1
|
Witkowski M, Duliban M, Rak A, Profaska-Szymik M, Gurgul A, Arent ZJ, Galuszka A, Kotula-Balak M. Next-Generation Sequencing analysis discloses genes implicated in equine endometrosis that may lead to tumorigenesis. Theriogenology 2022; 189:158-166. [PMID: 35760027 DOI: 10.1016/j.theriogenology.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
Endometrosis is a periglandular fibrosis associated with dysfunction of affected glandular epithelial cells that is the most common cause of reduced fertility in mares, although it is not fully understood. The etiology of the disease is still partially unknown. This study focuses on understanding the genetic mechanisms potentially underlying endometrosis in mares using the Next Generation Sequencing (NGS) technique. Endometrial samples, used in the study, were obtained in the anestrus phase both from healthy mares and those diagnosed with endometrosis. The NGS data were analyzed for gene involvement in biological processes and pathways (e.g. STAR, KOBAS-I, STRING, and ClustVis software). Bioinformatic analysis revealed differential expression of 55 transcripts. In tissues with endometrosis, most genes displayed upregulated expression. The protein-protein interaction analysis disclosed a substantial transcript network including transcripts related to metabolism e.g. sulfur metabolism (SELENBP1), ovarian steroidogenesis, steroid hormone biosynthesis, and chemical carcinogenesis (CYP1B1), COXs (COX4I1, COX3, UQCRFS1) as well as transcripts related to immune response e.g. MMP7, JCHAIN, PIGR, CALR, B2M, FCGRT. Interestingly, the latter has been previously linked with various pathologies including cancers in the female reproductive system. In conclusion, this study evaluated genes that are not directly impacted by sex hormone feedback, but that create a metabolic and immune environment in tissues, thus influencing fertility and pregnancy in mares with endometrosis. Moreover, some of the identified genes may be implicated in tumorigenesis of endometrial lesions. These data may be useful as a starting point in further research, such as the development of targeted strategies for rapid diagnosis and/or prevention of this pathology based on gene and protein-protein interactions.
Collapse
Affiliation(s)
- M Witkowski
- Department of Obstetrics, Gynecology with Andrology and Animal Reproduction Biotechnology, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland; Equine Hospital on the Racing Truck, Sluzewiec, Pulawska 266, 02-684, Warszawa, Poland
| | - M Duliban
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland.
| | - A Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - M Profaska-Szymik
- Department of Obstetrics, Gynecology with Andrology and Animal Reproduction Biotechnology, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - A Gurgul
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, 30-248, Krakow, Poland
| | - Z J Arent
- Department of Animal Infectious Diseases and Food Hygiene, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - A Galuszka
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - M Kotula-Balak
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland.
| |
Collapse
|
2
|
Kirkwood PM, Shaw IW, Saunders PTK. Mechanisms of Scarless Repair at Time of Menstruation: Insights From Mouse Models. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 3:801843. [PMID: 36304046 PMCID: PMC9580659 DOI: 10.3389/frph.2021.801843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/08/2021] [Indexed: 11/18/2022] Open
Abstract
The human endometrium is a remarkable tissue which may experience up to 400 cycles of hormone-driven proliferation, differentiation and breakdown during a woman's reproductive lifetime. During menstruation, when the luminal portion of tissue breaks down, it resembles a bloody wound with piecemeal shedding, exposure of underlying stroma and a strong inflammatory reaction. In the absence of pathology within a few days the integrity of the tissue is restored without formation of a scar and the endometrium is able to respond appropriately to subsequent endocrine signals in preparation for establishment of pregnancy if fertilization occurs. Understanding mechanisms regulating scarless repair of the endometrium is important both for design of therapies which can treat conditions where this is aberrant (heavy menstrual bleeding, fibroids, endometriosis, Asherman's syndrome) as well as to provide new information that might allow us to reduce fibrosis and scar formation in other tissues. Menstruation only occurs naturally in species that exhibit spontaneous stromal cell decidualization during the fertile cycle such as primates (including women) and the Spiny mouse. To take advantage of genetic models and detailed time course analysis, mouse models of endometrial shedding/repair involving hormonal manipulation, artificial induction of decidualization and hormone withdrawal have been developed and refined. These models are useful in modeling dynamic changes across the time course of repair and have recapitulated key features of endometrial repair in women including local hypoxia and immune cell recruitment. In this review we will consider the evidence that scarless repair of endometrial tissue involves changes in stromal cell function including mesenchyme to epithelial transition, epithelial cell proliferation and multiple populations of immune cells. Processes contributing to endometrial fibrosis (Asherman's syndrome) as well as scarless repair of other tissues including skin and oral mucosa are compared to that of menstrual repair.
