1
|
Gómez-Guzmán JA, Parra-Bracamonte GM, Velazquez MA. Impact of Heat Stress on Oocyte Developmental Competence and Pre-Implantation Embryo Viability in Cattle. Animals (Basel) 2024; 14:2280. [PMID: 39123806 PMCID: PMC11311040 DOI: 10.3390/ani14152280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Rectal and vaginal temperatures are utilised in both in vivo and in vitro models to study the effects of heat stress on oocyte competence and embryo viability in cattle. However, uterine temperature increases by only 0.5 °C in heat-stressed cows, significantly lower than simulated increases in in vitro models. Temperature variations within oviducts and ovarian follicles during heat stress are poorly understood or unavailable, and evidence is lacking that oocytes and pre-implantation embryos experience mild (40 °C) or severe (41 °C) heat stress inside the ovarian follicle and the oviduct and uterus, respectively. Gathering detailed temperature data from the reproductive tract and follicles is crucial to accurately assess oocyte competence and embryo viability under realistic heat stress conditions. Potential harm from heat stress on oocytes and embryos may result from reduced nutrient availability (e.g., diminished blood flow to the reproductive tract) or other unidentified mechanisms affecting tissue function rather than direct thermal effects. Refining in vivo stress models in cattle is essential to accurately identify animals truly experiencing heat stress, rather than assuming heat stress exposure as done in most studies. This will improve model reliability and aid in the selection of heat-tolerant animals.
Collapse
Affiliation(s)
- Javier A. Gómez-Guzmán
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.A.G.-G.); (G.M.P.-B.)
| | - Gaspar M. Parra-Bracamonte
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.A.G.-G.); (G.M.P.-B.)
| | - Miguel A. Velazquez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
2
|
Ezz MA, Takahashi M, Rivera RM, Balboula AZ. Cathepsin L regulates oocyte meiosis and preimplantation embryo development. Cell Prolif 2024; 57:e13526. [PMID: 37417221 PMCID: PMC10771118 DOI: 10.1111/cpr.13526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/28/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023] Open
Abstract
Early embryonic loss, caused by reduced embryo developmental competence, is the major cause of subfertility in humans and animals. This embryo developmental competence is determined during oocyte maturation and the first embryo divisions. Therefore, it is essential to identify the underlying molecules regulating these critical developmental stages. Cathepsin L (CTSL), a lysosomal cysteine protease, is involved in regulating cell cycle progression, proliferation and invasion of different cell types. However, CTSL role in mammalian embryo development is unknown. Using bovine in vitro maturation and culture systems, we show that CTSL is a key regulator for embryo developmental competence. We employed a specific CTSL detection assay in live cells to show that CTSL activity correlates with meiotic progression and early embryo development. Inhibiting CTSL activity during oocyte maturation or early embryo development significantly impaired oocyte and embryo developmental competence as evidenced by lower cleavage, blastocyst and hatched blastocyst rates. Moreover, enhancing CTSL activity, using recombinant CTSL (rCTSL), during oocyte maturation or early embryo development significantly improved oocyte and embryo developmental competence. Importantly, rCTSL supplementation during oocyte maturation and early embryo development significantly improved the developmental competence of heat-shocked oocytes/embryos which are notoriously known for reduced quality. Altogether, these results provide novel evidence that CTSL plays a pivotal role in regulating oocyte meiosis and early embryonic development.
Collapse
Affiliation(s)
- Mohamed Aboul Ezz
- Department of Theriogenology, Faculty of Veterinary MedicineMansoura UniversityMansouraEgypt
- Division of Animal SciencesUniversity of MissouriColumbiaMissouriUSA
| | | | | | | |
Collapse
|
3
|
Effects of short-term in vitro heat stress on bovine preantral follicles. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Stamperna K, Giannoulis T, Dovolou E, Kalemkeridou M, Nanas I, Dadouli K, Moutou K, Mamuris Z, Amiridis GS. The Effects of Heat Shock Protein 70 Addition in the Culture Medium on the Development and Quality of In Vitro Produced Heat Shocked Bovine Embryos. Animals (Basel) 2021; 11:3347. [PMID: 34944122 PMCID: PMC8698181 DOI: 10.3390/ani11123347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
The aims of the present study were to examine the effects of HSP70 addition in the in vitro culture medium of day 3 embryos on their developmental competence and quality. Bovine oocytes (n = 1442) were in vitro matured, inseminated and cultured for the first two days according to standardized methods. The presumptive zygotes were randomly allocated in three experimental groups: Control, C (embryos cultured at 39 °C throughout the culture period), group C41 (temperature was raised to 41 °C from the 48th to 72nd h post insemination (p.i.) and then it returned at 39 °C for the remaining culture period), and group H41 (the temperature modification was the same as in C41 and during heat exposure, HSP70 was added in the culture medium). Cleavage and embryo yield were assessed 48 h p.i. and on days 7, 8, 9, respectively and gene expression in day 7 blastocysts was assessed by RT-PCR. Blastocyst yield was the highest in group C39; and higher in group H41 compared to group C41. From the gene expression analyses, altered expression of 11 genes was detected among groups. The analysis of the orchestrated patterns of gene expression differed between groups. The results of this study confirm the devastating effects of heat stress on embryo development and provide evidence that HSP70 addition at the critical stages can partly counterbalance, without neutralizing, the negative effects of the heat insult on embryos, acting mainly through mechanisms related to energy deployment.
Collapse
Affiliation(s)
- Konstantina Stamperna
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, 431 00 Karditsa, Greece; (K.S.); (E.D.); (I.N.); (K.D.)
| | | | - Eleni Dovolou
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, 431 00 Karditsa, Greece; (K.S.); (E.D.); (I.N.); (K.D.)
- Department of Animal Sciences, University of Thessaly, 413 36 Larissa, Greece;
| | - Maria Kalemkeridou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, 413 36 Larissa, Greece; (M.K.); (K.M.); (Z.M.)
| | - Ioannis Nanas
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, 431 00 Karditsa, Greece; (K.S.); (E.D.); (I.N.); (K.D.)
| | - Katerina Dadouli
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, 431 00 Karditsa, Greece; (K.S.); (E.D.); (I.N.); (K.D.)
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 413 36 Larissa, Greece
| | - Katerina Moutou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, 413 36 Larissa, Greece; (M.K.); (K.M.); (Z.M.)
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, 413 36 Larissa, Greece; (M.K.); (K.M.); (Z.M.)
| | - Georgios S. Amiridis
- Department of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, 431 00 Karditsa, Greece; (K.S.); (E.D.); (I.N.); (K.D.)
| |
Collapse
|
5
|
Huang YY, Wang GD, Liu JS, Zhang LL, Huang SY, Wang YL, Yang ZW, Ge H. Analysis of transcriptome difference between rapid-growing and slow-growing in Penaeus vannamei. Gene 2021; 787:145642. [PMID: 33848570 DOI: 10.1016/j.gene.2021.145642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/28/2021] [Accepted: 04/07/2021] [Indexed: 01/13/2023]
Abstract
Penaeus vannamei is the principle cultured shrimp species in China. However, with the increase of culture density, the growth difference between individuals is also expanding. Here, we make use of RNA-seq to study the growth mechanisms of P. vannamei. After 120 days, we examined the transcriptomes of rapid-growing individuals (RG) and slow-growing individuals (SG). A total of 2116 and 176 differentially expressed genes (DEGs) were found in SG and RG, respectively. Moreover, the main DEGs are opsin, heat shock protein (HSP), actin, myosin, superoxide dismutase (SOD), cuticle protein, and chitinase. GO analysis further revealed that the DEGs were enriched in biological processes significantly, such as "sensory perception," "sensory perception of light stimulus," "response to stimulus," and "response to stress." Additionally, KEGG enrichment analysis showed that the DEGs were mainly enriched in "pentose and glucuronate interconversions," "amino sugar and nucleotide sugar metabolism," "glycophospholipid biosynthesis," and "glutathione metabolism." Interestingly, the upstream genes in the ecdysone signaling pathway, including molting inhibition hormone (MIH) and crustacean hyperglycemic hormone (CHH), did not differ significantly between RG and SG, which suggests that the cause for the inconsistent growth performance is due to the stress levels rather than the ecdysone signal pathway. In summary, this work provides data that will be useful for future studies on shrimp growth and development.
