1
|
Brito LFC. Nutrition and Sexual Development in Bulls. Vet Clin North Am Food Anim Pract 2024; 40:1-10. [PMID: 37684108 DOI: 10.1016/j.cvfa.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023] Open
Abstract
This manuscript provides an overview of the effects of nutrition during different stages of bull sexual development. Nutrition during the prepubertal period can modulate the hypothalamic GnRH pulse generator. Increased nutrition results in greater LH secretion, earlier puberty, and greater testicular mass in yearling bulls, whereas low nutrition has opposite effects. Targeting average daily gain from birth to 24 weeks of age to > 1.2 kg/d and limiting gain after 24 weeks of age to < 1.6 kg/d is recommended to optimize bull sexual development.
Collapse
Affiliation(s)
- Leonardo F C Brito
- Department of Clinical Studies - New Bolton Center, University of Pennsylvania School of Veterinary Medicine, 382 West Street Road, Kennett Square, PA 19348, USA.
| |
Collapse
|
2
|
Souza FA, Martins JAM, Emerick LL, Laskoski LM, Perez-Osorio J, de Souza FF, Paredes Cañon AL, do Vale Filho VR. Seminal plasma insulin-like growth factor I and total protein concentration in peripubertal period of the Gyr bulls. Reprod Domest Anim 2021; 56:1279-1285. [PMID: 34219301 DOI: 10.1111/rda.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 07/01/2021] [Indexed: 11/29/2022]
Abstract
This study aimed to evaluate the correlation of seminal plasma IGF-I and total proteins from peripubertal bulls with semen characteristics and onset of puberty. Sixteen dairy Gyr bulls were separated into early (n = 8) and regular (n = 8) groups, according to the onset of puberty. Semen was monthly collected by electroejaculation from 14 to 26 months of age, and the onset of puberty was retrospectively determined (17.0 ± 1.6 and 19.2 ± 1.5 months, to early and regular group, respectively). Five time points were evaluated (day -60, day -30, day 0, day 30 and day 60 days of puberty), being day 0 considered as beginning of puberty. Scrotal circumference and body weight were also assessed. Semen characteristics were evaluated, the seminal plasma was separated by centrifugation and total protein and IGF-I concentrations were determined. There was no difference between groups to concentration of the seminal plasma total proteins, but we found an interaction between group and age. Seminal plasma IGF-I concentrations were not different between early and regular groups; thus, the data were combined for analysis. Combined IGF-I concentrations were positively correlated with sperm motility and concentration, age, body weight and scrotal circumference. Negative correlation was found between IGF-I concentration and total sperm defects. Increased IGF-I was observed in day -30 and day 0 of puberty in early and regular groups, respectively. Seminal plasma total proteins are involved in peripubertal modifications and IGF-I from Zebus dairy bulls can influence the seminal characteristics and the growth factor increase occurs concomitantly with body growth but cannot be used to define puberty bulls earlier.
Collapse
Affiliation(s)
| | - Jorge André Matias Martins
- Centro de Ciências Agrárias e da Biodiversidade, Universidade Federal do Cariri, Juazeiro do Norte, Brasil
| | | | | | - Jair Perez-Osorio
- Facultad de Ciencias Agropecuarias, Universidad de La Salle, Bogotá, Colombia
| | - Fabiana Ferreira de Souza
- Departamento de Cirurgia Veterinária e Reprodução Animal, FMVZ, Universidade Estadual Paulista, UNESP, Botucatu, Brazil
| | - Astrid L Paredes Cañon
- Departamento de Salud Animal y Producción de Hato, Universidad Nacional de Colombia, Bogotá, Colombia
| | | |
Collapse
|
3
|
Radovic Pletikosic SM, Starovlah IM, Miljkovic D, Bajic DM, Capo I, Nef S, Kostic TS, Andric SA. Deficiency in insulin-like growth factors signalling in mouse Leydig cells increase conversion of testosterone to estradiol because of feminization. Acta Physiol (Oxf) 2021; 231:e13563. [PMID: 32975906 DOI: 10.1111/apha.13563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
AIM A growing body of evidence pointed correlation between insulin-resistance, testosterone level and infertility, but there is scarce information about mechanisms. The aim of this study was to identify the possible mechanism linking the insulin-resistance with testosterone-producing-Leydig-cells functionality. METHODS We applied in vivo and in vitro approaches. The in vivo model of functional genomics is represented by INSR/IGF1R-deficient-testosterone-producing Leydig cells obtained from the prepubertal (P21) and adult (P80) male mice with insulin + IGF1-receptors deletion in steroidogenic cells (Insr/Igf1r-DKO). The in vitro model of INSR/IGF1R-deficient-cell was mimicked by blockade of insulin/IGF1-receptors on the primary culture of P21 and P80 Leydig cells. RESULTS Leydig-cell-specific-insulin-resistance induce the development of estrogenic characteristics of progenitor Leydig cells in prepubertal mice and mature Leydig cells in adult mice, followed with a dramatic reduction of androgen phenotype. Level of androgens in serum, testes and Leydig cells decrease as a consequence of the dramatic reduction of steroidogenic capacity and activity as well as all functional markers of Leydig cell. Oppositely, the markers for female-steroidogenic-cell differentiation and function increase. The physiological significances are the higher level of testosterone-to-estradiol-conversion in double-knock-out-mice of both ages and few spermatozoa in adults. Intriguingly, the transcription of pro-male sexual differentiation markers Sry/Sox9 increased in P21-Leydig-cells, questioning the current view about the antagonistic genetic programs underlying gonadal sex determination. CONCLUSION The results provide new molecular mechanisms leading to the development of the female phenotype in Leydig cells from Insr/Igf1r-DKO mice and could help to better understand the correlation between insulin resistance, testosterone and male (in)fertility.
Collapse
Affiliation(s)
- Sava M. Radovic Pletikosic
- Laboratory for Reproductive Endocrinology and Signalling Laboratory for Chronobiology and Aging CeRES DBE Faculty of Sciences University of Novi Sad Novi Sad Serbia
| | - Isidora M. Starovlah
- Laboratory for Reproductive Endocrinology and Signalling Laboratory for Chronobiology and Aging CeRES DBE Faculty of Sciences University of Novi Sad Novi Sad Serbia
| | - Dejan Miljkovic
- Center for Medical‐Pharmaceutical Research and Quality Control Department for Histology and Embryology Faculty of Medicine University of Novi Sad Novi Sad Serbia
| | - Dragana M. Bajic
- Laboratory for Reproductive Endocrinology and Signalling Laboratory for Chronobiology and Aging CeRES DBE Faculty of Sciences University of Novi Sad Novi Sad Serbia
| | - Ivan Capo
- Center for Medical‐Pharmaceutical Research and Quality Control Department for Histology and Embryology Faculty of Medicine University of Novi Sad Novi Sad Serbia
| | - Serge Nef
- Department of Genetic Medicine and Development Medical Faculty University of Geneva Geneva Switzerland
| | - Tatjana S. Kostic
- Laboratory for Reproductive Endocrinology and Signalling Laboratory for Chronobiology and Aging CeRES DBE Faculty of Sciences University of Novi Sad Novi Sad Serbia
| | - Silvana A. Andric
- Laboratory for Reproductive Endocrinology and Signalling Laboratory for Chronobiology and Aging CeRES DBE Faculty of Sciences University of Novi Sad Novi Sad Serbia
| |
Collapse
|
4
|
Ge RS, Li X, Wang Y. Leydig Cell and Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:111-129. [PMID: 34453734 DOI: 10.1007/978-3-030-77779-1_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leydig cells of the testis have the capacity to synthesize androgen (mainly testosterone) from cholesterol. Adult Leydig cells are the cell type for the synthesis of testosterone, which is critical for spermatogenesis. At least four steroidogenic enzymes take part in testosterone synthesis: cytochrome P450 cholesterol side chain cleavage enzyme, 3β-hydroxysteroid dehydrogenase, cytochrome P450 17α-hydroxylase/17,20-lyase and 17β-hydroxysteroid dehydrogenase isoform 3. Testosterone metabolic enzyme steroid 5α-reductase 1 and 3α-hydroxysteroid dehydrogenase are expressed in some precursor Leydig cells. Androgen is transported by androgen-binding protein to Sertoli cells, where it binds to androgen receptor to regulate spermatogenesis.
Collapse
Affiliation(s)
- Ren-Shan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Xiaoheng Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Yu Y, Li Z, Ma F, Chen Q, Lin L, Xu Q, Li Y, Xin X, Pan P, Huang T, Wang Y, Fei Q, Ge RS. Neurotrophin-3 stimulates stem Leydig cell proliferation during regeneration in rats. J Cell Mol Med 2020; 24:13679-13689. [PMID: 33090725 PMCID: PMC7753877 DOI: 10.1111/jcmm.15886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/30/2020] [Accepted: 08/17/2020] [Indexed: 11/28/2022] Open
Abstract
Neurotrophin‐3 (NT‐3) acts as an important growth factor to stimulate and control tissue development. The NT‐3 receptor, TRKC, is expressed in rat testis. Its function in regulation of stem Leydig cell development and its underlying mechanism remain unknown. Here, we reported the role of NT‐3 to regulate stem Leydig cell development in vivo and in vitro. Ethane dimethane sulphonate was used to kill all Leydig cells in adult testis, and NT‐3 (10 and 100 ng/testis) was injected intratesticularly from the 14th day after ethane dimethane sulphonate injection for 14 days. NT‐3 significantly reduced serum testosterone levels at doses of 10 and 100 ng/testis without affecting serum luteinizing hormone and follicle‐stimulating hormone levels. NT‐3 increased CYP11A1‐positive Leydig cell number at 100 ng/testis and lowered Leydig cell size and cytoplasmic size at doses of 10 and 100 ng/testis. After adjustment by the Leydig cell number, NT‐3 significantly down‐regulated the expression of Leydig cell genes (Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Hsd11b1, Insl3, Trkc and Nr5a1) and the proteins. NT‐3 increased the phosphorylation of AKT1 and mTOR, decreased the phosphorylation of 4EBP, thereby increasing ATP5O. In vitro study showed that NT‐3 dose‐dependently stimulated EdU incorporation into stem Leydig cells and inhibited stem Leydig cell differentiation into Leydig cells, thus leading to lower medium testosterone levels and lower expression of Lhcgr, Scarb1, Trkc and Nr5a1 and their protein levels. NT‐3 antagonist Celitinib can antagonize NT‐3 action in vitro. In conclusion, the present study demonstrates that NT‐3 stimulates stem Leydig cell proliferation but blocks the differentiation via TRKC receptor.
