chorionic ruggae, and reduction of fetal-maternal interface surface in comparison with stage-matched control fetuses. Using Affymetrix Porcine GeneChip microarrays and/or semiquantitative PCR, brain, fibroblast, liver, and placenta of Day 30 fetuses were profiled, and 25 imprinted genes were identified as differentially expressed in at least one of the four tissue types: AMPD3, CDKN1C, COPG2, DHCR7, DIRAS3, IGF2 (isoform specific), IGF2AS, IGF2R, MEG3, MEST, NAP1L5, NDN, NNAT, OSBPL1A, PEG3, APEG3, PEG10, PLAGL1, PON2, PPP1R9A, SGCE, SLC38A4, SNORD107, SNRPN, and TFPI2. For DIRAS3, PLAGL1, SGCE, and SLC38A4, tissue-specific differences were detected. In addition, we examined the imprinting status of candidate genes by quantitative allelic pyrosequencing. Samples were collected from Day 30 pregnancies generated from reciprocal crosses of Meishan and White Composite breeds, and single-nucleotide polymorphisms were identified in candidate genes. Imprinting was confirmed for DIRAS3, DLK1, H19, IGF2AS, NNAT, MEST, PEG10, PHLDA2, PLAGL1, SGCE, and SNORD107. We also found no evidence of imprinting in ASB4, ASCL2, CD81, COMMD1, DCN, DLX5, and H13. Combined, these results represent the most comprehensive survey of imprinted genes in swine to date.
Collapse
Affiliation(s)
- Steve R Bischoff
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina 27606, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Blache D, Martin GB, Maloney SK. Towards ethically improved animal experimentation in the study of animal reproduction. Reprod Domest Anim 2008; 43 Suppl 2:8-14. [PMID: 18638100 DOI: 10.1111/j.1439-0531.2008.01137.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ethics of animal-based research is a continuing area of debate, but ethical research protocols do not prevent scientific progress. In this paper, we argue that our current knowledge of the factors that affect reproductive processes provides researchers with a solid foundation upon which they can conduct more ethical research and simultaneously produce data of higher quality. We support this argument by showing how a deep understanding of the genetics, nutrition and temperament of our experimental animals can improve compliance with two of the '3 Rs', reduction and refinement, simply by offering better control over the variance in our experimental model. The outcome is a better experimental design, on both ethical and scientific grounds.
Collapse
Affiliation(s)
- D Blache
- UWA Institute of Agriculture M082, The University of Western Australia, Crawley, WA, Australia.
| | | | | |
Collapse
|
39
|
|
40
|
Magnani L, Lee K, Fodor WL, Machaty Z, Cabot RA. Developmental capacity of porcine nuclear transfer embryos correlate with levels of chromatin-remodeling transcripts in donor cells. Mol Reprod Dev 2008; 75:766-76. [PMID: 18246531 DOI: 10.1002/mrd.20818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Somatic cell nuclear transfer (SCNT) still retains important limitations. Impaired epigenetic reprogramming is considered responsible for altered gene expression and developmental failure in SCNT-derived embryos. After nuclear transfer the donor cell nucleus undergoes extensive changes in gene expression that involve epigenetic modifications and chromatin remodeling. We hypothesized that SNF2-type ATP-dependent chromatin factors contribute to epigenetic reprogramming and the relative amount of these factors in the donor cell affects developmental potential of the reconstructed embryos. In order to test this hypothesis, we assessed the relative amount of SNF2-type ATPases (Brahma, Brg1, SNF2H, SNF2L, CHD3, and CHD5) in three different donor cells as well as in porcine metaphase II oocytes. We performed SCNT with fetal fibroblast cells, olfactory bulb (OB) progenitor cells, and porcine skin originating sphere stem cells (PSOS). We found that OB-NT embryos and PSOS-NT embryos resulted in a higher morulae/blastocysts ratio as compared to fibroblast-NT embryos (23.53%, 16.98%, and 11.63%, respectively; P < 0.05). Fibroblast cells contained a significantly higher amount of SNF2L and CHD3 transcripts while Brg1 and SNF2H were the most expressed transcripts in all the cell lines analyzed. Metaphase II oocyte expression profile appeared to be unique compared to the cell lines analyzed. This work supports our hypothesis that an array of chromatin-remodeling proteins on donor cells may influence the chromatin structure, effect epigenetic reprogramming, and developmental potential.