Collapse
Affiliation(s)
- Yong-Yu Huang
- Fisheries College of Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China
| | - Guo-Dong Wang
- Fisheries College of Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China.
| | - Jun-Sheng Liu
- Fisheries College of Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China
| | - Li-Li Zhang
- Fisheries College of Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China
| | - Shi-Yu Huang
- Fisheries College of Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China
| | - Yi-Lei Wang
- Fisheries College of Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China
| | - Zhang-Wu Yang
- Fisheries Research Institute of Fujian, 7 Shanhai Road, Huli, Xiamen 361000, China.
| | - Hui Ge
- Fisheries Research Institute of Fujian, 7 Shanhai Road, Huli, Xiamen 361000, China
| |
Collapse
|
6
|
Naranjo-Gómez JS, Uribe-García HF, Herrera-Sánchez MP, Lozano-Villegas KJ, Rodríguez-Hernández R, Rondón-Barragán IS. Heat stress on cattle embryo: gene regulation and adaptation. Heliyon 2021; 7:e06570. [PMID: 33869831 PMCID: PMC8035499 DOI: 10.1016/j.heliyon.2021.e06570] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/29/2021] [Accepted: 03/18/2021] [Indexed: 12/26/2022] Open
Abstract
Global warming has been affecting animal husbandry and farming production worldwide via changes in organisms and their habitats. In the tropics, these conditions are adverse for agriculture and animal production in some areas, due to high temperatures and relative humidity, affecting competitiveness related to economic activities. These environments have deteriorated livestock production, due to periods of drought, reduction in forage quality and heat stress, eliciting negative effects on reproduction, weight gain, and reduced meat and milk production. However, the use of animals adapted to tropics such as breeds derived from subspecies Bos primigenius indicus and native breeds from tropical countries or their crossings, is an alternative to improve production under high-temperature conditions. Therefore, physiological adaptation including gene expression induced by heat stress have been studied to understand the response of animals and to improve cross-breeding between cattle breeds to maintain high productivity in adverse weather conditions. Heat stress has been associated with lower reproductive performance in cows, due to the impact on blastocyst production, decreased implantation and increased embryonic death. Thus, for decades, in vitro fertilization and embryo transfer techniques have focused on studying the optimal conditions for production of high-quality embryos to transfer. The aim of this review is to discuss the effects of heat stress in bovine embryos, and their physiological and genetic modulation, focusing on the genes that are related with major adaptability to heat stress conditions and their relationship with different embryonic stages.
Collapse
Affiliation(s)
- Juan Sebastian Naranjo-Gómez
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos of Santa Helena, A.A 546, Ibagué, Colombia
| | - Heinner Fabián Uribe-García
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos of Santa Helena, A.A 546, Ibagué, Colombia
| | - María Paula Herrera-Sánchez
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos of Santa Helena, A.A 546, Ibagué, Colombia
| | - Kelly Johanna Lozano-Villegas
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos of Santa Helena, A.A 546, Ibagué, Colombia
| | - Roy Rodríguez-Hernández
- Poultry Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos of Santa Helena, A.A 546, Ibagué, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos of Santa Helena, A.A 546, Ibagué, Colombia
- Poultry Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Altos of Santa Helena, A.A 546, Ibagué, Colombia
| |
Collapse
|
7
|
Roth Z. Heat stress reduces maturation and developmental capacity in bovine oocytes. Reprod Fertil Dev 2021; 33:66-75. [PMID: 38769677 DOI: 10.1071/rd20213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
The ovarian pool of follicles, and their enclosed oocytes, is highly sensitive to hyperthermia. Heat-induced changes in small antral follicles can later manifest as impaired follicle development and compromised competence of the enclosed oocytes to undergo maturation, fertilisation and further development into an embryo. This review describes the main changes documented so far that underlie the oocyte damage. The review discusses some cellular and molecular mechanisms by which heat stress compromises oocyte developmental competence, such as impairment of nuclear and cytoplasmic maturation and mitochondrial function, changes in the expression of both nuclear and mitochondrial transcripts and the induction of apoptosis. The review emphasises that although the oocyte is exposed to heat stress, changes are also evident in the developed embryo. Moreover, the effect of heat stress is not limited to the summer; it carries over to the cold autumn, as manifest by impaired steroid production, low oocyte competence and reduced fertility. The spontaneous recovery of oocytes from the end of the summer through the autumn until the beginning of winter suggests that only subpopulations of follicles, rather than the entire ovarian reserve, are damaged upon heat exposure.
Collapse
Affiliation(s)
- Zvi Roth
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, POB 12 Rehovot, 76100, Israel
| |
Collapse
|
8
|
Abdelnour SA, Yang CY, Swelum AA, Abd El-Hack ME, Khafaga AF, Abdo M, Shang JH, Lu YQ. Molecular, functional, and cellular alterations of oocytes and cumulus cells induced by heat stress and shock in animals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38472-38490. [PMID: 32767010 DOI: 10.1007/s11356-020-10302-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Global warming is considered as the main environmental stress affecting ecosystems as well as physiological and biochemical characteristics, and survivability of living organisms. High temperature induces various stresses and causes reduction of fertility through reducing the oocyte developmental competence and alteration in surrounding cells' functions. This causes major economic loss to livestock creating a selective pressure on animals to the advantage of better adapted genotypes and to the detriment of others. In this review, a search in Science Direct, Google Scholar, PubMed, Web of Science, Scopus, and SID databases until 2020 was conducted. Keywords which include heat stress, shock, high temperature, oocyte, cumulus, and animals were investigated. Studies have exhibited that heat stress can disturb the development and function of oocyte and cumulus cells (CCs) concerning reproductive efficiency. Heat stress has deleterious consequences on oocyte maturation and development via reduced number of polar body extrusion, adenosine monophosphate, and guanosine monophosphate synthesis. Heat stress caused the alteration of cytoplasmic and nuclear features as well as trans-zonal projections and gap junctions. In addition, heat stress is accompanied with reduced mitochondrial activity (copy mDNA number, distribution, and membrane potential) in cumulus-oocyte complexes. This review targets the description of results in the most recent studies that aimed to call attention to the influences of heat stress on molecular, functional, and cellular changes in oocytes and CCs in animals to design evidence on the acting mechanisms as the core of this problem from a comparative review.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, People's Republic of China
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Chun-Yan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, People's Republic of China
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Mohamed Abdo
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 32897, Egypt
| | - Jiang-Hua Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, People's Republic of China.
| | - Yang-Qing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
9
|
El Zayat MAS, Ali MES, Amar MH. A systematic revision of Capparaceae and Cleomaceae in Egypt: an evaluation of the generic delimitations of Capparis and Cleome using ecological and genetic diversity. J Genet Eng Biotechnol 2020; 18:58. [PMID: 33025275 PMCID: PMC7538494 DOI: 10.1186/s43141-020-00069-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/02/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND The Capparaceae family is commonly recognized as a caper, while Cleomaceae represents one of small flowering family within the order Brassicales. Earlier, Cleomaceae was included in the family Capparaceae; then, it was moved to a distinct family after DNA evidence. Variation in habits and a bewildering array of floral and fruit forms contributed to making Capparaceae a "trash-basket" family in which many unrelated plants were placed. Indeed, family Capparaceae and Cleomaceae are in clear need of more detailed systematic revision. RESULTS Here, in the present study, the morphological characteristics and the ecological distribution as well as the genetic diversity analysis among the twelve species of both Capparaceae and Cleomaceae have been determined. The genetic analysis has been checked using 15 ISSR, 30 SRAP, and 18 ISTR to assess the systematic knots between the two families. In order to detect the molecular phylogeny, a comparative analysis of the three markers was performed based on the exposure of discriminating capacity, efficiency, and phylogenetic heatmap. Our results indicated that there is a morphological and ecological variation between the two families. Moreover, the molecular analysis confirmed that ISTR followed by SRAP markers has superior discriminating capacity for describing the genetic diversity and is able to simultaneously distinguish many polymorphic markers per reaction. Indeed, both the PCA and HCA data have drawn a successful annotation relationship in Capparaceae and Cleome species to evaluate whether the specific group sort individual or overlap groups. CONCLUSION The outcomes of the morphological and ecological characterization along with the genetic diversity indicated an insight solution thorny interspecies in Cleome and Gynandropsis genera as a distinct family (Cleomaceae) and the other genera (Capparis, Cadaba, Boscia, and Maerua) as Capparaceae. Finally, we recommended further studies to elucidate the systematic position of Dipterygium glaucum.
Collapse
|
10
|
Sammad A, Umer S, Shi R, Zhu H, Zhao X, Wang Y. Dairy cow reproduction under the influence of heat stress. J Anim Physiol Anim Nutr (Berl) 2019; 104:978-986. [PMID: 31782564 DOI: 10.1111/jpn.13257] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/23/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022]
Abstract
Dairy farming is vulnerable to global warming and climate change. Improving and maintaining conception rates (CRs) have a paramount importance for the profitability of any dairy enterprise. There is an antagonistic relationship between fertility and milk yield, and intensive selection for milk yield has severely deteriorated reproductive efficiency. Irrespective of geography and husbandry, modern dairy cows experience heat stress (HS) effects leading to fertility declines, but it worsens in tropical climates. The threshold of HS experience among modern dairy cow has lowered, leading to decreased thermal comfort zone. Studies show that this threshold is lower for fertility than for lactation. HS abatement and robustness response to lactation yield lead to negative energy balance, and cow's reproductive requirements remain unfulfilled. The adverse effects of HS commence from developing oocyte throughout later stages and its fertilization competence; the oestrus cycle and oestrus behaviour; the embryo development and implantation; on uterine environment; and even extend towards foetal calf. Even cows can become acyclic under the influence of HS. These harmful effects of HS arise due to hyperthermia, oxidative stress and physiological modifications in the body of dairy cows. Proper assessment of HS and efficient cooling of dairy animals irrespective of their stage of life at farm is the immediate strategy to reduce fertility declines. Other long- and short-term mitigation strategies to reduce fertility declines during HS include feeding care, reducing disease and mastitis rates, using semen from cooled bulls, timed artificial inseminations (AI), allied hormonal interventions and use of embryo transfer technology. Ultimate long-term solution should be well-planned breeding for fertility improvement and HS tolerance.