Collapse
Affiliation(s)
- Yige Yu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zengqiang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feifei Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Quanxu Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liben Lin
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiang Xu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiu Xin
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peipei Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tongliang Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qianjin Fei
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Azarniad R, Razi M, Hasanzadeh S, Malekinejad H. Experimental diabetes negatively affects the spermatogonial stem cells' self-renewal by suppressing GDNF network interactions. Andrologia 2020; 52:e13710. [PMID: 32539191 DOI: 10.1111/and.13710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/03/2020] [Accepted: 05/15/2020] [Indexed: 01/09/2023] Open
Abstract
The present study was done to analyse the time-dependent effects of diabetes on Sertoli cells-spermatogonial stem cells' (SSCs) network interaction by focusing on glial cell line-derived neurotrophic factor (GDNF) and its special receptors, gfrα1 and c-RET as well as the Bcl-6b. In total, 40 Wistar rats were considered in; control, 20, 45 and 60 days diabetes-induced groups. An experimental diabetes was induced by STZ. The GDNF, gfrα1, c-RET and Bcl-6b expressions were evaluated. The serum level of testosterone, tubular repopulation (RI) and spermiogenesis (SPI) indices, general histological alterations, germ cells, mRNA damage, sperm count and viability were assessed. The diabetes, in a time-dependent manner, diminished mRNA and protein levels of GDNF, gfrα1, c-RET and Bcl-6b versus control group (p < .05), enhanced percentage of seminiferous tubules with negative RI, SPI, and diminished Leydig and Sertoli cells distribution, serum levels of testosterone, sperm count and viability. Finally, the number, percentage of cells and seminiferous tubules with normal mRNA content were significantly (p < .05) diminished. In conclusion, as a new data, we showed that the diabetes by inducing severe mRNA damage and suppressing GDNF, gfrα1, c-RET and Bcl-6b expressions, potentially affects the Sertoli-SSCs' network and consequently inhibits the SSCs' self-renewal process.
Collapse
Affiliation(s)
- Rozita Azarniad
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mazdak Razi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Shapour Hasanzadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hassan Malekinejad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.,Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
7
|
Costa O, Almeida D, Pinto S, Chaves R, Laskoski L, Souza F. Insulina e IGF-1 no meio extensor de criopreservação seminal bovina. ARQ BRAS MED VET ZOO 2020. [DOI: 10.1590/1678-4162-11291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO Objetivou-se avaliar a condição metabólica e estrutural das células espermáticas bovinas após congelação, com adição prévia de IGF-I e insulina no meio diluidor seminal. Os ejaculados de seis touros Nelore foram submetidos a quatro tratamentos: controle; insulina (100µUI/mL); IGF-I (150ng/mL) e insulina + IGF-I (50µUI/mL e 75ng/mL, respectivamente). Após a congelação, realizaram-se os testes de termorresistência rápida, coloração pelo corante azul de tripan e Giemsa, além da análise computadorizada da motilidade espermática, da integridade das membranas plasmática e acrossomal, e da peça intermediária por meio de sondas fluorescentes. O teste de termorresistência rápida apresentou efeito dentro do tempo de cada tratamento, mas não entre os tratamentos. Na análise computadorizada da motilidade espermática, foram observados movimento, motilidade e velocidade espermáticos; não houve efeitos dos tratamentos sobre qualquer uma dessas variáveis. Respostas iguais foram obtidas com as sondas fluorescentes e o corante azul de tripan/Giemsa. A adição de insulina e IGF-I, de forma isolada ou combinada, ao meio diluidor para congelação de sêmen não produziu efeitos sobre as condições metabólica e estrutural das células espermáticas.
Collapse
|
8
|
Neirijnck Y, Papaioannou MD, Nef S. The Insulin/IGF System in Mammalian Sexual Development and Reproduction. Int J Mol Sci 2019; 20:ijms20184440. [PMID: 31505893 PMCID: PMC6770468 DOI: 10.3390/ijms20184440] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/26/2022] Open
Abstract
Persistent research over the past few decades has clearly established that the insulin-like family of growth factors, which is composed of insulin and insulin-like growth factors 1 (IGF1) and 2 (IGF2), plays essential roles in sexual development and reproduction of both males and females. Within the male and female reproductive organs, ligands of the family act in an autocrine/paracrine manner, in order to guide different aspects of gonadogenesis, sex determination, sex-specific development or reproductive performance. Although our knowledge has greatly improved over the last years, there are still several facets that remain to be deciphered. In this review, we first briefly outline the principles of sexual development and insulin/IGF signaling, and then present our current knowledge, both in rodents and humans, about the involvement of insulin/IGFs in sexual development and reproductive functions. We conclude by highlighting some interesting remarks and delineating certain unanswered questions that need to be addressed in future studies.
Collapse
Affiliation(s)
- Yasmine Neirijnck
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland.
| | - Marilena D Papaioannou
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland.
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
9
|
De Sanctis V, Soliman AT, Canatan D, Di Maio S, Elsedfy H, Baioumi A, Kattamis C. Gonadotropin replacement in male thalassemia major patients with arrested puberty and acquired hypogonadotropic hypogonadism (AAH): preliminary results and potential factors affecting induction of spermatogenesis. Endocrine 2019; 63:167-170. [PMID: 30298384 DOI: 10.1007/s12020-018-1772-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Vincenzo De Sanctis
- Pediatric and Adolescent Outpatient Clinic, Quisisana Hospital, Ferrara, Italy
| | - Ashraf T Soliman
- Department of Pediatrics, Division of Endocrinology, Alexandria University Children's Hospital, Alexandria, Egypt
| | - Duran Canatan
- Thalassemia Diagnosis Center of Mediterranean Blood Diseases Foundation, Antalya, Turkey
| | - Salvatore Di Maio
- Emeritus Director in Pediatrics, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Heba Elsedfy
- Department of Pediatrics, Ain Shams University, Cairo, Egypt.
| | - Alaa Baioumi
- Department of Pediatrics, Ain Shams University, Cairo, Egypt
| | - Christos Kattamis
- First Department of Paediatrics, National Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
He Y, Liu Y, Wang QZ, Guo F, Huang F, Ji L, An T, Qin G. Vitamin D 3 Activates Phosphatidylinositol-3-Kinase/Protein Kinase B via Insulin-Like Growth Factor-1 to Improve Testicular Function in Diabetic Rats. J Diabetes Res 2019; 2019:7894950. [PMID: 31281852 PMCID: PMC6589201 DOI: 10.1155/2019/7894950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 02/04/2019] [Accepted: 05/15/2019] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE In diabetes mellitus, vitamin D3 deficiency affects sex hormone levels and male fertility; however, the mechanism leading to the disorder is unclear. This research was designed to investigate the mechanism of vitamin D3 deficiency and hypogonadism in diabetic rats. Our aim was to assess serum vitamin D3 levels and the relationship among vitamin D3, insulin-like growth factor-1 (IGF-1), and testicular function. MATERIALS AND METHODS Rats with streptozotocin-induced diabetes were randomly divided into four groups and treated with different doses of vitamin D3: no vitamin D3, low (0.025 μg/kg/day), high (0.1 μg/kg/day), and high (0.1 μg/kg/day) with JB-1 (the insulin-like growth factor-1 receptor inhibitor group, 100 μg/kg/day). The groups were compared with wild-type rats, which function as the control group. Various parameters such as vitamin D3 and IGF-1 were compared between the experimental and wild-type groups, and their correlations were determined. RESULTS Twelve weeks of vitamin D3 supplementation improved the testosterone levels, as shown by the increase in the level of serum IGF-1 in diabetic rats. Phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT), which was a downstream of the signaling pathway of IGF-1, was significantly increased after vitamin D3 treatment. CONCLUSIONS The study shows that vitamin D3 may promote the expression of testosterone and improve testicular function in diabetic rats by activating PI3K/AKT via IGF-1.
Collapse
Affiliation(s)
- Yanyan He
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Liu
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qing-Zhu Wang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Feng Guo
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Fengjuan Huang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Linlin Ji
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Tingting An
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guijun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
11
|
Dance A, Kastelic J, Thundathil J. A combination of insulin-like growth factor I (IGF-I) and FSH promotes proliferation of prepubertal bovine Sertoli cells isolated and cultured in vitro. Reprod Fertil Dev 2018; 29:1635-1641. [PMID: 27700982 DOI: 10.1071/rd16122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/03/2016] [Indexed: 11/23/2022] Open
Abstract
Beef and dairy bull calves fed a low-nutrition diet during early life had decreased concentrations of circulating insulin-like growth factor I (IGF-I), delayed increases in testosterone, smaller testes and delayed puberty compared with those fed high-nutrition diets. Although IGF-1 has important roles in Sertoli cell function in rats and mice, this has not been well documented in bulls. The objectives of this study were to: (1) isolate Sertoli cells from bull calves at 8 weeks of age, (2) culture them in vitro and (3) determine the effects of IGF-I, FSH and a combination of both hormones on cell proliferation. For Sertoli cell isolation, minced testicular tissues were treated with collagenase followed by trypsin and hyaluronidase to digest seminiferous tubules and release Sertoli cells. In this study, Sertoli cells were successfully isolated from 8-week-old Holstein bull calves (n=4) and these cells were cultured for up to 8 days. A combination of IGF-I and FSH increased proliferation (~18%) and therefore cell number (1.5-fold) of prepubertal bovine Sertoli cells in culture, providing clear evidence that IGF-I has a similar role in bovine Sertoli cells as reported in rodents.