Collapse
Affiliation(s)
- Luca Magnani
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
41
|
Food Safety, Animal Health and Welfare and Environmental Impact of Animals derived from Cloning by Somatic Cell Nucleus Transfer (SCNT) and their Offspring and Products Obtained from those Animals. EFSA J 2008; 6:767. [PMID: 37213844 PMCID: PMC10193655 DOI: 10.2903/j.efsa.2008.767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
42
|
Vogt G, Huber M, Thiemann M, van den Boogaart G, Schmitz OJ, Schubart CD. Production of different phenotypes from the same genotype in the same environment by developmental variation. ACTA ACUST UNITED AC 2008; 211:510-23. [PMID: 18245627 DOI: 10.1242/jeb.008755] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The phenotype of an organism is determined by the genes, the environment and stochastic developmental events. Although recognized as a basic biological principle influencing life history, susceptibility to diseases, and probably evolution, developmental variation (DV) has been only poorly investigated due to the lack of a suitable model organism. This obstacle could be overcome by using the recently detected, robust and highly fecund parthenogenetic marbled crayfish as an experimental animal. Batch-mates of this clonal crayfish, which were shown to be isogenic by analysis of nuclear microsatellite loci, exhibited surprisingly broad ranges of variation in coloration, growth, life-span, reproduction, behaviour and number of sense organs, even when reared under identical conditions. Maximal variation was observed for the marmorated coloration, the pattern of which was unique in each of the several hundred individuals examined. Variation among identically raised batch-mates was also found with respect to fluctuating asymmetry, a traditional indicator of the epigenetic part of the phenotype, and global DNA methylation, an overall molecular marker of an animal's epigenetic state. Developmental variation was produced in all life stages, probably by reaction-diffusion-like patterning mechanisms in early development and non-linear, self-reinforcing circuitries involving behaviour and metabolism in later stages. Our data indicate that, despite being raised in the same environment, individual genotypes can map to numerous phenotypes via DV, thus generating variability among clone-mates and individuality in a parthenogenetic species. Our results further show that DV, an apparently ubiquitous phenomenon in animals and plants, can introduce components of randomness into life histories, modifying individual fitness and population dynamics. Possible perspectives of DV for evolutionary biology are discussed.
Collapse
Affiliation(s)
- Günter Vogt
- Zoological Institute and Museum, University of Greifswald, Johann-Sebastian-Bach-Strasse 11/12, D-17487 Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
43
|
Cho SK, Kim JH, Park JY, Choi YJ, Bang JI, Hwang KC, Cho EJ, Sohn SH, Uhm SJ, Koo DB, Lee KK, Kim T, Kim JH. Serial cloning of pigs by somatic cell nuclear transfer: restoration of phenotypic normality during serial cloning. Dev Dyn 2008; 236:3369-82. [PMID: 17849457 DOI: 10.1002/dvdy.21308] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Somatic cell nuclear transfer (scNT) is a useful way to create cloned animals. However, scNT clones exhibit high levels of phenotypic instability. This instability may be due to epigenetic reprogramming and/or genomic damage in the donor cells. To test this, we produced transgenic pig fibroblasts harboring the truncated human thrombopoietin (hTPO) gene and used them as donor cells in scNT to produce first-generation (G1) cloned piglets. In this study, 2,818 scNT embryos were transferred to 11 recipients and five G1 piglets were obtained. Among them, a clone had a dimorphic facial appearance with severe hypertelorism and a broad prominent nasal bridge. The other clones looked normal. Second-generation (G2) scNT piglets were then produced using ear cells from a G1 piglet that had an abnormal nose phenotype. We reasoned that, if the phenotypic abnormality of the G1 clone was not present in the G2 and third-generation (G3) clones, or was absent in the G2 clones but reappeared in the G3 clones, the phenotypic instability of the G1 clone could be attributed to faulty epigenetic reprogramming rather than to inherent/accidental genomic damage to the donor cells. Blastocyst rates, cell numbers in blastocyst, pregnancy rates, term placenta weight and ponderal index, and birth weight between G1 and G2 clones did not differ, but were significantly (P < 0.05) lower than control age- and sex-matched piglets. Next, we analyzed global methylation changes during development of the preimplantation embryos reconstructed by donor cells used for the production of G1 and G2 clones and could not find any significant differences in the methylation patterns between G1 and G2 clones. Indeed, we failed to detect the phenotypic abnormality in the G2 and G3 clones. Thus, the phenotypic abnormality of the G1 clone is likely to be due to epigenetic dysregulation. Additional observations then suggested that expression of the hTPO gene in the transgenic clones did not appear to be the cause of the phenotypic abnormality in the G1 clones and that the abnormality was acquired by only a few of the G1 clone's cells during its gestational development.