Collapse
Affiliation(s)
- Abdul Sammad
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, CAST, China Agricultural University, Beijing, China
| | - Saqib Umer
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Shi
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, CAST, China Agricultural University, Beijing, China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yachun Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, CAST, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Kumar B, Sahoo AK, Dayal S, Das AK, Taraphder S, Batabyal S, Ray PK, Kumari R. Genetic profiling of Hsp70 gene in Murrah buffalo (Bubalus bubalis) under sub-tropical climate of India. Cell Stress Chaperones 2019; 24:1187-1195. [PMID: 31642046 PMCID: PMC6883022 DOI: 10.1007/s12192-019-01042-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/22/2019] [Accepted: 10/02/2019] [Indexed: 01/20/2023] Open
Abstract
This study was aimed to genetic profiling of heat shock protein 70 (Hsp70) gene in Murrah buffalo investigating 50 unrelated adult animals at ICAR-Research Complex for Eastern Region, Patna (India) in winter, spring, and summer. PCR ready genomic DNA samples and season-wise total RNA samples were prepared. The PCR products of Hsp70 eluted from agarose gel were sequenced and analyzed. The first-strand cDNA was synthesized and concentration was equalized to 25 ng/μl. Expression kinetics of mRNA transcripts in different seasons was studied using Brilliant SYBR Green QPCR technique and the data retrieved was analyzed by least-squares ANOVA. DNA sequencing by primer walking revealed four allelic variants of Hsp70 gene. Alignment study revealed one substitution in 5'UTR, six substitutions in coding region, and one addition in 3'UTR. The highest percent identity and negligible phylogenetic distance were found among the alleles and reference bovine sequences. The relative mRNA expression was significantly higher in summer when THI ≥ 84 than the spring and winter; fold change increased by 4.5 times in summer than the spring whereas found nearly half in winter. These findings can be useful for heat stress management in buffaloes and help in understanding the mechanism of thermo-regulation well.
Collapse
Affiliation(s)
- Birendra Kumar
- Department of Animal Genetics and Breeding, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, 741252, India
| | - Ajit Kumar Sahoo
- Department of Animal Genetics and Breeding, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, 741252, India
| | - Shanker Dayal
- Division of Livestock and Fishery Management, ICAR-Research Complex for Eastern Region, Patna, Bihar, 800014, India
| | - Ananta Kumar Das
- Department of Animal Genetics and Breeding, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, 741252, India.
| | - Subhash Taraphder
- Department of Animal Genetics and Breeding, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, 741252, India
| | - Subhasis Batabyal
- Department of Veterinary Biochemistry, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, 741252, India
| | - Pradeep Kumar Ray
- Division of Livestock and Fishery Management, ICAR-Research Complex for Eastern Region, Patna, Bihar, 800014, India
| | - Rajni Kumari
- Division of Livestock and Fishery Management, ICAR-Research Complex for Eastern Region, Patna, Bihar, 800014, India
| |
Collapse
|
12
|
Boni R. Heat stress, a serious threat to reproductive function in animals and humans. Mol Reprod Dev 2019; 86:1307-1323. [PMID: 30767310 DOI: 10.1002/mrd.23123] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 12/18/2022]
Abstract
Global warming represents a major stressful environmental condition that compromises the reproductive efficiency of animals and humans via a rise of body temperature above its physiological homeothermic point (heat stress [HS]). The injuries caused by HS on reproductive function involves both male and female components, fertilization mechanisms as well as the early and late stages of embryo-fetal development. This occurrence causes great economic damage in livestock, and, in wild animals creates selective pressure towards the advantages of better-adapted genotypes to the detriment of others. Humans undergo several types of stress, including heat, and these represent putative causes of ongoing progressive decay in procreation; an increasing number of remedies in the form of antioxidant preparations are now being proposed to counteract the effects of stress. This review aims to describe the results of the most recent studies that aimed to highlight these effects and to draw information on the mechanisms acting as the basis of this problem from a comparative analysis.
Collapse
Affiliation(s)
- Raffaele Boni
- Department of Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|
13
|
de Barros FRO, Paula-Lopes FF. Cellular and epigenetic changes induced by heat stress in bovine preimplantation embryos. Mol Reprod Dev 2018; 85:810-820. [DOI: 10.1002/mrd.23040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 06/26/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Flavia R. O. de Barros
- Department of Biological Sciences; Federal University of São Paulo; São Paulo Brazil
- School of Bioprocess Engineering and Biotechnology, Federal University of Technology; Parana Brazil
| | | |
Collapse
|
14
|
Khatun H, Egashira J, Sakatani M, Takenouchi N, Tatemoto H, Wada Y, Yamanaka KI. Sericin enhances the developmental competence of heat-stressed bovine embryos. Mol Reprod Dev 2018; 85:696-708. [DOI: 10.1002/mrd.23038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/23/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Hafiza Khatun
- Faculty of Agriculture; Saga University; Saga Japan
- Faculty of Animal Husbandry; Bangladesh Agricultural University; Mymensingh Bangladesh
- Animal Resource Production Division; The United Graduate School of Agricultural Sciences, Kagoshima University; Kagoshima Japan
| | - Junki Egashira
- Animal Resource Production Division; The United Graduate School of Agricultural Sciences, Kagoshima University; Kagoshima Japan
- Division of Cattle Research; Saga Prefectural Livestock Experiment Station; Saga Japan
| | - Miki Sakatani
- Livestock and Grassland Research Division; Kyushu Okinawa Agricultural Research Center, NARO; Kumamoto Japan
| | - Naoki Takenouchi
- Livestock and Grassland Research Division; Kyushu Okinawa Agricultural Research Center, NARO; Kumamoto Japan
| | - Hideki Tatemoto
- Animal Resource Production Division; The United Graduate School of Agricultural Sciences, Kagoshima University; Kagoshima Japan
- Faculty of Agriculture; University of the Ryukyus; Okinawa Japan
| | - Yasuhiko Wada
- Faculty of Agriculture; Saga University; Saga Japan
- Animal Resource Production Division; The United Graduate School of Agricultural Sciences, Kagoshima University; Kagoshima Japan
| | - Ken-ichi Yamanaka
- Faculty of Agriculture; Saga University; Saga Japan
- Animal Resource Production Division; The United Graduate School of Agricultural Sciences, Kagoshima University; Kagoshima Japan
| |
Collapse
|
15
|
Rąpała Ł, Starzyński RR, Trzeciak PZ, Dąbrowski S, Gajewska M, Jurka P, Smolarczyk R, Duszewska AM. Influence of elevated temperature on bovine oviduct epithelial cells (BOECs). PLoS One 2018; 13:e0198843. [PMID: 29906278 PMCID: PMC6003681 DOI: 10.1371/journal.pone.0198843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/25/2018] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to evaluate the influence of elevated temperature on bovine oviduct epithelial cells (BOECs), based on the expression and localization of both heat shock protein 70 (HSP70), responsible for the cellular defence mechanism, and oviduct specific glycoprotein 1 (OVGP1) which is the most important embryotrophic protein. BOECs were cultured alone and co-cultured with cattle embryos at control (38.5°C) and elevated temperature (41°C) for 168 h. The elevated temperature had no effect on the viability of BOECs but exerted a negative effect on embryo development. The elevated temperature increased the expression of HSP70 and decreased the expression of OVGP1 at both mRNA and protein levels in BOECs cultured alone and those co-cultured with embryos. However, the presence of embryos limited the decrease in OVGP1 expression in BOECs at elevated temperature but did not alter the expression of HSP70. These results demonstrate for the first time the influence of elevated temperature on BOECs, consequently providing insights into the interactions between the embryo and the oviduct at elevated temperature.
Collapse
Affiliation(s)
- Łukasz Rąpała
- Division of Histology and Embryology, Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Rafał R. Starzyński
- Polish Academy of Sciences, Institute of Genetics and Animal Breeding, Jastrzębiec, Poland
| | - Piotr Z. Trzeciak
- Division of Histology and Embryology, Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Sebastian Dąbrowski
- Division of Histology and Embryology, Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Małgorzata Gajewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Piotr Jurka
- Department of Small Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Roman Smolarczyk
- Department of Gynecological Endocrinology, Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Anna M. Duszewska
- Division of Histology and Embryology, Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
16
|
Yamanaka KI, Khatun H, Egashira J, Balboula AZ, Tatemoto H, Sakatani M, Takenouchi N, Wada Y, Takahashi M. Heat-shock-induced cathepsin B activity during IVF and culture compromises the developmental competence of bovine embryos. Theriogenology 2018; 114:293-300. [PMID: 29677632 DOI: 10.1016/j.theriogenology.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 11/18/2022]
Abstract
Heat stress can cause significant reproductive dysfunction in mammals and previous studies report that expression and activity of cathepsin B (CTSB), a lysosomal cysteine protease, is negatively correlated with the developmental competence of bovine oocytes and embryos. However, the relationship between heat shock (HS) and CTSB remains largely unknown. Here, we investigated the effects of HS during IVF and early embryonic stages of IVC on CTSB activity and developmental competence in bovine embryos. HS (40 °C for 6 h during IVF and 20 h during IVC) caused a significant increase in CTSB activity irrespective of the developmental stage or duration of HS. The developmental rate to the blastocyst stage was also significantly decreased by HS. Additionally, HS during IVC significantly increased the number of apoptotic cells in blastocysts. Notably, these HS-induced changes in blastocyst development and quality were significantly improved by inhibition of CTSB activity, indicating a key role for CTSB. These results showed that CTSB activity plays an essential role in HS-induced dysfunction in bovine embryo development, and that inhibition of this activity could enhance the developmental competence of heat-shocked embryos.