Collapse
Affiliation(s)
- A Dance
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Dr. NW Calgary, AB T2N 4N1, Canada
| | - J Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Dr. NW Calgary, AB T2N 4N1, Canada
| | - J Thundathil
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Dr. NW Calgary, AB T2N 4N1, Canada
| |
Collapse
|
12
|
Koskenniemi JJ, Virtanen HE, Wohlfahrt-Veje C, Löyttyniemi E, Skakkebaek NE, Juul A, Andersson AM, Main KM, Toppari J. Postnatal Changes in Testicular Position Are Associated With IGF-I and Function of Sertoli and Leydig Cells. J Clin Endocrinol Metab 2018; 103:1429-1437. [PMID: 29408984 DOI: 10.1210/jc.2017-01889] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/26/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT Despite clinical guidelines calling for repetitive examination of testicular position during childhood, little is known of normal changes in testicular position during childhood, let alone factors that control it. OBJECTIVE To assess changes in and factors associated with testicular position during childhood. DESIGN Testicular position (the distance from the pubic bone to the upper pole of the testes) at birth, 3 months, 18 months, 36 months, and 7 years and reproductive hormones at 3 months were measured. SETTING Prenatally recruited, prospective longitudinal birth cohort. PARTICIPANTS A total of 2545 boys were recruited prenatally in a Danish-Finnish birth cohort and had a testicular position examination available. A subset of 680 Danish and 362 Finnish boys had serum reproductive hormone concentrations and insulin-like growth factor I (IGF-I) determined at 3 months. MAIN OUTCOME MEASURES Testicular distance to pubic bone (TDP), serum reproductive hormone, and IGF-I concentrations. RESULTS TDP increased from birth to 3 months and decreased thereafter. Length, gestational age, weight for gestational age, and penile length were positively associated with larger TDP and thus lower testicular position in a linear mixed-effect model. Furthermore, IGF-I concentration, inhibin B/follicle-stimulating hormone ratio, and testosterone/luteinizing hormone ratio were all independently and positively associated with longer TDP. CONCLUSIONS We provide longitudinal data on postnatal changes in TDP. TDP is dynamic and associated with Leydig and Sertoli cell function as well as with IGF-I levels during the first months of life at mini-puberty of infancy. TDP may thus be a useful biomarker of postnatal testicular function.
Collapse
Affiliation(s)
- Jaakko J Koskenniemi
- Departments of Physiology, Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Helena E Virtanen
- Departments of Physiology, Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Christine Wohlfahrt-Veje
- Department of Growth and Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Niels E Skakkebaek
- Department of Growth and Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Katharina M Main
- Department of Growth and Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jorma Toppari
- Departments of Physiology, Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Department of Growth and Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Neirijnck Y, Calvel P, Kilcoyne KR, Kühne F, Stévant I, Griffeth RJ, Pitetti JL, Andric SA, Hu MC, Pralong F, Smith LB, Nef S. Insulin and IGF1 receptors are essential for the development and steroidogenic function of adult Leydig cells. FASEB J 2018; 32:3321-3335. [PMID: 29401624 DOI: 10.1096/fj.201700769rr] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The insulin family of growth factors (insulin, IGF1, and IGF2) are critical in sex determination, adrenal differentiation, and testicular function. Notably, the IGF system has been reported to mediate the proliferation of steroidogenic cells. However, the precise role and contribution of the membrane receptors mediating those effects, namely, insulin receptor (INSR) and type-I insulin-like growth factor receptor (IGF1R), have not, to our knowledge, been investigated. We show here that specific deletion of both Insr and Igf1r in steroidogenic cells in mice leads to severe alterations of adrenocortical and testicular development. Double-mutant mice display drastic size reduction of both adrenocortex and testes, with impaired corticosterone, testosterone, and sperm production. Detailed developmental analysis of the testes revealed that fetal Leydig cell (LC) function is normal, but there is a failure of adult LC maturation and steroidogenic function associated with accumulation of progenitor LCs (PLCs). Cell-lineage tracing revealed PLC enrichment is secondary to Insr and Igf1r deletion in differentiated adult LCs, suggesting a feedback mechanism between cells at different steps of differentiation. Taken together, these data reveal the cell-autonomous and nonautonomous roles of the IGF system for proper development and maintenance of steroidogenic lineages.-Neirijnck, Y., Calvel, P., Kilcoyne, K. R., Kühne, F., Stévant, I., Griffeth, R. J., Pitetti, J.-L., Andric, S. A., Hu, M.-C., Pralong, F., Smith, L. B., Nef, S. Insulin and IGF1 receptors are essential for the development and steroidogenic function of adult Leydig cells.
Collapse
Affiliation(s)
- Yasmine Neirijnck
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Pierre Calvel
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Karen R Kilcoyne
- Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Françoise Kühne
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Isabelle Stévant
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Richard J Griffeth
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Jean-Luc Pitetti
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Silvana A Andric
- Laboratory for Reproductive Endocrinology and Signaling, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Meng-Chun Hu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - François Pralong
- Department of Internal Medicine, University Hospital, Lausanne, Switzerland; and
| | - Lee B Smith
- Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, Edinburgh, Scotland, United Kingdom.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
14
|
Ye L, Li X, Li L, Chen H, Ge RS. Insights into the Development of the Adult Leydig Cell Lineage from Stem Leydig Cells. Front Physiol 2017; 8:430. [PMID: 28701961 PMCID: PMC5487449 DOI: 10.3389/fphys.2017.00430] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/06/2017] [Indexed: 02/06/2023] Open
Abstract
Adult Leydig cells (ALCs) are the steroidogenic cells in the testes that produce testosterone. ALCs develop postnatally from a pool of stem cells, referred to as stem Leydig cells (SLCs). SLCs are spindle-shaped cells that lack steroidogenic cell markers, including luteinizing hormone (LH) receptor and 3β-hydroxysteroid dehydrogenase. The commitment of SLCs into the progenitor Leydig cells (PLCs), the first stage in the lineage, requires growth factors, including Dessert Hedgehog (DHH) and platelet-derived growth factor-AA. PLCs are still spindle-shaped, but become steroidogenic and produce mainly androsterone. The next transition in the lineage is from PLC to the immature Leydig cell (ILC). This transition requires LH, DHH, and androgen. ILCs are ovoid cells that are competent for producing a different form of androgen, androstanediol. The final stage in the developmental lineage is ALC. The transition to ALC involves the reduced expression of 5α-reductase 1, a step that is necessary to make the cells to produce testosterone as the final product. The transitions along the Leydig cell lineage are associated with the progressive down-regulation of the proliferative activity, and the up-regulation of steroidogenic capacity, with each step requiring unique regulatory signaling.
Collapse
Affiliation(s)
- Leping Ye
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Xiaoheng Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Haolin Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Ren-Shan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou, China
| |
Collapse
|
15
|
Landry DA, Sormany F, Haché J, Roumaud P, Martin LJ. Steroidogenic genes expressions are repressed by high levels of leptin and the JAK/STAT signaling pathway in MA-10 Leydig cells. Mol Cell Biochem 2017; 433:79-95. [PMID: 28343310 DOI: 10.1007/s11010-017-3017-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/15/2017] [Indexed: 01/14/2023]
Abstract
The adipose tissue is an important endocrine organ secreting numerous peptide hormones, including leptin. Increased circulating levels of leptin, as a result of hormonal resistance in obese individuals, may contribute to lower androgen production in obese males. However, the molecular mechanisms involved need to be better defined. Androgens are mainly produced by Leydig cells within the testis. In male rodents, activation of the leptin receptor modulates a cascade of intracellular signal transduction pathways which may lead to regulation of transcription factors having influences on steroidogenesis in Leydig cells. Thus, as a result of high leptin levels interacting with its receptor and modulating the activity of the JAK/STAT signaling pathway, the activity of transcription factors important for steroidogenic genes expressions may be inhibited in Leydig cells. Here we show that Lepr is increasingly expressed within Leydig cells according to postnatal development. Although high levels of leptin (corresponding to obesity condition) alone had no effect on Leydig cells' steroidogenic genes expression, it downregulated cAMP-dependent activations of the cholesterol transporter Star and of the rate-limiting steroidogenic enzyme Cyp11a1. Our results suggest that STAT transcriptional activity is downregulated by high levels of leptin, leading to reduced cAMP-dependent steroidogenic genes (Star and Cyp11a1) expressions in MA-10 Leydig cells. However, other transcription factors such as members of the SMAD and NFAT families may be involved and need further investigation to better define how leptin regulates their activities and their relevance for Leydig cells function.
Collapse
Affiliation(s)
- David A Landry
- Department of Biology, Université de Moncton, 18, avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada
| | - François Sormany
- Department of Biology, Université de Moncton, 18, avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada
| | - Josée Haché
- Department of Biology, Université de Moncton, 18, avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada
| | - Pauline Roumaud
- Department of Biology, Université de Moncton, 18, avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada
| | - Luc J Martin
- Department of Biology, Université de Moncton, 18, avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada.
| |
Collapse
|
16
|
McBride JA, Coward RM. Recovery of spermatogenesis following testosterone replacement therapy or anabolic-androgenic steroid use. Asian J Androl 2017; 18:373-80. [PMID: 26908067 PMCID: PMC4854084 DOI: 10.4103/1008-682x.173938] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The use of testosterone replacement therapy (TRT) for hypogonadism continues to rise, particularly in younger men who may wish to remain fertile. Concurrently, awareness of a more pervasive use of anabolic-androgenic steroids (AAS) within the general population has been appreciated. Both TRT and AAS can suppress the hypothalamic-pituitary-gonadal (HPG) axis resulting in diminution of spermatogenesis. Therefore, it is important that clinicians recognize previous TRT or AAS use in patients presenting for infertility treatment. Cessation of TRT or AAS use may result in spontaneous recovery of normal spermatogenesis in a reasonable number of patients if allowed sufficient time for recovery. However, some patients may not recover normal spermatogenesis or tolerate waiting for spontaneous recovery. In such cases, clinicians must be aware of the pathophysiologic derangements of the HPG axis related to TRT or AAS use and the pharmacologic agents available to reverse them. The available agents include injectable gonadotropins, selective estrogen receptor modulators, and aromatase inhibitors, but their off-label use is poorly described in the literature, potentially creating a knowledge gap for the clinician. Reviewing their use clinically for the treatment of hypogonadotropic hypogonadism and other HPG axis abnormalities can familiarize the clinician with the manner in which they can be used to recover spermatogenesis after TRT or AAS use.
Collapse
Affiliation(s)
| | - Robert M Coward
- Department of Urology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7235, USA
| |
Collapse
|
17
|
Bollwein H, Janett F, Kaske M. Impact of nutritional programming on the growth, health, and sexual development of bull calves. Domest Anim Endocrinol 2016; 56 Suppl:S180-90. [PMID: 27345315 DOI: 10.1016/j.domaniend.2016.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 11/19/2022]
Abstract
The growth, health, and reproductive performance of bull calves are important prerequisites for a successful cattle breeding program. Therefore, several attempts have been made to improve these parameters via nutritional programming. Although an increase in energy uptake during the postweaning period (7-8 mo of age) of the calves leads to a faster growing rate, it has no positive effects on sexual development. In contrast, a high-nutrition diet during the prepubertal period (8-20 wk of age) reduced the age at puberty of the bulls and increased the size and/or weight of the testis and the epididymal sperm reserves. This faster sexual development is associated with an increased transient LH peak, which seems to be mediated by an increase in serum IGF-I concentrations. However, the exact mechanisms responsible for the interaction between nutrition and the subsequent development of the calves are not clear. The sexual development of bull calves depends not only on the nutrition of the calves after birth but also on the feed intake of their mothers during pregnancy. In contrast to the effects of the feed intake of the bull calves, a high-nutrition diet fed to the mother during the first trimester has negative effects on the reproductive performance of their offspring. In conclusion, it has been clearly demonstrated that growth, health, and reproductive performance can be improved by nutritional programming, but further studies are necessary to obtain a better understanding about the mechanisms responsible for this phenomenon.