Collapse
|
3
|
Morris SA, Korach KS, Burns KA. Unique Sensitivity of Uterine Tissue and the Immune System for Endometriotic Lesion Formation. Front Physiol 2021; 12:805784. [PMID: 34975547 PMCID: PMC8719640 DOI: 10.3389/fphys.2021.805784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/23/2021] [Indexed: 12/04/2022] Open
Abstract
Endometriosis is a debilitating disease that affects about 10% of reproductive-aged adolescents and women. The etiology of the disease is unknown; however, a prevailing hypothesis is that endometriosis develops from retrograde menstruation, where endometrial tissue and fluids flow back through the oviducts into the peritoneal cavity. There is no cure for endometriosis, and symptoms are treated palliatively. Despite the advances in knowledge, the complexity of endometriosis etiology is still unknown. Recent work by our group suggests that the initiation of endometriosis is immune-dependent. Using a mouse model of endometriosis, we hypothesized the initiation of endometriosis is immune regulated and uterine endometrium specific. In the absence of a functional immune system non-obese diabetic/severe combined immunodeficiency (NOD/SCID mice), endometriotic lesions did not form. Uterine endometrial tissue forms endometriotic lesions, whereas tissues with differing basal expression levels of estrogen receptor alpha (ESR1) and estrogen receptor beta (ESR2), similar cellular composition to uterus (i.e. bladder, mammary gland, and lung), and treated with estradiol did not form lesions. As MMP7 is known to play a major role in the organization/reorganization of the endometrium during the menstrual cycle, blocking metalloproteinase (MMP) activity significantly decreased the invasive properties of these cells. Together, these findings suggest that endometriosis is immune and uterine specific and that MMP7 likely plays a role in the ability of uterine tissue and the innate immune system to establish and maintain endometriotic lesions.
Collapse
Affiliation(s)
- Stephanie A. Morris
- Department of Environmental Health, Division of Environmental Genetics and Molecular Toxicology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kenneth S. Korach
- Receptor Biology Group, Reproductive, and Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, Research Triangle Park, NC, United States
| | - Katherine A. Burns
- Department of Environmental Health, Division of Environmental Genetics and Molecular Toxicology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- *Correspondence: Katherine A. Burns
| |
Collapse
|
4
|
Treatment protocols and management of retained fetal membranes in cattle by rural practitioners in Belgium. Prev Vet Med 2021; 188:105267. [PMID: 33517158 DOI: 10.1016/j.prevetmed.2021.105267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 11/22/2022]
Abstract
Retained fetal membranes (RFM) is a frequent postpartum disorder in cattle causing considerable economic losses, and a common indication for antibiotic (AB) administration. There is controversy with regard to the treatment of RFM, and scientific recommendations are often in conflict with current legislation on AB use and practical routines in the field. The aim of this study was to assess the therapeutic approaches of RFM by Belgian rural veterinarians. A digital survey was sent to 468 Belgian veterinarians; 149 complete questionnaires (Wallonia: 78; Flanders: 71) were obtained. Survey questions captured socio-demographic characteristics, case definition, therapeutic approaches and treatment options for RFM. Questions on treatment were duplicated for dairy and beef cattle. When confronted with dairy cows suffering from RFM without fever, 35.6 % of vets do not treat with AB, while the majority administers AB, either intrauterine (47.6 %), systemically (10.7 %) or both (6.1 %). Dairy cows with RFM and fever receive a systemic (33.5 %), intrauterine (2.7 %) or combined (61.8 %) AB treatment. For a beef cow with RFM without fever, 21.5 % of vets prefer no AB treatment, while others prefer an intrauterine (24.2 %), systemic (24.8 %), combined (29.5 %) AB treatment. Beef cows with RFM and fever receive AB from the large majority of vets, by systemic (34.9 %) or combined (56.3 %) administration. In case of a parenteral treatment, benzylpenicillin, amoxicillin and ampicillin are by far the most frequently used molecules; only a minority of vets use cephalosporins. Manual placental removal is attempted by 93.9 % of the respondents. These results demonstrate that there is room for improvement when considering the treatment protocols of RFM. Many veterinarians use AB in RFM cows not presenting symptoms of general illness, or administer intrauterine AB in cows with or without clinical signs of illness. Concerning the molecules of choice, practical routines are largely in line with national AB recommendations. Beef cows suffering from RFM are treated more rigorously than dairy cows, regardless of their rectal temperature.
Collapse
|
5
|
Liu T, Shi F, Ying Y, Chen Q, Tang Z, Lin H. Mouse model of menstruation: An indispensable tool to investigate the mechanisms of menstruation and gynaecological diseases (Review). Mol Med Rep 2020; 22:4463-4474. [PMID: 33174022 PMCID: PMC7646730 DOI: 10.3892/mmr.2020.11567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
Abnormal menstruation may result in several pathological alterations and gynaecological diseases, including endometriosis, menstrual pain and miscarriage. However, the pathogenesis of menstruation remains unclear due to the limited number of animal models available to study the menstrual cycle. In recent years, an effective, reproducible, and highly adaptive mouse model to study menstruation has been developed. In this model, progesterone and oestrogen were administered in cycles following the removal of ovaries. Subsequently, endometrial decidualisation was induced using sesame oil, followed by withdrawal of progesterone administration. Vaginal bleeding in mice is similar to that in humans. Therefore, the use of mice as a model organism to study the mechanism of menstruation and gynaecological diseases may prove to be an important breakthrough. The present review is focussed ond the development and applications of a mouse model of menstruation. Furthermore, various studies have been described to improve this model and the research findings that may aid in the treatment of menstrual disorders in women are presented.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Fuli Shi
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Ying Ying
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Qiongfeng Chen
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Zhimin Tang
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
6
|
Critchley HOD, Maybin JA, Armstrong GM, Williams ARW. Physiology of the Endometrium and Regulation of Menstruation. Physiol Rev 2020; 100:1149-1179. [DOI: 10.1152/physrev.00031.2019] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The physiological functions of the uterine endometrium (uterine lining) are preparation for implantation, maintenance of pregnancy if implantation occurs, and menstruation in the absence of pregnancy. The endometrium thus plays a pivotal role in reproduction and continuation of our species. Menstruation is a steroid-regulated event, and there are alternatives for a progesterone-primed endometrium, i.e., pregnancy or menstruation. Progesterone withdrawal is the trigger for menstruation. The menstruating endometrium is a physiological example of an injured or “wounded” surface that is required to rapidly repair each month. The physiological events of menstruation and endometrial repair provide an accessible in vivo human model of inflammation and tissue repair. Progress in our understanding of endometrial pathophysiology has been facilitated by modern cellular and molecular discovery tools, along with animal models of simulated menses. Abnormal uterine bleeding (AUB), including heavy menstrual bleeding (HMB), imposes a massive burden on society, affecting one in four women of reproductive age. Understanding structural and nonstructural causes underpinning AUB is essential to optimize and provide precision in patient management. This is facilitated by careful classification of causes of bleeding. We highlight the crucial need for understanding mechanisms underpinning menstruation and its aberrations. The endometrium is a prime target tissue for selective progesterone receptor modulators (SPRMs). This class of compounds has therapeutic potential for the clinical unmet need of HMB. SPRMs reduce menstrual bleeding by mechanisms still largely unknown. Human menstruation remains a taboo topic, and many questions concerning endometrial physiology that pertain to menstrual bleeding are yet to be answered.