Collapse
Affiliation(s)
- Seong-Keun Cho
- Division of Applied Life Science, College of Agriculture and Life Science, Gyeongsang National University, Jinju, GyeongNam, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jiang L, Jobst P, Lai L, Samuel M, Prather RS, Ayares D, Yang X, Tian XC. Expression of X-linked genes in deceased neonates and surviving cloned female piglets. Mol Reprod Dev 2008; 75:265-73. [PMID: 17474099 PMCID: PMC2494708 DOI: 10.1002/mrd.20758] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Animal cloning through somatic cell nuclear transfer (NT) is very inefficient, probably due to insufficient reprogramming of the donor nuclei, which in turn would cause the dysregulation of gene expression. X-Chromosome inactivation (XCI) is a multi-step epigenetic process utilized by mammals to achieve dosage compensation in females. Our aim was to determine if any dysregulation of X-linked genes, which would be indicative of unfaithful reprogramming of donor nuclei, was present in cloned pigs. Real time reverse transcription polymerase chain reaction (RT-PCR) was performed to quantify the transcript levels of five X-linked genes, X inactivation-specific transcript (XIST), TSIX (the reverse spelling of XIST), hypoxanthine guanine phosphoribosyltransferase 1 (HPRT1), glucose-6-phosphate dehydrogenase (G6PD), V-raf murine sarcoma 3,611 viral oncogene homolog 1 (ARAF1), and one autosomal gene, alpha-1 type IV collagen (COL4A1) in major organs of neonatal deceased and surviving female cloned pigs as well as their age-matched control pigs from conventional breeding. Aberrant expression level of these genes was prevalent in the neonatal deceased clones, while it was only moderate in cloned pigs that survived after birth. These results suggest a correlation between the viability of the clones and the normality of their gene expression and provide a possible explanation for the death of a large portion of cloned animals around birth.
Collapse
Affiliation(s)
- Le Jiang
- Department of Animal Science and Center for Regenerative Biology, University of Connecticut, Storrs, CT 06269
| | - Pete Jobst
- Revivicor Inc., 1700 Kraft Drive, Suite 2400, Blacksburg, VA 24060
| | - Liangxue Lai
- Division of Animal Science, University of Missouri-Columbia, Columbia, MO 65211
| | - Melissa Samuel
- Division of Animal Science, University of Missouri-Columbia, Columbia, MO 65211
| | - Randall S. Prather
- Division of Animal Science, University of Missouri-Columbia, Columbia, MO 65211
| | - David Ayares
- Revivicor Inc., 1700 Kraft Drive, Suite 2400, Blacksburg, VA 24060
| | - Xiangzhong Yang
- Department of Animal Science and Center for Regenerative Biology, University of Connecticut, Storrs, CT 06269
| | - X. Cindy Tian
- Department of Animal Science and Center for Regenerative Biology, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
45
|
Bonk AJ, Li R, Lai L, Hao Y, Liu Z, Samuel M, Fergason EA, Whitworth KM, Murphy CN, Antoniou E, Prather RS. Aberrant DNA methylation in porcine in vitro-, parthenogenetic-, and somatic cell nuclear transfer-produced blastocysts. Mol Reprod Dev 2008; 75:250-64. [PMID: 17595009 PMCID: PMC2488202 DOI: 10.1002/mrd.20786] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Early embryonic development in the pig requires DNA methylation remodeling of the maternal and paternal genomes. Aberrant remodeling, which can be exasperated by in vitro technologies, is detrimental to development and can result in physiological and anatomic abnormalities in the developing fetus and offspring. Here, we developed and validated a microarray based approach to characterize on a global scale the CpG methylation profiles of porcine gametes and blastocyst stage embryos. The relative methylation in the gamete and blastocyst samples showed that 18.5% (921/4,992) of the DNA clones were found to be significantly different (P < 0.01) in at least one of the samples. Furthermore, for the different blastocyst groups, the methylation profile of the in vitro-produced blastocysts was less similar to the in vivo-produced blastocysts as compared to the parthenogenetic- and somatic cell nuclear transfer (SCNT)-produced blastocysts. The microarray results were validated by using bisulfite sequencing for 12 of the genomic regions in liver, sperm, and in vivo-produced blastocysts. These results suggest that a generalized change in global methylation is not responsible for the low developmental potential of blastocysts produced by using in vitro techniques. Instead, the appropriate methylation of a relatively small number of genomic regions in the early embryo may enable early development to occur.