Collapse
Affiliation(s)
- H Bollwein
- Clinic of Reproductive Medicine, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich.
| | - F Janett
- Clinic of Reproductive Medicine, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich
| | - M Kaske
- Clinic of Reproductive Medicine, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich
| |
Collapse
|
18
|
Zhang YF, Yuan KM, Liang Y, Chu YH, Lian QQ, Ge YF, Zhen W, Sottas CM, Su ZJ, Ge RS. Alterations of gene profiles in Leydig-cell-regenerating adult rat testis after ethane dimethane sulfonate-treatment. Asian J Androl 2015; 17:253-60. [PMID: 25337835 PMCID: PMC4405920 DOI: 10.4103/1008-682x.136447] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Only occupying about 1%–5% of total testicular cells, the adult Leydig cell (ALC) is a unique endocrine cell that produces androgens. Rat Leydig cells regenerate after these cells in the testis are eliminated with ethane dimethane sulfonate (EDS). In this study, we have characterized Leydig cell regeneration and messenger ribonucleic acids (mRNA) profiles of EDS treated rat testes. Serum testosterone, testicular gene profiling and some steroidogenesis-related proteins were analyzed at 7, 21, 35 and 90 days after EDS treatment. Testicular testosterone levels declined to undetectable levels until 7 days after treatment and then started to recover. Seven days after treatment, 81 mRNAs were down-regulated greater than or equal to two-fold, with 48 becoming undetectable. These genes increased their expression 21 days and completely returned to normal levels 90 days after treatment. The undetectable genes include steroidogenic pathway proteins: steroidogenic acute regulatory protein, Scarb1, Cyp11a1, Cyp17a1, Hsd3b1, Cyp1b1 and Cyp2a1. Seven days after treatment, there were 89 mRNAs up-regulated two-fold or more including Pkib. These up-regulated mRNAs returned to normal 90 days after treatment. Cyp2a1 did not start to recover until 35 days after treatment, indicating that this gene is only expressed in ALCs not in the precursor cells. Quantitative polymerase chain reaction, western blotting and semi-quantitative immunohistochemical staining using tissue array confirmed the changes of several randomly picked genes and their proteins.
Collapse
Affiliation(s)
| | | | | | - Yan-Hui Chu
- Heilongjiang Key Laboratory of Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang 157011, China,
| | | | | | | | | | | | - Ren-Shan Ge
- The 2nd Affiliated Hospital, Wenzhou Medical College, Wenzhou 325000, China; The Population Council, New York 10065, USA,
| |
Collapse
|
19
|
Hou L, Dong Q, Wu YJ, Sun YX, Guo YY, Huo YH. Gonadotropins facilitate potential differentiation of human bone marrow mesenchymal stem cells into Leydig cells in vitro. Kaohsiung J Med Sci 2015; 32:1-9. [PMID: 26853168 DOI: 10.1016/j.kjms.2015.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/02/2015] [Accepted: 09/16/2015] [Indexed: 02/05/2023] Open
Abstract
Infertility due to low testosterone levels has increased in recent years. This has impacted the social well-being of the patients. This study was undertaken to investigate the potential of gonadotropins in facilitating differentiation of human bone marrow mesenchymal stem cells (BMSCs) into Leydig cells in vitro. BMSCs were isolated, cultured, and their biological characteristics were observed. BMSCs were induced with gonadotropins in vitro and their ability to differentiate into Leydig cells was studied. The level of expression of 3-beta hydroxysteroid dehydrogenase (3β-HSD) and secretion of testosterone were determined using flow cytometry and enzyme-linked immunosorbent assay, respectively, and the results were compared between the experimental and control groups. The cultured BMSCs showed a typical morphology of the fibroblast-like colony. The growth curve of cells formed an S-shape. After inducing the cells for 8-13 days, the cells in the experimental group increased in size and showed typical characteristics of Leydig cells, and the growth occurred in spindle or stellate shapes. Cells from the experimental group highly expressed 3β-HSD, and there was a gradual increase in the number of Leydig cells. The control group did not express 3β-HSD. The level of testosterone in the experimental group was higher than the control group (p < 0.05). Additionally, the cells in the experimental group secreted higher levels of testosterone with increased culture time. The expression of Leydig cell-specific markers in the experimental group was significantly higher (p < 0.05). With these findings, BMSCs can be considered a new approach for the treatment of patients with low androgen levels.
Collapse
Affiliation(s)
- Lin Hou
- Department of Urology, Number 5 Hospital of Datong, Datong, China
| | - Qiang Dong
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Yun-Jian Wu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan-Xing Sun
- Department of Urology, Number 5 Hospital of Datong, Datong, China
| | - Yan-Yu Guo
- Department of Rheumatology, Number 5 Hospital of Datong, Datong, China
| | - Yue-Hong Huo
- Department of Rheumatology, Number 5 Hospital of Datong, Datong, China
| |
Collapse
|
20
|
Choi YS, Song JE, Kong BS, Hong JW, Novelli S, Lee EJ. The Role of Foxo3 in Leydig Cells. Yonsei Med J 2015; 56:1590-6. [PMID: 26446641 PMCID: PMC4630047 DOI: 10.3349/ymj.2015.56.6.1590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/03/2014] [Accepted: 11/11/2014] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Foxo3 in female reproduction has been reported to regulate proliferation of granulose cells that form follicles. There are no reports so far that discuss on the role of Foxo3 in males. This study was designed to outline the role of Foxo3 in the testes. MATERIALS AND METHODS Testes from mice at birth to postpartum week (PPW) 5 were isolated and examined for the expression of Foxo3 using immunostaining. To elucidate role of Foxo3 in Leydig cells, R2C cells were treated with luteinizing hormone (LH) and the phosphorylation of Foxo3. Testosterone and steroidogenic acute regulatory (StAR) protein levels were measured after constitutive active [triple mutant (TM)] human FOXO3 adenovirus was transduced and StAR promoter assay was performed. RESULTS Foxo3 expression in the testicles started from birth and lasted until PPW 3. After PPW 3, most Foxo3 expression occurred in the nuclei of Leydig cells; however, at PPW 5, Foxo3 was expressed in both the nucleus and cytoplasm. When R2C cells were treated with luteinizing hormone, Foxo3 phosphorylation levels by AKT increased. After blocking the PI3K pathway, LH-induced phosphorylated Foxo3 levels decreased, indicating that LH signaling regulates Foxo3 localization. When active FOXO3-TM adenovirus was introduced into a Leydig tumor cell line, the concentrations of testosterone and StAR protein decreased. When FOXO3 and a StAR promoter vector were co-transfected into HEK293 cells for a reporter assay, FOXO3 inhibited the StAR promoter. CONCLUSION FOXO3 affects testosterone synthesis by inhibiting the formation of StAR protein. LH hormone, meanwhile, influences Foxo3 localization, mediating its function.
Collapse
Affiliation(s)
- Young Suk Choi
- Endocrinology, Institute of Endocrine Research, Brain Korea 21 PLUS Project for Medical Science and Yonsei University College of Medicine, Seoul, Korea
| | - Joo Eun Song
- Endocrinology, Institute of Endocrine Research, Brain Korea 21 PLUS Project for Medical Science and Yonsei University College of Medicine, Seoul, Korea
| | - Byung Soo Kong
- Endocrinology, Institute of Endocrine Research, Brain Korea 21 PLUS Project for Medical Science and Yonsei University College of Medicine, Seoul, Korea
| | - Jae Won Hong
- Department of Internal Medicine, Inje University Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Silvia Novelli
- Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Eun Jig Lee
- Endocrinology, Institute of Endocrine Research, Brain Korea 21 PLUS Project for Medical Science and Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
21
|
Piotrowska K, Sluczanowska-Glabowska S, Kucia M, Bartke A, Laszczynska M, Ratajczak MZ. Histological changes of testes in growth hormone transgenic mice with high plasma level of GH and insulin-like growth factor-1. Folia Histochem Cytobiol 2015; 53:249-58. [PMID: 26348370 DOI: 10.5603/fhc.a2015.0024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 09/08/2015] [Accepted: 09/07/2015] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Overexpression of growth hormone (GH) leads to increase in insulin-like growth factor-1 (IGF-1) plasma level, stimulation of growth and increase in body size, organomegaly and reduced body fat. The action of GH affects all the organs and transgenic mice that overexpress bovine GH (bGH mice) serve as convenient model to study somatotropic axis. Male mice overexpressing GH are fertile, however, they show reduced overall lifespan as well as reproductive life span. The aim of the study was to evaluate the morphology and expression of androgen receptor (AR) and luteinizing hormone receptor (LHR) of bGH mice testes. MATERIAL AND METHODS The experiment was performed on 6 and 12 month-old bGH male mice and 6 and 12 month-old wild type (WT) littermates (8 animals in each group). The morphology of testes was evaluated on deparaffinized sections stained by the periodic acid-Schiff (PAS) method. Expression of AR and LHR was investigated by immunohistochemistry and diameters of seminiferous tubules (ST) were measured on round cross sections of ST. RESULTS We noted larger testes in 6-month bGH mice as compared to normal WT littermates. The morpho-logical observations revealed essentially normal structure of Leydig cells, seminiferous epithelium and other morphological structures. However, some changes like tubules containing only Sertoli cells, tubules with arrested spermatogenesis or vacuoles in seminiferous epithelium could be attributed to the overexpression of GH. In contrast to WT mice, 12 month-old bGH mice displayed first symptoms of testicular aging. The immunoexpres-sion of AR and LHR was decreased in 12 month-old bGH males as compared to 12 month-old WT mice and younger animals. CONCLUSION Chronic exposure to elevated GH level accelerates testicular aging and thus potentially may change response of Leydig cells to LH and Sertoli and germ cells to testosterone.