Collapse
Affiliation(s)
- Hilary O. D. Critchley
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Jacqueline A. Maybin
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Gregory M. Armstrong
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Alistair R. W. Williams
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Djebala S, Moula N, Bayrou C, Sartelet A, Bossaert P. Prophylactic antibiotic usage by Belgian veterinarians during elective caesarean section in Belgian blue cattle. Prev Vet Med 2019; 172:104785. [PMID: 31614283 DOI: 10.1016/j.prevetmed.2019.104785] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
Abstract
The use of prophylactic antibiotics in veterinary surgery reduces the occurrence of postoperative complications. In order to limit the development of antimicrobial resistance in bacteria and to maximize therapy efficacy, antibiotics should be used prudently and efficiently. A survey was sent to Wallonian rural veterinarians in order to assess the use of antibiotics before, during and after bovine elective caesarean section, the most common surgical procedure in Belgian rural practice. Results were analysed in the light of the current guidelines formulated by the Belgian Centre of Expertise on Antimicrobial Consumption and Resistance in Animals. Among 380 contacted veterinarians, 113 answered the survey. All veterinarians use antibiotics during caesarean section. Veterinarians predominantly use penicillin as the first drug of choice, whereas a minority use drugs considered as second or third choice, such as amoxicillin, oxytetracyclin or lincomycin-spectinomycin. Also, 31/113 veterinarians simultaneously use molecules from different antibiotic classes. The majority (100/113) of veterinarians inject antibiotics during or after surgery, while a minority (13/113) administer antibiotics preoperatively. Most veterinarians (67/113) limit the duration of their antibiotic treatment to 1 day. Considering the administration route, most veterinarians (88/113) systematically use the intraperitoneal injection route, which is not registered. Intramuscular injection and injection between muscle layers during surgery are carried out by 82/113 and 43/113 respondents, respectively. Twenty-two respondents apply intra-uterine antibiotics. Most veterinarians (87/113) combine several administration routes. The dosage of antibiotics varies enormously and excessive injection volumes are common, especially when multiple injection routes are combined. Our results show a striking lack of consistency in the antibiotic therapy during elective CS by rural veterinarians. Whereas the drug of choice and the treatment duration were largely in line with the current guidelines, this is certainly not the case for the dosage and the administration route. The intraperitoneal injection of antibiotics cannot be justified. Incorrect dosage of antibiotics should be avoided at all cost. The use of second and third line molecules and the simultaneous use of different antibiotic classes should be discouraged. A major challenge lies in the education of veterinary students and the sensitization of practitioners to avoid or unlearn unnecessary habits concerning antibiotic use. Finally, more clinical trials are needed in order to refine the current guidelines for antibiotic use and to determine the optimal drug of choice, treatment moment and application route in elective caesarean section in cattle.
Collapse
Affiliation(s)
- Salem Djebala
- Clinical department of ruminant, University of liege, Quartier Vallée 2, Avenue de Cureghem 7A-7D, Liège 4000, Belgium.