Collapse
Affiliation(s)
- Ken-Ichi Yamanaka
- Faculty of Agriculture, Saga University, Saga, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.
| | - Hafiza Khatun
- Faculty of Agriculture, Saga University, Saga, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan; Faculty of Animal Husbandry, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Junki Egashira
- Faculty of Agriculture, Saga University, Saga, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan; Saga Prefectural Livestock Experiment Station, Saga, Japan
| | | | - Hideki Tatemoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan; Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Miki Sakatani
- Livestock and Grassland Research Division, Kyushu Okinawa Agricultural Research Center, NARO, Kumamoto, Japan
| | - Naoki Takenouchi
- Livestock and Grassland Research Division, Kyushu Okinawa Agricultural Research Center, NARO, Kumamoto, Japan
| | - Yasuhiko Wada
- Faculty of Agriculture, Saga University, Saga, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Masashi Takahashi
- Research Faculty of Agriculture, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
17
|
Abstract
Summer heat stress decreases the pregnancy rate in cattle and has been thought to be associated with the early embryonic death caused by the elevation of maternal body temperature. In vitro cultures have been widely used for the evaluation of effects of heat stress on oocytes, fertilization, preimplantation, and embryonic development. Susceptibility to heat stress is present in developmental stages from oocytes to cleavage-stage (before embryonic gene activation, EGA) embryos, leading to a consequent decrease in developmental competence. On the other hand, advanced-stage embryos such as morula or blastocysts have acquired thermotolerance. The mechanism for the developmental stage-dependent change in thermotolerance is considered to be the accumulation of antioxidants in embryos in response to heat-inducible production of reactive oxygen species. The supplementation of antioxidants to the culture media has been known to neutralize the detrimental effects of heat stress. Besides, EGA could be involved in acquisition of thermotolerance in later stages of embryos. Morulae or blastocysts can repair heat-induced unfolded proteins or prevent DNA damage occurring in processes such as apoptosis. Therefore, embryo transfer (ET) that can bypass the heat-sensitive stage could be a good solution to improve the pregnancy rate under heat stress. However, frozen-thawed ET could not improve the pregnancy rate as expected. Frozen-thawed blastocysts were more sensitive to heat stress and showed less proliferation upon heat exposure, compared to fresh blastocysts. Therefore, further research is required to improve the reduction in pregnancy rates due to summer heat stress.
Collapse
Affiliation(s)
- Miki Sakatani
- Livestock and Grassland Research Division, Kyushu Okinawa Agricultural Research Center, NARO, Kumamoto 861-1192, Japan
| |
Collapse
|
18
|
Roth Z. Effect of Heat Stress on Reproduction in Dairy Cows: Insights into the Cellular and Molecular Responses of the Oocyte. Annu Rev Anim Biosci 2016; 5:151-170. [PMID: 27732786 DOI: 10.1146/annurev-animal-022516-022849] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Among the components of the female reproductive tract, the ovarian pool of follicles and their enclosed oocytes are highly sensitive to hyperthermia. Heat-induced alterations in small antral follicles can be expressed later as compromised maturation and developmental capacity of the ovulating oocyte. This review summarizes the most up-to-date information on the effects of heat stress on the oocyte with an emphasis on unclear points and open questions, some of which might involve new research directions, for instance, whether preantral follicles are heat resistant. The review focuses on the follicle-enclosed oocytes, provides new insights into the cellular and molecular responses of the oocyte to elevated temperature, points out the role of the follicle microenvironment, and discusses some mechanisms that might underlie oocyte impairment. Mechanisms include nuclear and cytoplasmic maturation, mitochondrial function, apoptotic pathways, and oxidative stress. Understanding the mechanism by which heat stress compromises fertility might enable development of new strategies to mitigate its effects.
Collapse
Affiliation(s)
- Zvi Roth
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel;
| |
Collapse
|
19
|
Wang Y, Zhang JJ, Yang WR, Luo HY, Zhang JH, Wang XZ. Lipopolysaccharide-induced expression of FAS ligand in cultured immature boar sertoli cells through the regulation of pro-inflammatory cytokines andmiR-187. Mol Reprod Dev 2015; 82:880-91. [DOI: 10.1002/mrd.22534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 07/26/2015] [Indexed: 01/29/2023]
Affiliation(s)
- Yi Wang
- Chongqing Key Laboratory of Forage and Herbivore; College of Animal Science and Technology; Southwest University; Beibei Chongqing P. R. China
| | - Jiao-Jiao Zhang
- Chongqing Key Laboratory of Forage and Herbivore; College of Animal Science and Technology; Southwest University; Beibei Chongqing P. R. China
| | - Wei-Rong Yang
- Chongqing Key Laboratory of Forage and Herbivore; College of Animal Science and Technology; Southwest University; Beibei Chongqing P. R. China
| | - Hong-Yan Luo
- College of Resource and Environment; Southwest University; Beibei Chongqing P. R. China
| | - Jia-Hua Zhang
- Chongqing Key Laboratory of Forage and Herbivore; College of Animal Science and Technology; Southwest University; Beibei Chongqing P. R. China
| | - Xian-Zhong Wang
- Chongqing Key Laboratory of Forage and Herbivore; College of Animal Science and Technology; Southwest University; Beibei Chongqing P. R. China
| |
Collapse
|
20
|
Choi I, Dasari A, Kim NH, Campbell KHS. Effects of prolonged exposure of mouse embryos to elevated temperatures on embryonic developmental competence. Reprod Biomed Online 2015; 31:171-9. [PMID: 26093856 DOI: 10.1016/j.rbmo.2015.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 04/30/2015] [Accepted: 04/30/2015] [Indexed: 01/15/2023]
Abstract
To investigate effects of heat stress on developmental competence, in-vitro fertilized zygotes were incubated at different temperatures until 96 h post human chorionic gonadotrophin (HCG). Under severe and moderate conditions (41°C and 40°C), most embryos did not overcome the 2-cell block. In long-term mild heat stress (39°C until 96 h post HCG), cleavage and blastocyst formation were comparable to non-heat-stress control, but the number of live pups per transferred embryo and mean litter size were significantly affected (P < 0.05) in the mild-heat-stress group (19.4%, and 5.1 ± 0.4, respectively), compared with control (41.7% and 8.3 ± 0.3, respectively). To elucidate the different competence, gene expression was examined and the numbers of inner cell mass (ICM) and trophectoderm (TE) cells were counted. Aberrant expression of genes for embryonic viability and trophoblast differentiation in the mild-heat-stressed blastocysts was found. Moreover, the expanded blastocysts in the heat-stressed group and the control had a ICM:TE ratio of 1:2.47 and 1:2.96 with average total cell numbers of 59.21 ± 2.38 and 72.79 ± 2.40, respectively (P < 0.05), indicating lower cell numbers in TE. These findings underscore that prevention of heat stress in early embryos is important for maintaining embryo viability embryos during pregnancy.
Collapse
Affiliation(s)
- Inchul Choi
- Animal Development and Biotechnology Group, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, UK; Department of Animal Biosystem Sciences, College of Agriculture and Life Sciences, Chungnam National University 305-764, Republic of Korea.
| | - Amarnath Dasari
- Animal Development and Biotechnology Group, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, UK; Taconic Farms Inc., Five University Place Rensselaer, NY 12144-3439, USA
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Gaesin-dong, Cheongju, Chungbuk. 361-763, Republic of Korea
| | - Keith H S Campbell
- Animal Development and Biotechnology Group, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| |
Collapse
|
21
|
Hansen PJ. Genetic variation in resistance of the preimplantation bovine embryo to heat shock. Reprod Fertil Dev 2015; 27:22-30. [DOI: 10.1071/rd14311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Reproduction is among the physiological functions in mammals most susceptible to disruption by hyperthermia. Many of the effects of heat stress on function of the oocyte and embryo involve direct effects of elevated temperature (i.e. heat shock) on cellular function. Mammals limit the effects of heat shock by tightly regulating body temperature. This ability is genetically controlled: lines of domestic animals have been developed with superior ability to regulate body temperature during heat stress. Through experimentation in cattle, it is also evident that there is genetic variation in the resistance of cells to the deleterious effects of elevated temperature. Several breeds that were developed in hot climates, including Bos indicus (Brahman, Gir, Nelore and Sahiwal) and Bos taurus (Romosinuano and Senepol) are more resistant to the effects of elevated temperature on cellular function than breeds that evolved in cooler climates (Angus, Holstein and Jersey). Genetic differences are expressed in the preimplantation embryo by Day 4–5 of development (after embryonic genome activation). It is not clear whether genetic differences are expressed in cells in which transcription is repressed (oocytes >100 µm in diameter or embryos at stages before embryonic genome activation). The molecular basis for cellular thermotolerance has also not been established, although there is some suggestion for involvement of heat shock protein 90 and the insulin-like growth factor 1 system. Given the availability of genomic tools for genetic selection, identification of genes controlling cellular resistance to elevated temperature could be followed by progress in selection for those genes within the populations in which they exist. It could also be possible to introduce genes from thermotolerant breeds into thermally sensitive breeds. The ability to edit the genome makes it possible to design new genes that confer protection of cells from stresses like heat shock.