Collapse
|
22
|
Daigle M, Roumaud P, Martin LJ. Expressions of Sox9, Sox5, and Sox13 transcription factors in mice testis during postnatal development. Mol Cell Biochem 2015; 407:209-21. [PMID: 26045173 DOI: 10.1007/s11010-015-2470-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/29/2015] [Indexed: 01/01/2023]
Abstract
SRY-related box (Sox) transcription factors are conserved among vertebrate species. These proteins regulate multiple processes including sex determination and testis differentiation of the male embryo. Although members of the Sox family have been identified in pre- and postnatal Sertoli cells, they have never been characterized in adult Leydig cells. The objectives of this research were to identify expressions of Sox9, Sox5, and Sox13 in mice Leydig cell cultures and to establish their expression profiles in postnatal mice testes at different developmental stages. Methods used include Western blots and qPCR of stimulated MA-10 cell cultures and whole mice testes. Sox9, Sox5, and Sox13 proteins were detected in MA-10 cells as well as whole mouse testis. Although Sox9, Sox5, and Sox13 mRNA levels from whole mice testes tended to increase according to postnatal development, these results were not significant. Sox members were also detected in whole mice testis by Western Blot. However, Sox9, Sox5, and Sox13 protein expressions remained relatively constant during postnatal development from postnatal (P) day 60 to P365. Being newly characterized in the mouse testis, Sox13 was mainly localized by immunofluorescence within the nuclei of cells from seminiferous tubules, possibly spermatocytes and Sertoli cells. In addition, Sox9, Sox5, and Sox13 proteins were characterized in the nuclei of MA-10 Leydig cell cultures. Their expressions and transcriptional activities remained unaffected by activators of the cAMP/PKA pathway. Thus, Sox9, Sox5, and Sox13 transcription factors are expressed in postnatal testis and may regulate multiple functions such as steroidogenesis and spermatogenesis.
Collapse
Affiliation(s)
- Mikella Daigle
- Department of Biology, Université de Moncton, 18, Avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada
| | | | | |
Collapse
|
23
|
Teerds KJ, Huhtaniemi IT. Morphological and functional maturation of Leydig cells: from rodent models to primates. Hum Reprod Update 2015; 21:310-28. [PMID: 25724971 DOI: 10.1093/humupd/dmv008] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 01/15/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Leydig cells (LC) are the sites of testicular androgen production. Development of LC occurs in the testes of most mammalian species as two distinct growth phases, i.e. as fetal and pubertal/adult populations. In primates there are indications of a third neonatal growth phase. LC androgen production begins in embryonic life and is crucial for the intrauterine masculinization of the male fetal genital tract and brain, and continues until birth after which it rapidly declines. A short post-natal phase of LC activity in primates (including human) termed 'mini-puberty' precedes the period of juvenile quiescence. The adult population of LC evolves, depending on species, in mid- to late-prepuberty upon reawakening of the hypothalamic-pituitary-testicular axis, and these cells are responsible for testicular androgen production in adult life, which continues with a slight gradual decline until senescence. This review is an updated comparative analysis of the functional and morphological maturation of LC in model species with special reference to rodents and primates. METHODS Pubmed, Scopus, Web of Science and Google Scholar databases were searched between December 2012 and October 2014. Studies published in languages other than English or German were excluded, as were data in abstract form only. Studies available on primates were primarily examined and compared with available data from specific animal models with emphasis on rodents. RESULTS Expression of different marker genes in rodents provides evidence that at least two distinct progenitor lineages give rise to the fetal LC (FLC) population, one arising from the coelomic epithelium and the other from specialized vascular-associated cells along the gonad-mesonephros border. There is general agreement that the formation and functioning of the FLC population in rodents is gonadotrophin-responsive but not gonadotrophin-dependent. In contrast, although there is in primates some controversy on the role of gonadotrophins in the formation of the FLC population, there is consensus about the essential role of gonadotrophins in testosterone production. Like the FLC population, adult Leydig cells (ALC) in rodents arise from stem cells, which have their origin in the fetal testis. In contrast, in primates the ALC population is thought to originate from FLC, which undergo several cycles of regression and redifferentiation before giving rise to the mature ALC population, as well as from differentiation of stem cells/precursor cells. Despite this difference in origin, both in primates and rodents the formation of the mature and functionally active ALC population is critically dependent on the pituitary gonadotrophin, LH. From studies on rodents considerable knowledge has emerged on factors that are involved besides LH in the regulation of this developmental process. Whether the same factors also play a role in the development of the mature primate LC population awaits further investigation. CONCLUSION Distinct populations of LC develop along the life span of males, including fetal, neonatal (primates) and ALC. Despite differences in the LC lineages of rodents and primates, the end product is a mature population of LC with the main function to provide androgens necessary for the maintenance of spermatogenesis and extra-gonadal androgen actions.
Collapse
Affiliation(s)
- Katja J Teerds
- Human and Animal Physiology, Wageningen University, De Elst 1, 6709 WD, Wageningen, The Netherlands
| | - Ilpo T Huhtaniemi
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, Du Cane Road, W12 0NN London, UK Department of Physiology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| |
Collapse
|
24
|
Dance A, Thundathil J, Wilde R, Blondin P, Kastelic J. Enhanced early-life nutrition promotes hormone production and reproductive development in Holstein bulls. J Dairy Sci 2015; 98:987-98. [DOI: 10.3168/jds.2014-8564] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/03/2014] [Indexed: 11/19/2022]
|
25
|
Lin H, Huang Y, Su Z, Zhu Q, Ge Y, Wang G, Wang CQF, Mukai M, Holsberger DR, Cooke PS, Lian QQ, Ge RS. Deficiency of CDKN1A or both CDKN1A and CDKN1B affects the pubertal development of mouse Leydig cells. Biol Reprod 2015; 92:77. [PMID: 25609837 DOI: 10.1095/biolreprod.114.118463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cyclin-dependent kinase inhibitors p21(Cip1) (CDKN1A) and p27(Kip1) (CDKN1B) are expressed in Leydig cells. Previously, we reported that Cdkn1b knockout in the mouse led to increased Leydig cell proliferative capacity and lower steroidogenesis. However, the relative importance of CDKN1A and CDKN1B in these regulations was unclear. In the present study, we examined the relative importance of CDKN1A and CDKN1B in regulation of Leydig cell proliferation and steroidogenesis by whole-body knockout of CDKN1A (Cdkn1a(-/-)) and CDKN1A/CDKN1B double knockout (DBKO). The cell number, 5-bromo-2-deoxyuridine incorporation rate, steroidogenesis, and steroidogenic enzyme mRNA levels and activities of Leydig cells were compared among wild-type (WT), Cdkn1a(-/-), and DBKO mice. Relative to WT mice, Leydig cell number per testis was doubled in the DBKO and unchanged in the Cdkn1a(-/-) mice. Testicular testosterone levels and mRNA levels for luteinizing hormone receptor (Lhcgr), steroidogenic acute regulatory protein (Star), cholesterol side-chain cleavage enzyme (Cyp11a1), 17alpha-hydroxylase/17,20-lyase (Cyp17a1), and 17beta-hydroxysteroid dehydrogenase 3 (Hsd17b3) and their respective proteins were significantly lower in the DBKO mice. However, testicular testosterone level was unchanged in the Cdkn1a(-/-) mice, although Lhcgr mRNA levels were significantly lower relative to those in the WT control. We conclude that Cdkn1a(-/-) did not increase Leydig cell numbers (although a defect of Leydig cell function was noted), whereas DBKO caused a significant increase of Leydig cell numbers but a decrease of steroidogenesis.
Collapse
Affiliation(s)
- Han Lin
- The 2nd Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yadong Huang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, Guangdong, P.R. China
| | - Zhijian Su
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, Guangdong, P.R. China
| | - Qiqi Zhu
- The 2nd Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yufei Ge
- Population Council & Rockefeller University, New York, New York
| | - Guimin Wang
- The 2nd Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Claire Q F Wang
- The 2nd Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Motoko Mukai
- Department of Veterinary Biosciences, University of Illinois, Urbana, Illinois
| | - Denise R Holsberger
- Department of Veterinary Biosciences, University of Illinois, Urbana, Illinois
| | - Paul S Cooke
- Department of Veterinary Biosciences, University of Illinois, Urbana, Illinois Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Qing-Quan Lian
- The 2nd Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Ren-Shan Ge
- The 2nd Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China Population Council & Rockefeller University, New York, New York
| |
Collapse
|
26
|
The emerging role of insulin-like growth factors in testis development and function. Basic Clin Androl 2014; 24:12. [PMID: 25780585 PMCID: PMC4349729 DOI: 10.1186/2051-4190-24-12] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/28/2014] [Indexed: 11/10/2022] Open
Abstract
The insulin-like family of growth factors (IGFs) - composed of insulin, and insulin-like growth factors I (IGF1) and II (IGF2) - provides essential signals for the control of testis development and function. In the testis, IGFs act in an autocrine-paracrine manner but the extent of their actions has been underestimated due to redundancies at both the ligand and receptor levels, and the perinatal lethality of constitutive knockout mice. This review synthesizes the current understanding of how the IGF system regulates biological processes such as primary sex determination, testis development, spermatogenesis and steroidogenesis, and highlights the questions that remain to be explored.
Collapse
|
27
|
Warren IA, Gotoh H, Dworkin IM, Emlen DJ, Lavine LC. A general mechanism for conditional expression of exaggerated sexually-selected traits. Bioessays 2013; 35:889-99. [PMID: 23852854 DOI: 10.1002/bies.201300031] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sexually-selected exaggerated traits tend to be unusually reliable signals of individual condition, as their expression tends to be more sensitive to nutritional history and physiological circumstance than that of other phenotypes. As such, these traits are the foundation for many models of sexual selection and animal communication, such as "handicap" and "good genes" models. Exactly how expression of these traits is linked to the bearer's condition has been a central yet unresolved question, in part because the underlying physiological mechanisms regulating their development have remained largely unknown. Recent discoveries across animals as diverse as deer, beetles, and flies now implicate the widely conserved insulin-like signaling pathway, as a common physiological mechanism regulating condition-sensitive structures with extreme growth. This raises the exciting possibility that one highly conserved pathway may underlie the evolution of trait exaggeration in a multitude of sexually-selected signal traits across the animal kingdom.