| | - Nassim Moula
- Department of animal production, University of liege, Quartier Vallée 2, Avenue de Cureghem 6, Liège 4000, Belgium
| | - Calixte Bayrou
- Clinical department of ruminant, University of liege, Quartier Vallée 2, Avenue de Cureghem 7A-7D, Liège 4000, Belgium
| | - Arnaud Sartelet
- Clinical department of ruminant, University of liege, Quartier Vallée 2, Avenue de Cureghem 7A-7D, Liège 4000, Belgium
| | - Philippe Bossaert
- Clinical department of ruminant, University of liege, Quartier Vallée 2, Avenue de Cureghem 7A-7D, Liège 4000, Belgium
| |
Collapse
|
8
|
A complex of novel protease inhibitor, ovostatin homolog, with its cognate proteases in immature mice uterine luminal fluid. Sci Rep 2019; 9:4973. [PMID: 30899053 PMCID: PMC6428836 DOI: 10.1038/s41598-019-41426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/05/2019] [Indexed: 11/09/2022] Open
Abstract
A predominant gelatinolytic enzyme with approximately 26 kDa was observed in gelatin zymogram of immature mice uterine luminal fluid (ULF). Size exclusion analysis revealed that the native size of this enzyme was close to that of human α2-macroglobulin (α2-MG), a 725 kDa protein. This large protease was isolated by a series of chromatographic steps on the Sephacryl S-400 and DEAE-Sepharose columns. The results from gelatin zymography and SDS-PAGE analysis supported that this large protease consists of gelatinolytic enzyme and a 360 kDa protein. Through tandem mass spectrometry analysis followed by MASCOT database search, the 360 kDa protein was identified as ovostatin homolog (accession: NP_001001179.2) assigned as a homolog of chicken ovostatin, a protease inhibitor. The co-fractionation analysis by gel filtration and mouse ovostatin homolog (mOH) co-immunoprecipitation experiments demonstrated that the mOH formed a complex with three gelatinolytic enzymes in immature mice ULF. Substrate zymography analysis revealed that the mOH-associated gelatinolytic enzymes were suitable to digest type I collagen rather than type IV collagen. In addition, the refolded mOH-associated 26 kDa gelatinolytic enzyme displayed the type I collagen-digesting activity in the assay, but the other two enzymes did not have this function. RT-PCR analysis showed that mOH gene was abundantly expressed in brain, spinal cord, lung, uterus, and in 17-day embryo. Taken together, our data suggest that mOH/cognate protease system may play a potential role in regulation of tissue remodeling and fetal development.
Collapse
|
9
|
Gaynor LM, Colucci F. Uterine Natural Killer Cells: Functional Distinctions and Influence on Pregnancy in Humans and Mice. Front Immunol 2017; 8:467. [PMID: 28484462 PMCID: PMC5402472 DOI: 10.3389/fimmu.2017.00467] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/05/2017] [Indexed: 02/06/2023] Open
Abstract
Our understanding of development and function of natural killer (NK) cells has progressed significantly in recent years. However, exactly how uterine NK (uNK) cells develop and function is still unclear. To help investigators that are beginning to study tissue NK cells, we summarize in this review our current knowledge of the development and function of uNK cells, and what is yet to be elucidated. We compare and contrast the biology of human and mouse uNK cells in the broader context of the biology of innate lymphoid cells and with reference to peripheral NK cells. We also review how uNK cells may regulate trophoblast invasion and uterine spiral arterial remodeling in human and murine pregnancy.
Collapse
Affiliation(s)
- Louise M. Gaynor
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Francesco Colucci
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
10
|
Schatz F, Guzeloglu-Kayisli O, Arlier S, Kayisli UA, Lockwood CJ. The role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding. Hum Reprod Update 2016; 22:497-515. [PMID: 26912000 DOI: 10.1093/humupd/dmw004] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/01/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Human pregnancy requires robust hemostasis to prevent hemorrhage during extravillous trophoblast (EVT) invasion of the decidualized endometrium, modification of spiral arteries and post-partum processes. However, decidual hemorrhage (abruption) can occur throughout pregnancy from poorly transformed spiral arteries, causing fetal death or spontaneous preterm birth (PTB), or it can promote the aberrant placentation observed in intrauterine growth restriction (IUGR) and pre-eclampsia; all leading causes of perinatal or maternal morbidity and mortality. In non-fertile cycles, the decidua undergoes controlled menstrual bleeding. Abnormal uterine bleeding (AUB) accompanying progestin-only, long-acting, reversible contraception (pLARC) accounts for most discontinuations of these safe and highly effective agents, thereby contributing to unwanted pregnancies and abortion. The aim of this study was to investigate the role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding. METHODS We conducted a critical review of the literature arising from PubMed searches up to December 2015, regarding in situ and in vitro expression and regulation of several specific proteins involved in uterine hemostasis in decidua and cycling endometrium. In addition, we discussed clinical and molecular mechanisms associated with pLARC-induced AUB and pregnancy complications with abruptions, chorioamnionitis or pre-eclampsia. RESULTS Progestin-induced decidualization of estradiol-primed human endometrial stromal cells (HESCs) increases in vivo and in vitro expression of tissue factor (TF) and type-1 plasminogen activator inhibitor (PAI-1) while inhibiting plasminogen activators (PAs), matrix metalloproteinases (MMPs), and the vasoconstrictor, endothelin-1 (ET-1). These changes in decidual cell-derived regulators of hemostasis, fibrinolysis, extracellular matrix (ECM) turnover, and vascular tone prevent hemorrhage during EVT invasion and vascular remodeling. In non-fertile cycles, progesterone withdrawal reduces TF and PAI-1 while increasing PA, MMPs and ET-1, causing menstrual-associated bleeding, fibrinolysis, ECM degradation and ischemia. First trimester decidual hemorrhage elicits later adverse outcomes including pregnancy loss, pre-eclampsia, abruption, IUGR and PTB. Decidual hemorrhage generates excess thrombin that binds to decidual cell-expressed protease-activated receptors (PARs) to induce chemokines promoting shallow placentation; such bleeding later in pregnancy generates thrombin to down-regulate decidual cell progesterone receptors and up-regulate cytokines and MMPs linked to PTB. Endometria of pLARC users display ischemia-induced excess vasculogenesis and progestin inhibition of spiral artery vascular smooth muscle cell proliferation and migration leading to dilated fragile vessels prone to bleeding. Moreover, aberrant TF-derived thrombin signaling also contributes to the pathogenesis of endometriosis via induction of angiogenesis, inflammation and cell survival. CONCLUSION Perivascular decidualized HESCs promote endometrial hemostasis during placentation yet facilitate menstruation through progestational regulation of hemostatic, proteolytic, and vasoactive proteins. Pathological endometrial hemorrhage elicits excess local thrombin generation, which contributes to pLARC associated AUB, endometriosis and adverse pregnancy outcomes through several biochemical mechanisms.