Collapse
Affiliation(s)
- Aaron J Bonk
- Division of Animal Science, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ploeger A, van der Maas HLJ, Raijmakers MEJ. Is Evolutionary Psychology a Metatheory for Psychology? A Discussion of Four Major Issues in Psychology From an Evolutionary Developmental Perspective. PSYCHOLOGICAL INQUIRY 2008. [DOI: 10.1080/10478400701774006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Cho SJ, Yin XJ, Choi E, Lee HS, Bae I, Han HS, Yee ST, Kim NH, Kong IK. DNA Methylation Status in Somatic and Placenta Cells of Cloned Cats. CLONING AND STEM CELLS 2007; 9:477-84. [DOI: 10.1089/clo.2007.0003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Su-Jin Cho
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, S. Korea
| | - Xi-Jun Yin
- Department of Animal Science & Technology, Sunchon National University, Suncheon 540-742, S. Korea
| | - Eugene Choi
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, S. Korea
| | - Hyo-Sang Lee
- Department of Animal Science & Technology, Sunchon National University, Suncheon 540-742, S. Korea
| | - Inhyu Bae
- Department of Animal Science & Technology, Sunchon National University, Suncheon 540-742, S. Korea
| | - Hyo-Sim Han
- Department of Agricultural Chemistry, Sunchon National University, Suncheon 540-742, S. Korea
| | - Sung-Tae Yee
- Department of Biology, Sunchon National University, Suncheon 540-742, S. Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, S. Korea
| | - Il-Keun Kong
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, S. Korea
| |
Collapse
|
48
|
Estrada J, Sommer J, Collins B, Mir B, Martin A, York A, Petters RM, Piedrahita JA. Swine generated by somatic cell nuclear transfer have increased incidence of intrauterine growth restriction (IUGR). CLONING AND STEM CELLS 2007; 9:229-36. [PMID: 17579555 DOI: 10.1089/clo.2006.0079] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
While somatic cell nuclear transfer (SCNT) has been successful in several species, many pregnancies are lost and anomalies are found in fetal and perinatal stages. In this study SCNT and artificial inseminations (AI) populations were compared for litter size, average birth weight, piglets alive at birth, stillborn, mummies, dead at the first week, intrauterine growth restriction (IUGR) and large for gestational age (LGA). Twenty-three SCNT litters (143 individuals) were compared to 112 AI litters (1300 individuals). Litter size average was 11.5 for AI and 6.2 for SCNT. Litter weight and average birth weight adjusted by litter size were significantly (p < 0.05) higher in AI than in SCNT litters. The SCNT population had a significant (p < 0.01) increase in the number of IUGRs per litter with LSmeans 7.2 +/- 1.4 versus 19.4 +/- 3.5 and means 8.0 +/- 10.8 versus 15.5 +/- 24.5 for AI and SCNT, respectively. Additionally, there was a trend for higher postnatal mortality and stillbirths in the SCNT population. These findings demonstrate that there are some differences between SCNT-derived and AI litters. SCNT-derived pigs are excellent models to study epigenetic factors and genes involved in IUGRs, and to develop effective means to improve fetal growth in humans and animals.