Collapse
|
22
|
Sakatani M, Yamanaka K, Balboula AZ, Takenouchi N, Takahashi M. Heat stress during in vitro fertilization decreases fertilization success by disrupting anti-polyspermy systems of the oocytes. Mol Reprod Dev 2014; 82:36-47. [DOI: 10.1002/mrd.22441] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/01/2014] [Indexed: 02/04/2023]
Affiliation(s)
- Miki Sakatani
- Livestock and Grassland Research Division; Kyushu Okinawa Agricultural Research Center; NARO; Kumamoto Japan
| | - Kenichi Yamanaka
- Livestock and Grassland Research Division; Kyushu Okinawa Agricultural Research Center; NARO; Kumamoto Japan
- Faculty of Agriculture; Saga University; Saga Japan
| | - Ahmed Z. Balboula
- Livestock and Grassland Research Division; Kyushu Okinawa Agricultural Research Center; NARO; Kumamoto Japan
- Faculty of Veterinary Medicine; Mansoura University; Mansoura Egypt
| | - Naoki Takenouchi
- Livestock and Grassland Research Division; Kyushu Okinawa Agricultural Research Center; NARO; Kumamoto Japan
| | - Masashi Takahashi
- Livestock and Grassland Research Division; Kyushu Okinawa Agricultural Research Center; NARO; Kumamoto Japan
- Research Faculty of Agriculture; Hokkaido University; Hokkaido Japan
| |
Collapse
|
23
|
Velichko AK, Markova EN, Petrova NV, Razin SV, Kantidze OL. Mechanisms of heat shock response in mammals. Cell Mol Life Sci 2013; 70:4229-41. [PMID: 23633190 PMCID: PMC11113869 DOI: 10.1007/s00018-013-1348-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 12/28/2022]
Abstract
Heat shock (HS) is one of the best-studied exogenous cellular stresses. The cellular response to HS utilizes ancient molecular networks that are based primarily on the action of stress-induced heat shock proteins and HS factors. However, in one way or another, all cellular compartments and metabolic processes are involved in such a response. In this review, we aimed to summarize the experimental data concerning all aspects of the HS response in mammalian cells, such as HS-induced structural and functional alterations of cell membranes, the cytoskeleton and cellular organelles; the associated pathways that result in different modes of cell death and cell cycle arrest; and the effects of HS on transcription, splicing, translation, DNA repair, and replication.
Collapse
Affiliation(s)
- Artem K. Velichko
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elena N. Markova
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Nadezhda V. Petrova
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sergey V. Razin
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Omar L. Kantidze
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
24
|
Chen Z, Robbins KM, Wells KD, Rivera RM. Large offspring syndrome: a bovine model for the human loss-of-imprinting overgrowth syndrome Beckwith-Wiedemann. Epigenetics 2013; 8:591-601. [PMID: 23751783 PMCID: PMC3857339 DOI: 10.4161/epi.24655] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is a human loss-of-imprinting syndrome primarily characterized by macrosomia, macroglossia, and abdominal wall defects. BWS has been associated with misregulation of two clusters of imprinted genes. Children conceived with the use of assisted reproductive technologies (ART) appear to have an increased incidence of BWS. As in humans, ART can also induce a similar overgrowth syndrome in ruminants which is referred to as large offspring syndrome (LOS). The main goal of our study is to determine if LOS shows similar loss-of-imprinting at loci known to be misregulated in BWS. To test this, Bos taurus indicus × Bos taurus taurus F1 hybrids were generated by artificial insemination (AI; control) or by ART. Seven of the 27 conceptuses in the ART group were in the > 97th percentile body weight when compared with controls. Further, other characteristics reported in BWS were observed in the ART group, such as large tongue, umbilical hernia, and ear malformations. KCNQ1OT1 (the most-often misregulated imprinted gene in BWS) was biallelically-expressed in various organs in two out of seven overgrown conceptuses from the ART group, but shows monoallelic expression in all tissues of the AI conceptuses. Furthermore, biallelic expression of KCNQ1OT1 is associated with loss of methylation at the KvDMR1 on the maternal allele and with downregulation of the maternally-expressed gene CDKN1C. In conclusion, our results show phenotypic and epigenetic similarities between LOS and BWS, and we propose the use of LOS as an animal model to investigate the etiology of BWS.
Collapse
Affiliation(s)
- Zhiyuan Chen
- Division of Animal Sciences; University of Missouri; Columbia, MO USA
| | | | | | | |
Collapse
|
25
|
Rivera RM, Rinaudo P. Bovine preimplantation embryo development is affected by the stiffness of the culture substrate. Mol Reprod Dev 2013; 80:184. [PMID: 23325633 DOI: 10.1002/mrd.22152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/06/2013] [Indexed: 11/09/2022]
|
26
|
Abstract
Environmentally induced periods of heat stress decrease productivity with devastating economic consequences to global animal agriculture. Heat stress can be defined as a physiological condition when the core body temperature of a given species exceeds its range specified for normal activity, which results from a total heat load (internal production and environment) exceeding the capacity for heat dissipation and this prompts physiological and behavioral responses to reduce the strain. The ability of ruminants to regulate body temperature is species- and breed-dependent. Dairy breeds are typically more sensitive to heat stress than meat breeds, and higher-producing animals are more susceptible to heat stress because they generate more metabolic heat. During heat stress, ruminants, like other homeothermic animals, increase avenues of heat loss and reduce heat production in an attempt to maintain euthermia. The immediate responses to heat load are increased respiration rates, decreased feed intake and increased water intake. Acclimatization is a process by which animals adapt to environmental conditions and engage behavioral, hormonal and metabolic changes that are characteristics of either acclimatory homeostasis or homeorhetic mechanisms used by the animals to survive in a new 'physiological state'. For example, alterations in the hormonal profile are mainly characterized by a decline and increase in anabolic and catabolic hormones, respectively. The response to heat load and the heat-induced change in homeorhetic modifiers alters post-absorptive energy, lipid and protein metabolism, impairs liver function, causes oxidative stress, jeopardizes the immune response and decreases reproductive performance. These physiological modifications alter nutrient partitioning and may prevent heat-stressed lactating cows from recruiting glucose-sparing mechanisms (despite the reduced nutrient intake). This might explain, in large part, why decreased feed intake only accounts for a minor portion of the reduced milk yield from environmentally induced hyperthermic cows. How these metabolic changes are initiated and regulated is not known. It also remains unclear how these changes differ between short-term v. long-term heat acclimation to impact animal productivity and well-being. A better understanding of the adaptations enlisted by ruminants during heat stress is necessary to enhance the likelihood of developing strategies to simultaneously improve heat tolerance and increase productivity.
Collapse
|
27
|
Nabenishi H, Takagi S, Kamata H, Nishimoto T, Morita T, Ashizawa K, Tsuzuki Y. The role of mitochondrial transition pores on bovine oocyte competence after heat stress, as determined by effects of cyclosporin A. Mol Reprod Dev 2011; 79:31-40. [DOI: 10.1002/mrd.21401] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/30/2011] [Indexed: 12/18/2022]
|
28
|
Hansen PJ, Fear JM. Cheating death at the dawn of life: Developmental control of apoptotic repression in the preimplantation embryo. Biochem Biophys Res Commun 2011; 413:155-8. [DOI: 10.1016/j.bbrc.2011.08.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 08/13/2011] [Indexed: 10/17/2022]
|
29
|
Boone WR, Higdon HL, Johnson JE. Quality Management Issues in the Assisted Reproduction Laboratory. ACTA ACUST UNITED AC 2010. [DOI: 10.1177/205891581000100103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the United States, the Clinical Laboratory Improvement Act (CLIA) of 1988 describes requirements and guidelines for implementing a quality control/quality assurance (QC/QA) program for moderate and high complexity laboratories. These requirements and guidelines apply to Assisted Reproductive Technology (ART) laboratories as well. The general topic of QC and QA as it pertains to in vitro fertilization (IVF) and embryo transfer (ET) is extensively reviewed. This review summarizes many of the QC and QA events that contribute to the advancement of knowledge in this biotechnological field. These events include control of the culture environment inside and outside of the incubator, as well as factors that affect culture media. This review also discusses, in considerable detail, the QC and the QA that pertain to equipment used within the laboratory and how to control for potential contaminants, which reside within the laboratory. This review provides evidence to indicate the need for laboratory personnel to monitor quality improvement issues on a continuous basis. Personnel must be willing to change as improvements in technology occur in order to meet the ever-evolving demands of a more difficult patient population. Suggestions for meeting these demands are offered.