Collapse
Affiliation(s)
- Frederick Schatz
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Sefa Arlier
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Umit A Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Charles J Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
11
|
Armengol R, Fraile L. Comparison of two treatment strategies for cows with metritis in high-risk lactating dairy cows. Theriogenology 2015; 83:1344-51. [DOI: 10.1016/j.theriogenology.2015.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 12/03/2014] [Accepted: 01/23/2015] [Indexed: 11/29/2022]
|
12
|
Ponsuksili S, Tesfaye D, Schellander K, Hoelker M, Hadlich F, Schwerin M, Wimmers K. Differential Expression of miRNAs and Their Target mRNAs in Endometria Prior to Maternal Recognition of Pregnancy Associates with Endometrial Receptivity for In Vivo- and In Vitro-Produced Bovine Embryos1. Biol Reprod 2014; 91:135. [DOI: 10.1095/biolreprod.114.121392] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
13
|
Osteopontin is expressed in the mouse uterus during early pregnancy and promotes mouse blastocyst attachment and invasion in vitro. PLoS One 2014; 9:e104955. [PMID: 25133541 PMCID: PMC4136843 DOI: 10.1371/journal.pone.0104955] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/12/2014] [Indexed: 01/14/2023] Open
Abstract
Embryo implantation into the maternal uterus is a decisive step for successful mammalian pregnancy. Osteopontin (OPN) is a member of the small integrin-binding ligand N-linked glycoprotein family and participates in cell adhesion and invasion. In this study, we showed that Opn mRNA levels are up-regulated in the mouse uterus on day 4 and at the implantation sites on days 5 and 8 of pregnancy. Immunohistochemistry localized the OPN protein to the glandular epithelium on day 4 and to the decidual zone on day 8 of pregnancy. OPN mRNA and proteins are induced by in vivo and in vitro decidualization. OPN expression in the endometrial stromal cells is regulated by progesterone, a key regulator during decidualization. As a secreted protein, the protein level of OPN in the uterine cavity is enriched on day 4, and in vitro embryo culturing has indicated that OPN can facilitate blastocyst hatching and adhesion. Knockdown of OPN attenuates the adhesion and invasion of blastocysts in mouse endometrial stromal cells by suppressing the expression and enzymatic activity of matrix metalloproteinase-9 in the trophoblast. Our data indicated that OPN expression in the mouse uterus during early pregnancy is essential for blastocyst hatching and adhesion and that the knockdown of OPN in mouse endometrial stroma cells could lead to a restrained in vitro trophoblast invasion.
Collapse
|
14
|
Cousins FL, Murray A, Esnal A, Gibson DA, Critchley HOD, Saunders PTK. Evidence from a mouse model that epithelial cell migration and mesenchymal-epithelial transition contribute to rapid restoration of uterine tissue integrity during menstruation. PLoS One 2014; 9:e86378. [PMID: 24466063 PMCID: PMC3899239 DOI: 10.1371/journal.pone.0086378] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/10/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In women dynamic changes in uterine tissue architecture occur during each menstrual cycle. Menses, characterised by the shedding of the upper functional layer of the endometrium, is the culmination of a cascade of irreversible changes in tissue function including stromal decidualisation, inflammation and production of degradative enzymes. The molecular mechanisms that contribute to the rapid restoration of tissue homeostasis at time of menses are poorly understood. METHODOLOGY A modified mouse model of menses was developed to focus on the events occurring within the uterine lining during endometrial shedding/repair. Decidualisation, vaginal bleeding, tissue architecture and cell proliferation were evaluated at 4, 8, 12, and 24 hours after progesterone (P4) withdrawal; mice received a single injection of bromodeoxyuridine (BrdU) 90 mins before culling. Expression of genes implicated in the regulation of mesenchymal to epithelial transition (MET) was determined using a RT2 PCR profiler array, qRTPCR and bioinformatic analysis. PRINCIPAL FINDINGS Mice exhibited vaginal bleeding between 4 and 12 hours after P4 withdrawal, concomitant with detachment of the decidualised cell mass from the basal portion of the endometrial lining. Immunostaining for BrdU and pan cytokeratin revealed evidence of epithelial cell proliferation and migration. Cells that appeared to be in transition from a mesenchymal to an epithelial cell identity were identified within the stromal compartment. Analysis of mRNAs encoding genes expressed exclusively in the epithelial or stromal compartments, or implicated in MET, revealed dynamic changes in expression, consistent with a role for reprogramming of mesenchymal cells so that they could contribute to re-epithelialisation. CONCLUSIONS/SIGNIFICANCE These studies have provided novel insights into the cellular processes that contribute to re-epithelialisation post-menses implicating both epithelial cell migration and mesenchymal cell differentiation in restoration of an intact epithelial cell layer. These insights may inform development of new therapies to induce rapid healing in the endometrium and other tissues and offer hope to women who suffer from heavy menstrual bleeding.