Collapse
Affiliation(s)
- Jose Estrada
- Molecular and Biomedical Sciences Department, North Carolina State University, Raleigh, North Carolina 27607, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Choi EG, Yin XJ, Lee HS, Kim LH, Shin HD, Kim NH, Kong IK. Reproductive fertility of cloned male cats derived from adult somatic cell nuclear transfer. CLONING AND STEM CELLS 2007; 9:281-90. [PMID: 17579560 DOI: 10.1089/clo.2006.0069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study was designed to investigate the reproductive fertility by the natural breeding of cloned male cats with domestic female cats, and to measure endocrine hormone concentration related to male reproduction such as testosterone, leutinizing hormone (LH), and follicle stimulating hormone (FSH). Cloned A, B, C, and D cats produced three, two, four, and five kittens after natural mating with four domestic female cats, respectively, despite later puberty of the cloned D cat than those of the other cloned male cats. Three of the 14 kittens expressed an odd eye color, which was produced by 1 and 2 from cloned A and B cats. The eye color of the other F1 kittens varied from nine brown to two blue. Body weight at birth ranged from 72.9 to 134.0 g. Although clone D had a poorer libido and entered puberty later than those of the other cloned male cats, he produced gonadal hormones within the average range. Four of the cloned male cats had normal fertility. The concentration of gonadal hormones in cloned male cats was similar to two control and donor cats. The concentration of testosterone was not significantly different among clones A, B, C, D, and control cats (5.99 +/- 5.68; 3.46 +/- 2.81; 6.41 +/- 2.17; 3.75 +/- 0.34; 4.0 +/- 3.63 ng/mL, p < 0.05). The concentrations of LH and FSH were not significantly different among the cloned cats (p < 0.05). Seven male and seven female (in total 14) kittens were produced by the natural breeding with four domestic female cats. These results indicated that cloned male cats have normal reproductive fertility and lie within the normal range of gonadal hormone production. All F1 kittens were produced by natural breeding and delivery, and are still alive and have normal growth health (27 months age).
Collapse
Affiliation(s)
- Eu-Gene Choi
- Department of Animal Science & Technology, Sunchon National University, JeonNam Province, S. Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
Jiang L, Jobst P, Lai L, Samuel M, Ayares D, Prather RS, Tian XC. Expression levels of growth-regulating imprinted genes in cloned piglets. CLONING AND STEM CELLS 2007; 9:97-106. [PMID: 17386017 DOI: 10.1089/clo.2006.0041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Different from cloned sheep, mice, and cattle, which are often born with increased body weights, pigs produced through nuclear transfer have not been found to be overly large compared to their age-matched controls. In our study, cloned pigs were significantly smaller than controls of conventional reproduction (p < 0.05) in both the deceased newborn group (1.2 +/- 0.8 vs. 2.1 +/- 0.2 kg) and at 1 month of age (6.1 +/- 1.3 vs. 8.0 +/- 0.8 kg, mean +/- SD). Because imprinted genes are important regulators of fetal growth and may be subjected to faulty reprogramming during nuclear transfer, we aimed to determine the expression levels of both growth-enhancing and growth-inhibiting imprinted genes in these cloned pigs by quantitative real-time reverse transcription polymerase chain reaction. These genes include IGF2 and PEG3 (growth-promoting), as well as IGF2R and GRB10 (growth-inhibiting). Tissues from six major organs including heart, lung, liver, kidney, brain, and spleen were collected from clones and controls of both age groups. With the exception of IGF2, significant differences in the expression levels of the other three imprinted genes were found in certain organs of either group of cloned pigs when compared to their age-matched controls. However, no strong correlation was found between the levels of gene expression and the low-body-weight phenotype of these cloned pigs. Interestingly, larger variances of gene expression were found in identical clones at 1 month old when compared to the control animals, indicating the variability of the nuclear reprogramming process.
Collapse
Affiliation(s)
- Le Jiang
- Department of Animal Science and Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|