Collapse
Affiliation(s)
- William R. Boone
- Greenville Hospital System University Medical Center, Greenville, South Carolina Department of Obstetrics and Gynecology
| | - H. Lee Higdon
- Greenville Hospital System University Medical Center, Greenville, South Carolina Department of Obstetrics and Gynecology
| | - Jane E. Johnson
- Greenville Hospital System University Medical Center, Greenville, South Carolina Department of Obstetrics and Gynecology
| |
Collapse
|
30
|
Soto P, Smith LC. BH4 peptide derived from Bcl-xL and Bax-inhibitor peptide suppresses apoptotic mitochondrial changes in heat stressed bovine oocytes. Mol Reprod Dev 2009; 76:637-46. [PMID: 19062170 DOI: 10.1002/mrd.20986] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mitochondria play an important role in the integration and transmission of cell death signals mediated by the Bcl-2 family proteins. Experiments were conducted to determine whether the anti-apoptotic peptides BH4 domain of Bcl-xL (TAT-BH4) and Bax inhibitor peptide (BIP) suppresses heat stress (HS) injury in oocytes by reduction of apoptotic-like events. Cumulus-oocyte complexes (COCs) were matured at 39 degrees C (control) or 41 degrees C (HS) for 21 hr then placed in maturation medium containing 0 or 100 microM BIP in water and 0 or 1 microM TAT-BH4 in dimethyl sulfoxide (DMSO), or a combination of both peptides (BIP + BH4). Peptide effects on embryo development, DNA fragmentation, mitochondrial membrane potential (Delta(Psi)m), and mitochondrial DNA (mtDNA) copy number were measured. All groups were fertilized and cultured in vitro at 39 degrees C for 8 days. Compared to control, HS-treated oocytes induced a decrease in embryo development (P < 0.05), increase in proportion of TUNEL-positive chromatin in oocytes and blastocysts (P < 0.05), and loss of oocyte Delta(Psi)m (P < 0.001). In the presence of BIP or BIP + BH4, development of HS-treated oocytes into blastocysts was increased (P < 0.05). Conversely, COCs matured with TAT-BH4 at 41 degrees C showed reduced embryonic development (P < 0.05). Exposure of HS-treated to each or both peptides resulted in a reduction of TUNEL frequency in oocytes and blastocysts cells derived from these oocytes (P < 0.05). The loss of Delta(Psi)m in HS-treated oocytes was not restored by exposure to BIP + BH4 and there was no effect in mtDNA copy number. In conclusion, the present results show that HS-induced apoptosis in bovine oocytes involves Bax and BH4 domain-dependent pathways.
Collapse
Affiliation(s)
- Paolete Soto
- Centre de Recherche en Reproduction Animale, Université de Montréal, St-Hyacinthe, QC J2S7C6, Canada
| | | |
Collapse
|
31
|
Isom SC, Lai L, Prather RS, Rucker EB. Heat shock of porcine zygotes immediately after oocyte activation increases viability. Mol Reprod Dev 2009; 76:548-54. [DOI: 10.1002/mrd.20975] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Sakatani M, Yamanaka K, Kobayashi S, Takahashi M. Heat shock-derived reactive oxygen species induce embryonic mortality in in vitro early stage bovine embryos. J Reprod Dev 2008; 54:496-501. [PMID: 18762719 DOI: 10.1262/jrd.20017] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heat shock is known to increase the mortality of early stage embryos, but the exact mechanism is unclear. In the present study, we investigated the possibility that the increased mortality is caused by heat shock-generated reactive oxygen species (ROS). The level of ROS was controlled by using beta-mercaptoethanol (beta-ME), a scavenger of ROS. In vitro-produced 8-cell stage embryos were cultured at 38.5 C or heat-shocked by exposure to 41 C for 6 h with 0, 10 and 50 microM beta-ME. Intracellular ROS levels were measured by a fluorescent dye, 2',7'-dichlorodihydrofluorescein diacetate (DCHFDA), and intracellular reduced form of glutathione (GSH) contents were estimated by another fluorescent dye, 4-chloromethyl-6,8-difluoro-7-hydroxycoumarin. Total glutathione content was estimated by the glutathione recycling assay. On day 8 after insemination, heat shock decreased the percentage of embryos that developed to the blastocyst stage and increased intracellular ROS levels, but there was no significant effect on the GSH and total glutathione contents. In contrast, beta-ME significantly decreased ROS levels in heat-shocked embryos and increased the GSH and total glutathione concentrations. Ten microM beta-ME significantly improved the viability of heat-shocked embryos. beta-ME caused no detrimental effects when it was added at normal culture temperature (38.5 C). These results indicate that ROS is the primary cause of increased embryonic mortality in heat-shocked early stage embryos.
Collapse
Affiliation(s)
- Miki Sakatani
- National Agricultural Research Center for Kyushu Okinawa Region, Kumamoto, Japan.
| | | | | | | |
Collapse
|
33
|
de Castro e Paula LA, Hansen PJ. Modification of actions of heat shock on development and apoptosis of cultured preimplantation bovine embryos by oxygen concentration and dithiothreitol. Mol Reprod Dev 2008; 75:1338-50. [PMID: 18246528 DOI: 10.1002/mrd.20866] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Preimplantation embryos exposed to elevated temperatures have reduced developmental competence. The involvement of reactive oxygen species in these effects has been controversial. Here we tested hypotheses that (1) heat shock effects on development and apoptosis would be greater when embryos were cultured in a high oxygen environment (air; oxygen concentration = approximately 20.95%, v/v) than in a low oxygen environment (5% oxygen) and (2) that these effects would be reversed by addition of the antioxidant dithiothreitol (DTT). Heat shock of 41 degrees C for 9 hr reduced development of two-cell embryos and Day 5 embryos to the blastocyst stage embryos when in high oxygen. There was no effect of heat shock on development when embryos were in low oxygen. Furthermore, induction of TUNEL-positive cells in Day 5 embryos by heat shock only occurred when embryos were in high oxygen. Addition of DTT to two-cell embryos either did not reduce effects of a heat shock of 41 degrees C for 15 hr on development or caused slight protection only. In contrast, treatment of Day 5 embryos with DTT reduced effects of heat shock on development and apoptosis. In summary, oxygen tension was shown to be a major determinant of the effects of heat shock on development and apoptosis in preimplantation bovine embryos. Protective effects of the antioxidant DTT were stage specific and more pronounced at later stages of development.
Collapse
|
34
|
Abstract
SummaryThe low efficiency of somatic cell nuclear transfer may be related to the ultrastructural deviations of reconstructed embryos. The present study investigated ultrastructural differences between in vivo-produced and cloned goat embryos, including intra- and interspecies embryos. Goat ear fibroblast cells were used as donors, while the enucleated bovine and goat oocytes matured in vitro as recipients. Goat–goat (GG), goat–cattle (GC) and goat in vivo-produced embryos at the 2-cell, 4-cell, 8-cell and 16-cell stages were compared using transmission electron microscopy. These results showed that the three types of embryos had a similar tendency for mitochondrial change. Nevertheless, changes in GG embryos were more similar to changes in in vivo-produced embryos than were GC embryos, which had more extreme mitochondrial deviation. The results indicate the effects of the cytoplast on mitochondria development. The zona pellucida (ZP) in all three types of embryos became thinner and ZP pores in both GC and GG embryos showed an increased rate of development, especially for GC embryos, while in vivo-produced embryos had smooth ZP. The Golgi apparatus (Gi) and rough endoplasmic reticulum (RER) of the two reconstructed embryos became apparent at the 8-cell stage, as was found for in vivo embryos. The results showed that the excretion of reconstructed embryos was activated on time. Lipid droplets (LD) of GC and GG embryos became bigger, and congregated. In in vivo-produced embryos LD changed little in volume and dispersed gradually from the 4-cell period. The nucleolus of GC and GG embryos changed from electron dense to a fibrillo-granular meshwork at the 16-cell stage, showing that nucleus function in the reconstructed embryos was activated. The broken nuclear envelope and multiple nucleoli in one blastomere illuminated that the nucleus function of reconstructed embryos was partly changed. In addition, at a later stage in GC embryos the nuclear envelope displayed infoldings and the chromatin was concentrated, implying that the blastomeres had an obvious trend towards apoptosis. The gap junctions of the three types of embryos changed differently and GG and GC embryos had bigger perivitelline and intercellular spaces than did in vivo-produced embryos. These results are indicative of normal intercellular communication at an early stage, but this became weaker in later stages in reconstructed embryos. In conclusion, inter- and intraspecies reconstructed embryos have a similar pattern of developmental change to that of in vivo-produced embryos for ZP, rough ER, Gi and nucleolus, but differ for mitochondria, LD, vesicles, nucleus and gap junction development. In particular, the interspecies cloned embryos showed more severe destruction. These ultrastructural deviations might contribute to the compromised developmental potential of reconstructed embryos.