Collapse
Affiliation(s)
- Fiona L. Cousins
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Alison Murray
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Arantza Esnal
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Douglas A. Gibson
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Hilary O. D. Critchley
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Philippa T. K. Saunders
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Xu X, Guan S, He B, Wang J. Active role of the predecidual-like zone in endometrial shedding in a mouse menstrual-like model. Eur J Histochem 2013; 57:e25. [PMID: 24085274 PMCID: PMC3794356 DOI: 10.4081/ejh.2013.e25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 07/04/2013] [Accepted: 07/09/2013] [Indexed: 12/04/2022] Open
Abstract
Cyclic shedding of the endometrium is unique to menstruating species. The status of the decidua in mouse menstrual-like models seems to differ from that of the predecidua in humans before endometrial breakdown. The aim of this study was to determine how this difference in decidual status is related to endometrial breakdown. A mouse menstruallike model was generated by pharmacological progesterone withdrawal. Histomorphological analysis and reticular fiber staining were used to evaluate endometrial status. In situ zymography was used to determine the localization of active collagenase and gelatinase. The functional endometrial layer containing the mature decidual-like zone (MDZ) and predecidual-like zone (PZ) underwent breakdown. The reticular fibers underwent disruption and fragmentation and became loose or disappeared at 12 h in the PZ, where active collagenase and gelatinase were limited. The reticular fibers were visibly reduced at 24 h in the MDZ, where active collagenase was detected. A few reticular fibers remained; however, the functional layer had sloughed into the lumen of the uterus. The results showed that reticular fibers of the PZ are actively degraded during endometrial shedding.
Collapse
Affiliation(s)
- X Xu
- National Research Institute for Family Planning.
| | | | | | | |
Collapse
|
16
|
Wang Q, Xu X, He B, Li Y, Chen X, Wang J. A critical period of progesterone withdrawal precedes endometrial breakdown and shedding in mouse menstrual-like model. Hum Reprod 2013; 28:1670-8. [DOI: 10.1093/humrep/det052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Abstract
Much of our understanding of the molecular control of menstruation arises from laboratory models that experimentally recapitulate some, but not all, aspects of uterine bleeding observed in women. These models include: in vitro culture of endometrial explants or isolated endometrial cells, transplantation of human endometrial tissue into immunodeficient mice and the induction of endometrial breakdown in appropriately pretreated mice. Each of these models has contributed to our understanding of molecular and cellular mechanisms of menstruation, but nonhuman primates, especially macaques, are the animal model of choice for evaluating therapies for menstrual disorders. In this chapter we review some basic aspects of menstruation, with special emphasis on the macaque model and its relevance to the clinical issues of irregular and heavy menstrual bleeding (HMB).
Collapse
Affiliation(s)
- Robert M Brenner
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA.
| | | |
Collapse
|
18
|
Abstract
Menstruation has many of the features of an inflammatory process. The complexity and sequence of inflammatory-type events leading to the final tissue breakdown and bleeding are slowly being unravelled. Progesterone has anti-inflammatory properties, and its rapidly declining levels (along with those of estrogen) in the late secretory phase of each non-conception cycle, initiates a sequence of interdependent events of an inflammatory nature involving local inter-cellular interactions within the endometrium. Intracellular responses to loss of progesterone (in decidualized stromal, vascular and epithelial cells) lead to decreased prostaglandin metabolism and loss of protection from reactive oxygen species (ROS). Increased ROS results in release of NFκB from suppression with activation of target gene transcription and increased synthesis of pro-inflammatory prostaglandins, cytokines, chemokines and matrix metalloproteinases (MMP). The resultant leukocyte recruitment, with changing phenotypes and activation, provide further degradative enzymes and MMP activators, which together with a hypoxic environment induced by prostaglandin actions, lead to the tissue breakdown and bleeding characteristic of menstruation. In parallel, at sites where shedding is complete, microenvironmentally-induced changes in phenotypes of neutrophils and macrophages from pro- to anti-inflammatory, in addition to induction of growth factors, contribute to the very rapid re-epithelialization and restoration of tissue integrity.
Collapse
Affiliation(s)
- Jemma Evans
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
| | | |
Collapse
|
19
|
Menning A, Walter A, Rudolph M, Gashaw I, Fritzemeier KH, Roese L. Granulocytes and vascularization regulate uterine bleeding and tissue remodeling in a mouse menstruation model. PLoS One 2012; 7:e41800. [PMID: 22879894 PMCID: PMC3413732 DOI: 10.1371/journal.pone.0041800] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/25/2012] [Indexed: 12/31/2022] Open
Abstract
Menstruation-associated disorders negatively interfere with the quality of life of many women. However, mechanisms underlying pathogenesis of menstrual disorders remain poorly investigated up to date. Among others, this is based on a lack of appropriate pre-clinical animal models. We here employ a mouse menstruation model induced by priming mice with gonadal hormones and application of a physical stimulus into the uterus followed by progesterone removal. As in women, these events are accompanied by menstrual-like bleeding and tissue remodeling processes, i.e. disintegration of decidualized endometrium, as well as subsequent repair. We demonstrate that the onset of bleeding coincides with strong upregulation of inflammatory mediators and massive granulocyte influx into the uterus. Uterine granulocytes play a central role in regulating local tissue remodeling since depletion of these cells results in dysregulated expression of matrix modifying enzymes. As described here for the first time, uterine blood loss can be quantified by help of tampon-like cotton pads. Using this novel technique, we reveal that blood loss is strongly reduced upon inhibition of endometrial vascularization and thus, is a key regulator of menstrual bleeding. Taken together, we here identify angiogenesis and infiltrating granulocytes as critical determinants of uterine bleeding and tissue remodeling in a mouse menstruation model. Importantly, our study provides a technical and scientific basis allowing quantification of uterine blood loss in mice and thus, assessment of therapeutic intervention, proving great potential for future use in basic research and drug discovery.