Collapse
Affiliation(s)
- Ian A Warren
- School of Biological Sciences, University of Bristol, UK
| | | | | | | | | |
Collapse
|
28
|
Guo J, Zhou H, Su Z, Chen B, Wang G, Wang CQF, Xu Y, Ge RS. Comparison of cell types in the rat Leydig cell lineage after ethane dimethanesulfonate treatment. Reproduction 2013; 145:371-80. [DOI: 10.1530/rep-12-0465] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The objective of this study was to purify cells in the Leydig cell lineage following regeneration after ethane dimethanesulfonate (EDS) treatment and compare their steroidogenic capacity. Regenerated progenitor (RPLCs), immature (RILCs), and adult Leydig cells (RALCs) were isolated from testes 21, 28 and 56 days after EDS treatment respectively. Production rates for androgens including androsterone and 5α-androstane-17β, 3α-diol (DIOL), testosterone and androstenedione were measured in RPLCs, RILCs and RALCs in media after 3-h in vitro culture with 100 ng/ml LH. Steady-state mRNA levels of steroidogenic enzymes and their activities were measured in freshly isolated cells. Compared to adult Leydig cells (ALCs) isolated from normal 90-day-old rat testes, which primarily produce testosterone (69.73%), RPLCs and RILCs primarily produced androsterone (70.21%) and DIOL (69.79%) respectively. Leydig cells isolated from testes 56 days post-EDS showed equivalent capacity of steroidogenesis to ALCs and primarily produced testosterone (72.90%). RPLCs had cholesterol side-chain cleavage enzyme, 3β-hydroxysteroid dehydrogenase 1 and 17α-hydroxylase but had almost no detectable 17β-hydroxysteroid dehydrogenase 3 and 11β-hydroxysteroid dehydrogenase 1 activities, while RILCs had increased 17β-hydroxysteroid dehydrogenase 3 and 11β-hydroxysteroid dehydrogenase 1 activities. Because RPLCs and RILCs had higher 5α-reductase 1 and 3α-hydroxysteroid dehydrogenase activities they produced mainly 5α-reduced androgens. Real-time PCR confirmed the similar trends for the expressions of these steroidogenic enzymes. In conclusion, the purified RPLCs, RILCs and RALCs are similar to those of their counterparts during rat pubertal development.
Collapse
|
29
|
Guo J, Li XW, Liang Y, Ge Y, Chen X, Lian QQ, Ge RS. The increased number of Leydig cells by di(2-ethylhexyl) phthalate comes from the differentiation of stem cells into Leydig cell lineage in the adult rat testis. Toxicology 2013; 306:9-15. [PMID: 23391632 DOI: 10.1016/j.tox.2013.01.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 01/04/2013] [Accepted: 01/05/2013] [Indexed: 10/27/2022]
Abstract
The objective of the present study is to determine whether di(2-ethylhexyl) phthalate (DEHP) exposure at adulthood increases rat Leydig cell number and to investigate the possible mechanism. 90-day-old Long-Evans rats were randomly divided into 3 groups, and were gavaged with the corn oil (control) or 10 or 750 mg/kg DEHP daily for 7 days, and then received an intraperitoneal injection of 75 mg/kg ethane dimethanesulfonate (EDS) to eliminate Leydig cells. Serum testosterone concentrations were assessed by RIA, and the mRNA levels of Leydig cell genes were measured by qPCR. EDS eliminated all Leydig cells in the control testis on day 4 post-EDS, as judged by undetectable serum testosterone level and no 3β-hydroxysteroid dehydrogenase positive (3β-HSD(pos)) cells in the interstitium. However, in DEHP-treated groups, there were detectable serum testosterone concentrations and some oval-shaped 3β-HSD(pos) cells in the interstitium. These 3β-HSD(pos) cells were not stained by the antibody against 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), a marker for Leydig cells at a more advanced stage. The disappearance of mRNAs of Leydig cell biomarkers including Lhcgr, Cyp11a1, Cyp17a1, Insl3 and Hsd11b1 in the control testis was observed on day 4 post-EDS. However, there were detectable concentrations of Lhcgr, Cyp11a1 and Cyp17a1 mRNAs but undetectable concentrations of Insl3, Hsd17b3 and Hsd11b1 in the DEHP-treated testes, indicating that these 3β-HSD(pos) cells were newly formed progenitor Leydig cells. The mRNA level for nestin (Nes, biomarker for stem Leydig cells) was significantly increased in the control testis on day 4 post-EDS, but not in the DEHP treated testes, suggesting that these nestin positive stem cells were differentiated into progenitor Leydig cells in the DEHP-treated testes. The present study suggests that DEHP increases the differentiation of stem cells into progenitor Leydig cells.
Collapse
Affiliation(s)
- Jingjing Guo
- Institute of Reproductive Biomedicine and the 2nd Affiliated Hospital, Wenzhou Medical College, Wenzhou, Zhejiang 325000, PR China
| | | | | | | | | | | | | |
Collapse
|
30
|
Ricci G, Guglielmo MC, Caruso M, Ferranti F, Canipari R, Galdieri M, Catizone A. Hepatocyte Growth Factor Is a Mouse Fetal Leydig Cell Terminal Differentiation Factor1. Biol Reprod 2012; 87:146. [DOI: 10.1095/biolreprod.112.104638] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
31
|
Chi KN, Gleave ME, Fazli L, Goldenberg SL, So A, Kollmannsberger C, Murray N, Tinker A, Pollak M. A Phase II Pharmacodynamic Study of Preoperative Figitumumab in Patients with Localized Prostate Cancer. Clin Cancer Res 2012; 18:3407-13. [DOI: 10.1158/1078-0432.ccr-12-0482] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Dantzer B, Swanson EM. Mediation of vertebrate life histories via insulin-like growth factor-1. Biol Rev Camb Philos Soc 2011; 87:414-29. [PMID: 21981025 DOI: 10.1111/j.1469-185x.2011.00204.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Life-history traits describe parameters associated with growth, size, survival, and reproduction. Life-history variation is a hallmark of biological diversity, yet researchers commonly observe that one of the major axes of life-history variation after controlling for body size involves trade-offs among growth, reproduction, and longevity. This persistent pattern of covariation among these specific traits has engendered a search for shared mechanisms that could constrain or facilitate production of variation in life-history strategies. Endocrine traits are one candidate mechanism that may underlie the integration of life history and other phenotypic traits. However, the vast majority of this research has been on the effects of steroid hormones such as glucocorticoids and androgens on life-history trade-offs. Here we propose an expansion of the focus on glucocorticoids and gonadal hormones and review the potential role of insulin-like growth factor-1 (IGF-1) in shaping the adaptive integration of multiple life-history traits. IGF-1 is a polypeptide metabolic hormone largely produced by the liver. We summarize a vast array of research demonstrating that IGF-1 levels are susceptible to environmental variation and that IGF-1 can have potent stimulatory effects on somatic growth and reproduction but decrease lifespan. We review the few studies in natural populations that have measured plasma IGF-1 concentrations and its associations with life-history traits or other characteristics of the organism or its environment. We focus on two case studies that found support for the hypothesis that IGF-1 mediates adaptive divergence in suites of life-history traits in response to varying ecological conditions or artificial selection. We also examine what we view as potentially fruitful avenues of research on this topic, which until now has been rarely investigated by evolutionary ecologists. We discuss how IGF-1 may facilitate adaptive plasticity in life-history strategies in response to early environmental conditions and also how selection on loci controlling IGF-1 signaling may mediate population divergence and eventual speciation. After consideration of the interactions among androgens, glucocorticoids, and IGF-1 we suggest that IGF-1 be considered a suitable candidate mechanism for mediating life-history traits. Finally, we discuss what we can learn about IGF-1 from studies in free-ranging animals. The voluminous literature in laboratory and domesticated animals documenting relationships among IGF-1, growth, reproduction, and lifespan demonstrates the potential for a number of new research questions to be asked in free-ranging animals. Examining how IGF-1 mediates life-history traits in free-ranging animals could lead to great insight into the mechanisms that influence life-history variation.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Zoology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
33
|
Yoon M, Roser J. A synergistic effect of insulin-like growth factor (IGF-I) on equine luteinizing hormone (eLH)-induced testosterone production from cultured Leydig cells of horses. Anim Reprod Sci 2011; 126:195-9. [DOI: 10.1016/j.anireprosci.2011.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 04/29/2011] [Accepted: 05/16/2011] [Indexed: 10/18/2022]
|
34
|
Yamashita S, Tai P, Charron J, Ko C, Ascoli M. The Leydig cell MEK/ERK pathway is critical for maintaining a functional population of adult Leydig cells and for fertility. Mol Endocrinol 2011; 25:1211-22. [PMID: 21527500 DOI: 10.1210/me.2011-0059] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MAPK kinase (MEK)1 and MEK2 were deleted from Leydig cells by crossing Mek1(f/f);Mek2(-/-) and Cyp17iCre mice. Primary cultures of Leydig cell from mice of the appropriate genotype (Mek1(f/f);Mek2(-/-);iCre(+)) show decreased, but still detectable, MEK1 expression and decreased or absent ERK1/2 phosphorylation when stimulated with epidermal growth factor, Kit ligand, cAMP, or human choriogonadotropin (hCG). The body or testicular weights of Mek1(f/f);Mek2(-/-);iCre(+) mice are not significantly affected, but the testis have fewer Leydig cells. The Leydig cell hypoplasia is paralleled by decreased testicular expression of several Leydig cell markers, such as the lutropin receptor, steroidogenic acute regulatory protein, cholesterol side chain cleavage enzyme, 17α-hydroxylase, and estrogen sulfotransferase. The expression of Sertoli or germ cell markers, as well as the shape, size, and cellular composition of the seminiferous tubules, are not affected. cAMP accumulation in response to hCG stimulation in primary cultures of Leydig cells from Mek1(f/f);Mek2(-/-);iCre(+) mice is normal, but basal testosterone and testosterone syntheses provoked by addition of hCG or a cAMP analog, or by addition of substrates such as 22-hydroxycholesterol or pregnenolone, are barely detectable. The Mek1(f/f);Mek2(-/-);iCre(+) males show decreased intratesticular testosterone and display several signs of hypoandrogenemia, such as elevated serum LH, decreased expression of two renal androgen-responsive genes, and decreased seminal vesicle weight. Also, in spite of normal sperm number and motility, the Mek1(f/f);Mek2(-/-);iCre(+) mice show reduced fertility. These studies show that deletion of MEK1/2 in Leydig cells results in Leydig cell hypoplasia, hypoandrogenemia, and reduced fertility.