Collapse
|
35
|
Brad AM, Hendricks KEM, Hansen PJ. The block to apoptosis in bovine two-cell embryos involves inhibition of caspase-9 activation and caspase-mediated DNA damage. Reproduction 2008; 134:789-97. [PMID: 18042636 DOI: 10.1530/rep-07-0146] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The capacity of the preimplantation embryo to undergo apoptosis in response to external stimuli is developmentally regulated. Acquisition of apoptosis does not occur in the cow embryo until between the 8- and 16-cell stages. The purpose of the present experiments was to determine the mechanism by which apoptosis is blocked in the bovine two-cell embryo. Heat shock (41 degrees C for 15 h) did not increase activity of caspase-9 or group II caspases (caspase-2, -3, and -7) in two-cell embryos but did in day 5 embryos. Exposure of embryos to carbonyl cyanide 3-chlorophenylhydrazone (CCCP) to depolarize mitochondria resulted in activation of caspase-9 and group II caspases at both stages of development. For day 5 embryos, CCCP also increased the proportion of blastomeres that underwent DNA fragmentation as determined by the TUNEL assay. In contrast, CCCP did not increase TUNEL labeling when applied at the two-cell stage. In conclusion, failure of heat shock to increase caspase-9 and group II caspase activity in the two-cell embryo indicates that the signaling pathway leading to mitochondrial depolarization and caspase activation is inhibited at this stage of development. The fact that CCCP treatment of two-cell embryos induced caspase-9 and group II-caspase activity indicates that caspase activation is possible following mitochondrial depolarization. However, since CCCP did not increase TUNEL labeling of two-cell embryos, actions of group II-caspases to activate DNases is inhibited.
Collapse
Affiliation(s)
- Amber M Brad
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, Florida 32611-0910, USA
| | | | | |
Collapse
|
36
|
Abstract
Elevated temperature can reduce developmental competence of the preimplantation embryo. Whether an embryo survives elevated temperature depends on its genotype, stage of development, exposure to regulatory molecules and redox status. Following fertilization, the embryo is very sensitive to heat shock. By Days 4-5 after insemination, however, the embryo has acquired increased resistance to elevated temperature. One system that may potentiate embryonic survival at later stages of embryonic development is the apoptosis response-inhibition of apoptosis responses at Day 4 exacerbated effects of heat shock on development. Embryo responses to heat shock at Days 4-5 also depend upon genotype because Bos indicus embryos are more resistant than embryos from non-adapted B. taurus. Some experiments (although not all) indicate that survival following heat shock can be increased by reducing oxygen tension, suggesting involvement of reactive oxygen species or hypoxia-induced factors. Embryonic responses to heat shock are also affected by regulatory molecules that act to modify cellular physiology and improve cell survival. The best characterized of these is insulin-like growth factor-1 (IGF-1). Actions of IGF-1 to allow development following heat shock are independent of its anti-apoptotic actions because inhibition of the phosphatidylinositol-3 kinase pathway through which IGF-1 blocks apoptosis does not prevent thermoprotective effects of IGF-1 on development. Identification of specific determinants of embryonic survival creates the opportunity for new strategies to improve pregnancy rates in animals exposed to heat stress. Many environmental perturbations activate similar cellular responses. Therefore, molecular and cellular systems that improve embryonic survival to heat shock may confer protection from other embryotoxic conditions.
Collapse
Affiliation(s)
- P J Hansen
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, FL 32611-0910, USA.
| |
Collapse
|
37
|
Gjørret JO, Fabian D, Avery B, Maddox-Hyttel P. Active caspase-3 and ultrastructural evidence of apoptosis in spontaneous and induced cell death in bovine in vitro produced pre-implantation embryos. Mol Reprod Dev 2007; 74:961-71. [PMID: 17393434 DOI: 10.1002/mrd.20714] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study we investigated chronological onset and involvement of active caspase-3, apoptotic nuclear morphology, and TUNEL-labeling, as well as ultrastructural evidence of apoptosis, in both spontaneous and induced cell death during pre-implantation development of bovine in vitro produced embryos. Pre-implantation embryos (2-cell to Day 8 blastocysts) were cultured with either no supplementation (untreated) or with 10 microM staurosporine for 24 hr (treated). Embryos were subjected to immunohistochemical staining of active caspase-3, TUNEL-reaction for detection of DNA degradation and DAPI staining for detection of apoptotic nuclear morphology, and subjected to fluorescence microscopy. Additionally, treated and untreated blastocysts were fixed and processed for ultrastructural identification of apoptosis. Untreated embryos revealed no apoptotic features at 2- and 4-cell stages. However, active caspase-3 and apoptotic nuclear morphology were observed in an untreated 8-cell stage, and TUNEL-labeling was observed from the 16-cell stage. Blastomeres concurrently displaying all apoptotic features were present in a few embryos at 16-cell and morula stages and in all blastocysts. All three features were observed from the 8-cell stage in treated embryos, and blastomeres with apoptotic features appeared more numerous in treated than in untreated embryos. Ultrastructural evidence of apoptosis occurred with a comparable distribution pattern as apoptotic features detected by fluorescence microscopy in both treated and untreated blastocysts. Activation of caspase-3 is likely involved in both spontaneous and induced apoptosis in bovine pre-implantation embryos, and immunohistochemical staining of active caspase-3 may be used in combination with other markers to identify apoptosis in pre-implantation embryos.
Collapse
|
38
|
Isom SC, Prather RS, Rucker EB. Heat stress-induced apoptosis in porcine in vitro fertilized and parthenogenetic preimplantation-stage embryos. Mol Reprod Dev 2007; 74:574-81. [PMID: 17034050 DOI: 10.1002/mrd.20620] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Decades worth of research have consistently shown the adverse effects of elevated temperatures on reproductive parameters of livestock species. The objective of this study was to evaluate the developmental and apoptotic responses of porcine in vitro fertilized (IVF) and parthenogenetically activated (PA) embryos heat stressed at the late 1-cell stage. Embryos were heat stressed (HS) at 42 degrees C for 9 hr starting 22 hr after insemination or artificial activation stimulus. Non heat-stressed (NHS) control embryos were maintained at 39 degrees C for the duration of the experiments. TUNEL staining on Day 5 of development demonstrated that heat stress elicited a significant apoptotic response in IVF embryos (45.6% of HS embryos and 26.7% of NHS embryos were apoptotic; P<0.05), but not in PA embryos (51.1% and 39.9% for HS and NHS embryos, respectively; P>0.1). And, while IVF embryos were highly susceptible to heat-induced developmental perturbations (20.6% and 8.8% development to blastocyst for NHS and HS embryos, respectively; P<0.05), elevated temperatures did not affect blastocyst rates in PA embryos (22.2% for NHS PA embryos and 21.2% for HS PA embryos; P>0.1). These findings indicate that, as in other systems studied, IVF pig embryos are directly affected adversely by heat stress conditions. Parthenogenetic embryos, though, appear to be surprisingly tolerant of the elevated temperatures. The differences between IVF and PA embryos in their response to heat stress warrants further investigation.
Collapse
Affiliation(s)
- S Clay Isom
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA.
| | | | | |
Collapse
|
39
|
Collier RJ, Stiening CM, Pollard BC, VanBaale MJ, Baumgard LH, Gentry PC, Coussens PM. Use of gene expression microarrays for evaluating environmental stress tolerance at the cellular level in cattle. J Anim Sci 2007; 84 Suppl:E1-13. [PMID: 16582080 DOI: 10.2527/2006.8413_supple1x] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Selecting domestic animals for tolerance to thermal stress (TS) has been counterproductive, because acclimation involves reducing or diverting metabolizable energy from production to balance heat gain and loss. Ideally, simultaneous selection for increased production and improved thermotolerance is desirable, but to accomplish this at the genomic level the genes associated with acclimation, adaptation, and thermo-tolerance need to be identified. We evaluated the effects of TS on mammary development and gene expression in vitro using a bovine mammary epithelial cell collagen gel culture system. Acute TS was characterized by inhibition and regression of the ductal branches. Gene expression profiling revealed an overall upregulation of genes associated with the stress response and protein repair. In contrast, genes associated with cellular and mammary epithelial cell-specific biosynthesis, metabolism, and morphogenesis were generally downregulated by TS. Future studies will examine the impact of acclimation and adaptation on gene expression to identify those genes associated with acquisition of thermal tolerance.
Collapse
Affiliation(s)
- R J Collier
- The University of Arizona, Tucson, 85721-0038, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Loureiro B, Brad AM, Hansen PJ. Heat shock and tumor necrosis factor-α induce apoptosis in bovine preimplantation embryos through a caspase-9-dependent mechanism. Reproduction 2007; 133:1129-37. [PMID: 17636167 DOI: 10.1530/rep-06-0307] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Heat shock and tumor necrosis factor-α (TNF-α) induce apoptosis through different mechanisms, with heat shock acting to cause mitochondrial depolarization and caspase-9 activation, while TNF-α acts through a receptor-mediated process to activate caspase-8. In some cells, however, TNF-α can also cause mitochondrial depolarization and caspase-9 activation. In the present study, we tested the hypothesis that heat shock at 41 °C and TNF-α induce apoptosis in bovine preimplantation embryos through a caspase-9-dependent mechanism. Treatment of embryos with either heat shock (41 °C) or TNF-α increased the proportion of blastomeres that were TUNEL positive and the proportion of embryos exhibiting elevated caspase-9 activity. Furthermore, the caspase-9 inhibitor, z-LEHD-fmk, blocked the increase in TUNEL-positive nuclei caused by both heat shock and TNF-α. For embryos at day 6 after insemination, for example, the percent of blastomeres positive for TUNEL was 3.6% for control embryos, 11.1% for embryos cultured at 41 °C, and 15.1% for embryos cultured with 10 ng/ml TNF-α. In the presence of z-LEHD-fmk, the percent of cells positive for TUNEL was 3.7% for control embryos, 6.1% for embryos cultured at 41 °C, and 8% for embryos cultured with 10 ng/ml TNF-α. Although TNF-α did not cause a measurable increase in caspase-8 activity, there was a tendency (P= 0.07) for treatment of embryos with z-IETD-fmk, an inhibitor of caspase-8, to partly reduce the magnitude of the increase in TUNEL-positive cells caused by TNF-α. The percent of cells that were TUNEL positive was increased by TNF-α from 9.7 to 19.7% in the absence of inhibitor and from 13.0 to 15.6% in the presence of z-IETD-fmk. Results indicate that induction of apoptosis by both heat shock and TNF-α involve activation of caspase-9-dependent pathways. It is likely that TNF-α also activates apoptotic pathways involving caspase-8 but that the degree of activation is small and caspase-9-dependent pathways are required for full activation of apoptosis.