Collapse
Affiliation(s)
- Astrid Menning
- Therapeutic Research Group Oncology/Gynecological Therapy, Bayer HealthCare Pharmaceuticals, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Zobel R, Tkalčić S. Efficacy of Ozone and Other Treatment Modalities for Retained Placenta in Dairy Cows. Reprod Domest Anim 2012; 48:121-5. [DOI: 10.1111/j.1439-0531.2012.02041.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Comprehensive analysis of leukocytes, vascularization and matrix metalloproteinases in human menstrual xenograft model. PLoS One 2011; 6:e16840. [PMID: 21379384 PMCID: PMC3040756 DOI: 10.1371/journal.pone.0016840] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 01/03/2011] [Indexed: 11/19/2022] Open
Abstract
In our previous study, menstrual-like changes in mouse were provoked through the pharmacologic withdrawal of progesterone with mifepristone following induction of decidualization. However, mouse is not a natural menstruation animal, and the menstruation model using external stimuli may not truly reflect the occurrence and development of the human menstrual process. Therefore, we established a model of menstruation based on human endometrial xenotransplantation. In this model, human endometrial tissues were transplanted subcutaneously into SCID mice that were ovarectomized and supplemented with estrogen and progestogen by silastic implants with a scheme imitating the endocrinological milieu of human menstrual cycle. Morphology, hormone levels, and expression of vimentin and cytokeratin markers were evaluated to confirm the menstrual-like changes in this model. With 28 days of hormone treatment, transplanted human endometrium survived and underwent proliferation, differentiation and disintegration, similar to human endometrium in vivo. Human CD45+ cells showed a peak of increase 28 days post-transplantation. Three days after progesterone withdrawal, mouse CD45+ cells increased rapidly in number and were significantly greater than human CD45+ cell counts. Mouse CD31+ blood vascular-like structures were detected in both transplanted and host tissues. After progesterone withdrawal, the expression levels of matrix metalloproteinases (MMP) 1, 2, and 9 were increased. In summary, we successfully established a human endometrial xenotransplantation model in SCID mice, based on the results of menstrual-like changes in which MMP-1, 2 and 9 are involved. We showed that leukocytes are originated from in situ proliferation in human xenografts and involved in the occurrence of menstruation. This model will help to further understand the occurrence, growth, and differentiation of the endometrium and the underlying mechanisms of menstruation.
Collapse
|
22
|
Treatment of unscheduled bleeding in continuous oral contraceptive users with doxycycline: a randomized controlled trial. Obstet Gynecol 2010; 115:1141-1149. [PMID: 20502283 DOI: 10.1097/aog.0b013e3181e0119c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To estimate whether doxycycline, a matrix metalloproteinase inhibitor, would decrease unscheduled bleeding associated with initiation of a continuous oral contraceptive pill. METHODS Participants initiating a continuous oral contraceptive pill (20 micrograms of ethinyl estradiol/90 micrograms of levonorgestrel) were randomly assigned to receive either doxycycline (100 mg orally twice daily) or placebo taken for 5 days at the onset of each bleeding or spotting episode during the first 84 days of the study period. For the final 28 days of the study, participants were observed on the oral contraceptive pill alone. The primary outcome was the number of bleeding and spotting days. A sample size of 66 (33 in each arm) was calculated to detect a 50% reduction in bleeding (beta=0.80, alpha=0.05) and accounted for a 30% dropout rate. RESULTS Sixty-six women were randomly assinged (33 in each study group). There were no significant differences during the 84-day treatment in bleeding or spotting days (doxycycline [mean {standard error}, placebo, P=.32) or the length of the longest bleeding or spotting episode (doxycycline, placebo, P=.70) between study groups. Similarly, no significant differences in bleeding patterns existed between groups during the final 28 days. CONCLUSION Doxycycline, administered once bleeding has started, does not decrease unscheduled bleeding or shorten episodes of unscheduled bleeding in continuous oral contraceptive pill users. LEVEL OF EVIDENCE I.