Collapse
Affiliation(s)
- Soichi Yamashita
- Department of Pharmacology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
35
|
Yoon MJ, Berger T, Roser JF. Localization of Insulin-Like Growth Factor-I (IGF-I) and IGF-I Receptor (IGF-IR) in Equine Testes. Reprod Domest Anim 2011; 46:221-8. [DOI: 10.1111/j.1439-0531.2010.01643.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
|
37
|
Sullivan T, Micke G, Greer R, Perry V. Dietary manipulation of Bos indicus×heifers during gestation affects the prepubertal reproductive development of their bull calves. Anim Reprod Sci 2010; 118:131-9. [DOI: 10.1016/j.anireprosci.2009.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 07/02/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
|
38
|
Hu GX, Lin H, Chen GR, Chen BB, Lian QQ, Hardy DO, Zirkin BR, Ge RS. Deletion of the Igf1 gene: suppressive effects on adult Leydig cell development. ACTA ACUST UNITED AC 2010; 31:379-87. [PMID: 20203337 DOI: 10.2164/jandrol.109.008680] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deletion of the insulin-like growth factor 1 (Igf1) gene was shown in previous studies to result in reduced numbers of Leydig cells in the testes of 35-day-old mice, and in reduced circulating testosterone levels. In the current study, we asked whether deletion of the Igf1 gene affects the number, proliferation, and/or steroidogenic function of some or all of the precursor cell types in the developmental sequence that leads to the establishment of adult Leydig cells (ALCs). Decreased numbers of cells in the Leydig cell lineage (ie, 3β-hydroxysteroid dehydrogenase-positive cells) were seen in testes of postnatal day (PND) 14-90 Igf1(-/-) mice compared with age-matched Igf1(+/+) controls. The development of ALCs proceeds from stem Leydig cells (SLCs) through progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs). The bromodeoxyuridine labeling index of putative SLCs was similar in the Igf1(-/-) and Igf1(+/+) mice. In contrast, the labeling index of PLCs was reduced in the Igf1(-/-) mice on each day of PND 14 through PND 35, and that of more mature Leydig cells (referred to herein as LCs, a combination of ILCs plus ALCs) was reduced from PND 21 through PND 56. In Igf1(-/-) mice that received recombinant IGF-I, the labeling indices of PLCs and LCs were similar to those of age-matched Igf1(+/+) mice, indicating that the reductions in the labeling indices seen in the PLCs and LCs of the Igf1(-/-) mice were a consequence of reduced IGF-I. On each day of PND 21 through PND 90, testicular testosterone concentrations were significantly reduced in the Igf1(-/-) mice, as were the expressions of testis-specific mRNAs involved in steroidogenesis, including Star, Cyp11a1, and Cyp17a1. The increased expression of the gene for 5α-reductase (Srd5a1) in adult Igf1(-/-) testes suggests that the depletion of Igf1 might suppress or delay Leydig cell maturation. These observations, taken together, indicate that the reduced numbers of Leydig cells in the adult testes of Igf1(-/-) mice result at least in part from altered proliferation and differentiation of ALC precursor cells, but not of the stem cells that give rise to these cells.
Collapse
Affiliation(s)
- Guo-Xin Hu
- Center for Biomedical Research, Population Council, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Melnik BC, Schmitz G. Role of insulin, insulin-like growth factor-1, hyperglycaemic food and milk consumption in the pathogenesis of acne vulgaris. Exp Dermatol 2009; 18:833-41. [PMID: 19709092 DOI: 10.1111/j.1600-0625.2009.00924.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It is the purpose of this viewpoint article to delineate the regulatory network of growth hormone (GH), insulin, and insulin-like growth factor-1 (IGF-1) signalling during puberty, associated hormonal changes in adrenal and gonadal androgen metabolism, and the impact of dietary factors and smoking involved in the pathogenesis of acne. The key regulator IGF-1 rises during puberty by the action of increased GH secretion and correlates well with the clinical course of acne. In acne patients, associations between serum levels of IGF-1, dehydroepiandrosterone sulphate, dihydrotestosterone, acne lesion counts and facial sebum secretion rate have been reported. IGF-1 stimulates 5alpha-reductase, adrenal and gonadal androgen synthesis, androgen receptor signal transduction, sebocyte proliferation and lipogenesis. Milk consumption results in a significant increase in insulin and IGF-1 serum levels comparable with high glycaemic food. Insulin induces hepatic IGF-1 secretion, and both hormones amplify the stimulatory effect of GH on sebocytes and augment mitogenic downstream signalling pathways of insulin receptors, IGF-1 receptor and fibroblast growth factor receptor-2b. Acne is proposed to be an IGF-1-mediated disease, modified by diets and smoking increasing insulin/IGF1-signalling. Metformin treatment, and diets low in milk protein content and glycaemic index reduce increased IGF-1 signalling. Persistent acne in adulthood with high IGF-1 levels may be considered as an indicator for increased risk of cancer, which may require appropriate dietary intervention as well as treatment with insulin-sensitizing agents.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany.
| | | |
Collapse
|
40
|
Tai P, Shiraishi K, Ascoli M. Activation of the lutropin/choriogonadotropin receptor inhibits apoptosis of immature Leydig cells in primary culture. Endocrinology 2009; 150:3766-73. [PMID: 19406941 PMCID: PMC2717876 DOI: 10.1210/en.2009-0207] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We used proliferating primary cultures of immature rat Leydig cells expressing the recombinant human LH/choriogonadotropin (CG) receptor (LHR) to test the hypothesis that activation of this receptor inhibits apoptosis. We also compared the effects of LH/CG with epidermal growth factor (EGF) and IGF-I because these have been previously shown to stimulate proliferation and/or inhibit apoptosis in Leydig cells. Human CG (hCG), EGF, and IGF-I stimulated the phosphorylation of ERK1/2 and Akt in primary cultures of immature rat Leydig cells. These three hormones also robustly stimulated thymidine incorporation and inhibited drug-induced apoptosis. Using selective inhibitors of ERK1/2 (UO126) or Akt phosphorylation (LY294002), we show that the ERK1/2 and Akt cascades are both involved in the hCG- and EGF-dependent proliferation of Leydig cells, but only the ERK1/2 cascade is involved in their antiapoptotic actions. The same strategy showed that the proliferative and antiapoptotic actions of IGF-I are mediated entirely by the Akt pathway. These results show that activation of the LHR inhibits apoptosis in Leydig cells and that it does so through stimulation of the ERK1/2 pathway.
Collapse
Affiliation(s)
- Ping Tai
- Department of Pharmacology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
41
|
Griswold SL, Behringer RR. Fetal Leydig cell origin and development. Sex Dev 2009; 3:1-15. [PMID: 19339813 DOI: 10.1159/000200077] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 10/29/2008] [Indexed: 11/19/2022] Open
Abstract
Male sexual differentiation is a complex process requiring the hormone-producing function of somatic cells in the gonad, including Sertoli cells and fetal Leydig cells (FLCs). FLCs are essential for virilization of the male embryo, but despite their crucial function, relatively little is known about their origins or development. Adult Leydig cells (ALCs), which arise at puberty, have been studied extensively and much of what has been learned about this cell population has been extrapolated to FLCs. This approach is problematic in that prevailing dogma in the field asserts that these 2 populations are distinct in origin. As such, it is imprudent to assume that FLCs arise and develop in a similar manner to ALCs. This review provides a critical assessment of studies performed on FLC populations, rather than those extrapolated from ALC studies to assemble a model for FLC origins and development. Furthermore, we underscore the need for conclusive identification of the source population of fetal Leydig cells.
Collapse
Affiliation(s)
- S L Griswold
- Program in Developmental Biology, Baylor College of Medicine, Houston, Tex., USA
| | | |
Collapse
|
42
|
Lue Y, Wang C, Cui Y, Wang X, Sha J, Zhou Z, Xu J, Wang C, Hikim APS, Swerdloff RS. Levonorgestrel enhances spermatogenesis suppression by testosterone with greater alteration in testicular gene expression in men. Biol Reprod 2009; 80:484-92. [PMID: 19074003 PMCID: PMC6354713 DOI: 10.1095/biolreprod.108.070839] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/14/2008] [Accepted: 11/17/2008] [Indexed: 01/23/2023] Open
Abstract
Prior studies have demonstrated that combined treatment of testosterone with a progestin induces a more rapid and greater suppression of spermatogenesis than testosterone treatment alone. We hypothesized that the suppressive effects of the combination of testosterone undecanoate (TU) injections plus oral levonorgestrel (LNG) on spermatogenesis may be mediated through a greater perturbation of testicular gene expression than TU alone. To test this hypothesis, we performed open testicular biopsy on 12 different adult healthy subjects: 1) four healthy men as controls; 2) four men 2 wk after TU treatment; and 3) four men 2 wk after TU + LNG administration. RNA isolated from biopsies was used for DNA microarray using the Affymetrix Human Genome U133 Plus 2.0 oligonucleotide microarrays. Gene expression with >or=2-fold changes (P < 0.05) compared with control was analyzed using the National Institutes of Health Database for Annotation, Visualization, and Integrated Discovery 2008 resource. The TU treatment altered the gene expression in 109 transcripts, whereas TU + LNG altered the gene expression in 207 transcripts compared with control. Both TU and TU + LNG administration suppressed gene expression of insulin-like 3; cytochrome P450, family 17, subfamily A1 in Leydig cells; and inhibin alpha in Sertoli cells; they increased proapoptotic transcripts BCL2-like 14, insulin-like growth factor-binding protein 3; and they decreased X-linked inhibitor of apoptosis protein. In comparison with TU treatment alone, TU + LNG treatment upregulated insulin-like 6 and relaxin 1, and downregulated RNA-binding protein transcripts. We conclude that TU + LNG administration induces more changes in testicular gene expression than TU alone. This exploratory study provided a novel and valuable database to study the mechanisms of action of hormonal regulation of spermatogenesis in men and identified testicular-specific molecules that may serve as potential targets for male contraceptive development.