Collapse
Affiliation(s)
- Bárbara Loureiro
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, Florida 32611-0910, USA
| | | | | |
Collapse
|
41
|
Matsuzuka T, Sakamoto N, Ozawa M, Ushitani A, Hirabayashi M, Kanai Y. Alleviation of maternal hyperthermia-induced early embryonic death by administration of melatonin to mice. J Pineal Res 2005; 39:217-23. [PMID: 16150100 DOI: 10.1111/j.1600-079x.2005.00260.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Maternal hyperthermia induces early embryonic death via increased oxidative stress to the embryo. In this study, we examined whether melatonin administered to heat-stressed pregnant mice would reduce hyperthermia-induced embryonic death. Mice were heat stressed (12 hr at 35 degrees C, 60% relative humidity) on the day of mating and melatonin (3 mg/kg body weight) was injected subcutaneously every 2 hr during heat exposure. Thereafter, zygotes were collected, and in vitro developmental ability and intracellular glutathione (GSH) content were assessed. In addition, reactive oxygen species (ROS) levels and free radical scavenging activity (FRSA) in the oviduct as well as lipid peroxidation in the liver were measured. Melatonin administration was associated with a tendency for higher intracellular GSH content in zygotes (1.67 pmol/zygote) and a significantly higher percentage of embryos that developed to the morula or blastocyst stage (47.91%; P < 0.01) compared with the parameters in heat-stressed mice that were administered a placebo (1.48 pmol GSH/zygote and 14.78% development). Lipid peroxidation levels in the liver and ROS levels in the oviduct were the same in melatonin-treated stressed mice and the controls, while these parameters were significantly higher in heat-stressed mice that were not treated with melatonin. Furthermore, FRSA in the oviduct was significantly (P < 0.05) higher in the melatonin-treated mice than in the controls. These results suggest that administration of melatonin to heat-stressed mice alleviates hyperthermia-induced early embryonic death and that this is accomplished in part by maintaining a neutral redox status within the mother.
Collapse
Affiliation(s)
- Takaya Matsuzuka
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Yeung QSY, Briton-Jones CM, Tjer GCC, Chiu TTY, Haines C. The efficacy of test tube warming devices used during oocyte retrieval for IVF. J Assist Reprod Genet 2005; 21:355-60. [PMID: 15587139 PMCID: PMC3455234 DOI: 10.1023/b:jarg.0000046203.44045.0e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To investigate whether commonly used test tube warming devices maintain a constant temperature in follicular fluid aspirates. METHODS By using a digital thermocouple, temperature was measured and comparisons were made between an analog dry block heater, a digital dry block heater, and a thermostatic test tube heater. RESULTS For small fluid volumes, temperature in the block heaters increased above 37 degrees C after being in the block for over 2 min. The thermostatic heater maintained a constant temperature, but this was below the factory setting of 36.9 degrees C. Temperature maintenance was influenced by fluid volume in each tube. CONCLUSIONS One of the key factors in the handling of gametes and embryos is the maintenance of constant temperature. Test tube warming devices require verification of their ability to maintain fluid at the desired temperature. Temperature may vary with fluid volume and the type of test tube warming device used.
Collapse
Affiliation(s)
- Queenie Sum Yee Yeung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong.
| | | | | | | | | |
Collapse
|
43
|
Matsuzuka T, Ozawa M, Nakamura A, Ushitani A, Hirabayashi M, Kanai Y. Effects of heat stress on the redox status in the oviduct and early embryonic development in mice. J Reprod Dev 2005; 51:281-7. [PMID: 15699582 DOI: 10.1262/jrd.16089] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study examined the association between redox status in the oviduct and early embryonic death in heat-stressed mice. In Experiment 1, non-pregnant mice were heat-stressed at 35 C with 60% relative humidity for 12, 24, or 36 h, and the maternal redox status was verified by measuring the levels of reactive oxygen species (ROS) and free radical scavenging activity (FRSA) in the oviduct, and thiobarbituric acid reactive substances (TBARS) and glutathione peroxidase (GSH-Px) activity in the liver. In Experiment 2, zygotes were collected from mice heat-stressed for 12 h on the day of pregnancy, and their developmental abilities were assessed in vitro, along with the intensity of DNA damage at the 2-cell stage. The TBARS value and GSH-Px activity in the liver, and ROS level in the oviduct were significantly higher in heat-stressed mice, and this increase appeared to depend on the duration of the heat stress. Maternal heat stress significantly reduced the percentage of zygotes that developed to the morula and blastocyst and the total cell number in the blastocyst. In addition, DNA damage at the 2-cell stage was significantly higher in maternally heat-stressed embryos. These results suggest that heat stress induces systemic changes in redox status in the maternal body, and the resultant increase in oxidative stress in the oviduct is possibly involved in heat stress-induced early embryonic death .
Collapse
Affiliation(s)
- Takaya Matsuzuka
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Rivera RM, Dahlgren GM, De Castro E Paula LA, Kennedy RT, Hansen PJ. Actions of thermal stress in two-cell bovine embryos: oxygen metabolism, glutathione and ATP content, and the time-course of development. Reproduction 2004; 128:33-42. [PMID: 15232062 DOI: 10.1530/rep.1.00146] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mechanism by which heat shock disrupts development of the two-cell bovine embryo was examined. The reduction in the proportion of embryos that became blastocysts caused by heat shock was not exacerbated when embryos were cultured in air (20.95% O(2)) as compared with 5% O(2). In addition, heat shock did not reduce embryonic content of glutathione, cause a significant alteration in oxygen consumption, or change embryonic ATP content. When embryos were heat-shocked at the two-cell stage and allowed to continue development until 72 h post insemination, heat-shocked embryos had fewer total nuclei and a higher percentage of them were condensed. Moreover, embryos became blocked in development at the eight-cell stage. The lack of effect of the oxygen environment on the survival of embryos exposed to heat shock, as well as the unchanged content of glutathione, suggest that free radical production is not a major cause for the inhibition in development caused by heat shock at the two-cell stage. In addition, heat shock appears to have no immediate effect on oxidative phosphorylation since no differences in ATP content were observed. Finally, the finding that heat shock causes a block to development at the eight-cell stage implies that previously reported mitochondrial damage caused by heat shock or other heat shock-induced alterations in cellular physiology render the embryo unable to proceed past the eight-cell stage.
Collapse
Affiliation(s)
- Rocío Melissa Rivera
- Department of Animal Sciences, University of Florida, Gainesville, Florida 32611-0910, USA
| | | | | | | | | |
Collapse
|
45
|
Rivera RM, Kelley KL, Erdos GW, Hansen PJ. Reorganization of Microfilaments and Microtubules by Thermal Stress in Two-Cell Bovine Embryos1. Biol Reprod 2004; 70:1852-62. [PMID: 14960486 DOI: 10.1095/biolreprod.103.024901] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Two-cell bovine embryos become arrested in development when exposed to a physiologically relevant heat shock. One of the major ultrastructural modifications caused by heat shock is translocation of organelles toward the center of the blastomere. The objective of the present study was to determine if heat- shock-induced movement of organelles is a result of cytoskeletal rearrangement. Two-cell bovine embryos were cultured at 38.5 degrees C (homeothermic temperature of the cow), 41.0 degrees C (physiologically relevant heat shock), or 43.0 degrees C (severe heat shock) for 6 h in the presence of either vehicle, latrunculin B (a microfilament depolymerizer), rhizoxin (a microtubule depolymerizer), or paclitaxel (a microtubule stabilizer). Heat shock caused a rearrangement of actin-containing filaments as detected by staining with phalloidin. Moreover, latrunculin B reduced the heat-shock-induced movement of organelles at 41.0 degrees C but not at 43.0 degrees C. In contrast, movement of organelles caused by heat shock was inhibited by rhizoxin at both temperatures. Furthermore, rhizoxin, but not latrunculin B, reduced the swelling of mitochondria caused by heat shock. Paclitaxel, while causing major changes in ultrastructure, did not prevent the movement of organelles or mitochondrial swelling. It is concluded that heat shock disrupts microtubule and microfilaments in the two-cell bovine embryo and that these changes are responsible for movement of organelles away from the periphery. In addition, intact microtubules are a requirement for heat-shock-induced swelling of mitochondria. Differences in response to rhizoxin and paclitaxel are interpreted to mean that deformation of microtubules can occur through a mechanism independent of microtubule depolymerization.
Collapse
Affiliation(s)
- Rocío M Rivera
- Department of Animal Sciences, University of Florida, Gainesville, 32611, USA
| | | | | | | |
Collapse
|