Collapse
Affiliation(s)
- YanHe Lue
- Division of Endocrinology, Department of Medicine, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, California 90502, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lin H, Hu GX, Dong L, Dong Q, Mukai M, Chen BB, Holsberger DR, Sottas CM, Cooke PS, Lian QQ, Li XK, Ge RS. Increased proliferation but decreased steroidogenic capacity in Leydig cells from mice lacking cyclin-dependent kinase inhibitor 1B. Biol Reprod 2009; 80:1232-8. [PMID: 19211806 DOI: 10.1095/biolreprod.108.074229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Proliferating cells express cyclins, cell cycle regulatory proteins that regulate the activity of cyclin-dependent kinases (CDKs). The actions of CDKs are regulated by specific inhibitors, the CDK inhibitors (CDKIs), which are comprised of the Cip/Kip and INK4 families. Expression of the Cip/Kip CDKI 1B (Cdkn1b, encoding protein CDKN1B, also called p27(kip1)) in developing Leydig cells (LCs) has been reported, but the function of CDKN1B in LCs is unclear. The goal of the present study was to determine the effects of CDKN1B on LC proliferation and steroidogenesis by examining these parameters in Cdkn1b knockout (Cdkn1b(-/-)) mice. LC proliferation was measured by bromodeoxyuridine incorporation. Testicular testosterone levels, mRNA levels, and enzyme activities of steroidogenic enzymes were compared in Cdkn1b(-/-) and Cdkn1b(+/+) mice. The labeling index of LCs in Cdkn1b(-/-) mice was 1.5% +/- 0.2%, almost 7-fold higher than 0.2% +/- 0.08% (P < 0.001) in the Cdkn1b(+/+) control mice. LC number per testis in Cdkn1b(-/-) mice was 2-fold that seen in the Cdkn1b(+/+) control mice. However, testicular testosterone levels, mRNA levels of steroidogenic acute regulatory protein (Star), cholesterol side-chain cleavage enzyme (Cyp11a1), and 3beta-hydroxtsteroid dehydrogenase 6 (Hsd3b6), and their respective proteins, were significantly lower in Cdkn1b(-/-) mice. We conclude that deficiency of CDKN1B increased LC proliferation, but decreased steroidogenesis. Thus, CDKN1B is an important regulator of LC development and function.
Collapse
Affiliation(s)
- Han Lin
- Population Council and the Rockefeller University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Coonce MM, Rabideau AC, McGee S, Smith K, Narayan P. Impact of a constitutively active luteinizing hormone receptor on testicular gene expression and postnatal Leydig cell development. Mol Cell Endocrinol 2009; 298:33-41. [PMID: 19013498 PMCID: PMC2653066 DOI: 10.1016/j.mce.2008.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 09/26/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
Abstract
The actions of luteinizing hormone (LH) mediated through its receptor (LHR) are critical for testicular steroidogenesis and Leydig cell differentiation. We have previously characterized transgenic mice expressing a genetically engineered, constitutively active yoked hormone-receptor complex (YHR), in which a fusion protein of human chorionic gonadotropin (hCG) was covalently linked to LHR. Elevated testosterone levels were detected in male mice expressing YHR (YHR(+)) at 3 and 5 weeks of age, accompanied by decreases in testicular weight and serum levels of LH and follicle stimulating hormone (FSH). Here we report a temporal study to identify testicular genes whose expression is altered in YHR(+) mice during postnatal development. The mRNA expression levels for the steroidogenic enzymes, P450 17alpha-hydroxylase, 17beta-hydroxysteroid dehydrogenase3 and 5alpha-reductase1 were down-regulated in 3- and 5-week-old YHR(+) testis. This result coupled with an immunohistochemical analysis of Leydig cell specific proteins and quantification of Leydig cell numbers identified a decrease in adult Leydig cells in YHR(+) mice. Surprisingly, no change was detected for cytochrome P450 side-chain cleavage or steroidogenic acute regulatory protein RNA levels between WT and YHR(+) mice. In contrast, mRNA levels for insulin-like growth factor binding protein 3 were up-regulated in 3- and 5-week-old YHR(+) mice. The mRNA levels for several germ cell-specific proteins were up-regulated at 5 weeks of age in both WT and YHR(+) mice. We conclude that premature high levels of testosterone alter the expression of a select number of testicular genes and impair the differentiation of adult Leydig cells in mice.
Collapse
Affiliation(s)
- Mary M. Coonce
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA
| | - Amanda C. Rabideau
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA
| | - Stacey McGee
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA
| | - Keriayn Smith
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Prema Narayan
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA
- Corresponding author: Department of Physiology, School of Medicine, Southern Illinois University, Life Science III, Mailcode 6523, Carbondale IL, 62901, USA, Tel: 618-453-1567, Fax: 618-453-1517,
| |
Collapse
|
45
|
Bagu ET, Gordon JR, Rawlings NC. Postnatal changes in testicular concentrations of transforming growth factors-alpha and-beta 1, 2 and 3 and serum concentrations of insulin like growth factor I in bulls. Reprod Domest Anim 2009; 45:348-53. [PMID: 19210668 DOI: 10.1111/j.1439-0531.2008.01326.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Based on work largely in laboratory animals, transforming growth factors (TGF) and insulin like growth factors (IGF) could be regulators of testicular development. The aim of this study was to see if TGF-alpha and -beta 1, 2 and 3 are present in the bovine testis and to monitor concentrations of these factors in the testis and IGF-I in serum during reproductive development. Separate groups of Hereford x Charolais calves (n = 6) were castrated every 4 weeks from 5 to 33 weeks of age and at 56 weeks of age. A week prior to castration, from 5 to 33 weeks of age, blood was collected every 15 min for 10 h. Serum IGF-I concentrations increased from 8 to 12 weeks of age, decreased from 24 to 28 weeks and increased to 32 weeks of age (p < 0.05). Testicular TGF-alpha concentrations increased from 13 to 17 weeks of age, decreased to 21 weeks and from 33 to 56 weeks of age (p < 0.05). Testicular TGF-beta 1 concentrations decreased from 17 to 21 weeks of age, increased to 25 weeks and decreased from 25 to 33 weeks of age (p < 0.05). Testicular TGF-beta 2 concentrations increased from 5 to 17 weeks of age, decreased to 21 weeks, increased to 25 weeks and decreased at 29 weeks of age (p < 0.05). Testicular TGF-beta 3 concentrations increased from 13 to 17 weeks of age, decreased to 21 weeks and from 25 to 29 weeks of age (p < 0.05). We concluded that TGF-alpha and TGF-beta 1, 2 and 3 are present in the testis of the bull calf, and changes in concentrations with age suggest a functional role in the development of the testis.
Collapse
Affiliation(s)
- E T Bagu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
46
|
|
47
|
Berensztein EB, Baquedano MS, Pepe CM, Costanzo M, Saraco NI, Ponzio R, Rivarola MA, Belgorosky A. Role of IGFs and insulin in the human testis during postnatal activation: differentiation of steroidogenic cells. Pediatr Res 2008; 63:662-6. [PMID: 18520331 DOI: 10.1203/pdr.0b013e31816c8ffc] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunoexpression of IGF-I, IGF-II, type 1 IGF receptor (IGFR), insulin receptor (IR), and GH receptor (GHR) was analyzed in human testis, in three age groups (Gr): Gr1 (neonates), Gr2 (postnatal testicular activation), and Gr3 (early prepuberty). In interstitial cells, low IGF-I and GHR, but moderate IR immunoexpression was observed in all Grs. However, high expression of IGF-II in Gr1, and moderate expression of IGFR in Gr1 and Gr2 were found. In Leydig cell (LC), high expression of IGF-II, moderate expression of IGFR and GHR, and undetectable IGF-I was found. Moreover, IR was highly expressed in Gr2. The effect of IGF-I on cell proliferation (PI) and apoptosis (AI), induction of cytochrome P450 side chain cleavage (cP450scc) immunoexpression, 3beta-hydroxysteroid dehydrogenase mRNA and testosterone (T) secretion was evaluated in human testis cell cultures. IGF-I increased P450scc immunoexpression, 3beta-hydroxysteroid dehydrogenase mRNA, T secretion, and PI, but decreased AI. We propose that IGF-II, mainly through IR, is involved in functional LC differentiation. In some interstitial cells, probably in LC precursors, IGF-II/IR could be involved, among other factors, in the stimulation of PI and/or inhibition of AI, and in LC differentiation.
Collapse
|
48
|
Culty M, Thuillier R, Li W, Wang Y, Martinez-Arguelles DB, Benjamin CG, Triantafilou KM, Zirkin BR, Papadopoulos V. In Utero Exposure to Di-(2-ethylhexyl) Phthalate Exerts Both Short-Term and Long-Lasting Suppressive Effects on Testosterone Production in the Rat1. Biol Reprod 2008; 78:1018-28. [DOI: 10.1095/biolreprod.107.065649] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
49
|
Wu X, Wan S, Lee MM. Key factors in the regulation of fetal and postnatal Leydig cell development. J Cell Physiol 2008; 213:429-33. [PMID: 17674364 DOI: 10.1002/jcp.21231] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The primary function of testicular Leydig cells is the production of androgens to promote sexual differentiation in the fetus, secondary sexual maturation at puberty, and spermatogenesis in the adult. The fetal and postnatal (adult) populations of Leydig cells differ morphologically and have distinct profiles of gene expression. As postnatal Leydig cells differentiate, they transition through three discrete maturational stages characterized by decreasing proliferative rate and increasing testosterone biosynthetic capacity. In this review, we discuss the development of both fetal and postnatal Leydig cells and review the regulation of this process by some of the key hormones and growth factors.
Collapse
Affiliation(s)
- Xiufeng Wu
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|
50
|
Brito L, Barth A, Rawlings N, Wilde R, Crews D, Mir P, Kastelic J. Circulating metabolic hormones during the peripubertal period and their association with testicular development in bulls. Reprod Domest Anim 2007; 42:502-8. [PMID: 17845606 DOI: 10.1111/j.1439-0531.2006.00813.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The objective of the present study was to characterize changes in serum metabolic hormones concentrations from 20 weeks before to 20 weeks post-puberty in bulls and to investigate the associations of metabolic hormones concentrations with testicular development. Leptin concentrations increased from 16 weeks before puberty to 8 weeks post-puberty and insulin concentrations increased from puberty to 8 weeks post-puberty. Growth hormone concentrations decreased after 4 weeks post-puberty, whereas IGF-I concentrations increased from 8 weeks before puberty to 8 weeks post-puberty. During this period, testicular growth was accelerated and testosterone secretion increased substantially, without any significant changes in gonadotropin secretion. Monthly circulating concentrations of leptin, IGF-I and insulin accounted for 63% of the variation in scrotal circumference and 59% of the variation in paired testes volume. In conclusion, the secretion of metabolic hormones was not associated with changes in gonadotropins concentrations. Furthermore, the associations of leptin, IGF-I and insulin concentrations with testes size indicated that these hormones might be involved in a gonadotropin-independent mechanism regulating the testicular development in peripubertal bulls.
Collapse
Affiliation(s)
- Lfc Brito
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | | | |
Collapse
|