Collapse
|
23
|
Beagley J, Whitman K, Baptiste K, Scherzer J. Physiology and Treatment of Retained Fetal Membranes in Cattle. J Vet Intern Med 2010; 24:261-8. [DOI: 10.1111/j.1939-1676.2010.0473.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
24
|
|
25
|
Russo LA, Peano BJ, Trivedi SP, Cavalcanto TD, Olenchock BA, Caruso JA, Smolock AR, Vishnevsky O, Gardner RM. Regulated expression of matrix metalloproteinases, inflammatory mediators, and endometrial matrix remodeling by 17beta-estradiol in the immature rat uterus. Reprod Biol Endocrinol 2009; 7:124. [PMID: 19889233 PMCID: PMC2776020 DOI: 10.1186/1477-7827-7-124] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 11/04/2009] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Administration of a single physiological dose of 17beta-estradiol (E2:40 microg/kg) to the ovariectomized immature rat rapidly induces uterine growth and remodeling. The response is characterized by changes in endometrial stromal architecture during an inflammatory-like response that likely involves activated matrix-metalloproteinases (MMPs). While estrogen is known as an inducer of endometrial growth, its role in specific expression of MMP family members in vivo is poorly characterized. E2-induced changes in MMP-2, -3, -7, and -9 mRNA and protein expression were analyzed to survey regulation along an extended time course 0-72 hours post-treatment. Because E2 effects inflammatory-like changes that may alter MMP expression, we assessed changes in tissue levels of TNF-alpha and MCP-1, and we utilized dexamethasone (600 microg/kg) to better understand the role of inflammation on matrix remodeling. METHODS Ovariectomized 21 day-old female Sprague-Dawley rats were administered E2 and uterine tissues were extracted and prepared for transmission electron microscopy (TEM), mRNA extraction and real-time RT-PCR, protein extraction and Western blot, or gelatin zymography. In inhibitor studies, pretreatment compounds were administered prior to E2 and tissues were harvested at 4 hours post-hormone challenge. RESULTS Using a novel TEM method to quantitatively assess changes in stromal collagen density, we show that E2-induced matrix remodeling is rapid in onset (< 1 hour) and leads to a 70% reduction in collagen density by 4 hours. Matrix remodeling is MMP-dependent, as pretreatment with batimastat ablates the hormone effect. MMP-3, -7, and -9 and inflammatory markers (TNF-alpha and MCP-1) are transiently upregulated with peak expression at 4 hours post-E2 treatment. MMP-2 expression is increased by E2 but highest expression and activity occur later in the response (48 hours). Dexamethasone inhibits E2-modulated changes in collagen density and expression of MMPs although these effects are variable. Dexamethasone upregulates MMP-3 mRNA but not protein levels, inhibiting E2-induced upregulation of MMP-7, and -9, and MCP-1 mRNA and protein but not inhibiting the hormone-induced increase in TNF-alpha mRNA. CONCLUSION The data demonstrate that E2-regulated endometrial remodeling is rapid in onset (<1 hour) and peak expression of MMPs and inflammatory mediators correlates temporally with the period of lowest stromal collagen density during uterine tissue hypertrophy.
Collapse
Affiliation(s)
- Louise A Russo
- Villanova University Department of Biology, 800 Lancaster Avenue, Villanova, PA 19085, USA
| | - Bryan J Peano
- Villanova University Department of Biology, 800 Lancaster Avenue, Villanova, PA 19085, USA
| | - Shreya P Trivedi
- Villanova University Department of Biology, 800 Lancaster Avenue, Villanova, PA 19085, USA
| | - Todd D Cavalcanto
- Villanova University Department of Biology, 800 Lancaster Avenue, Villanova, PA 19085, USA
| | - Benjamin A Olenchock
- Villanova University Department of Biology, 800 Lancaster Avenue, Villanova, PA 19085, USA
| | - Joseph A Caruso
- Villanova University Department of Biology, 800 Lancaster Avenue, Villanova, PA 19085, USA
| | - Amanda R Smolock
- Villanova University Department of Biology, 800 Lancaster Avenue, Villanova, PA 19085, USA
| | - Oleg Vishnevsky
- Villanova University Department of Biology, 800 Lancaster Avenue, Villanova, PA 19085, USA
| | - Russell M Gardner
- Villanova University Department of Biology, 800 Lancaster Avenue, Villanova, PA 19085, USA
| |
Collapse
|
26
|
Craythorn RG, Girling JE, Hedger MP, Rogers PAW, Winnall WR. An RNA spiking method demonstrates that 18S rRNA is regulated by progesterone in the mouse uterus. Mol Hum Reprod 2009; 15:757-61. [PMID: 19602508 DOI: 10.1093/molehr/gap058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Identifying suitable housekeeping genes for quantitative RT-PCR in the uterus is problematic, as this tissue undergoes significant structural and functional alterations during the oestrous cycle and pregnancy in response to circulating hormones. The suitability of 18S rRNA as a housekeeping gene in mouse uterus was investigated by introducing an 'RNA spike' standard into the reverse transcription reaction. 18S rRNA levels increased by Day 4 of pregnancy and after progesterone administration in ovariectomized mice. We conclude that 18S rRNA is not a suitable housekeeping gene for quantitative RT-PCR analysis in progesterone-responsive tissues, and the RNA spiking method provides a suitable alternative.
Collapse
Affiliation(s)
- R G Craythorn
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, 27-31 Wright St, Clayton, VIC 3168, Australia
| | | | | | | | | |
Collapse
|
27
|
Kaitu'u-Lino TJ, Phillips DJ, Morison NB, Salamonsen LA. A new role for activin in endometrial repair after menses. Endocrinology 2009; 150:1904-11. [PMID: 19022896 DOI: 10.1210/en.2008-0738] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abnormal uterine bleeding can severely affect the quality of life for women. After menstruation, the endometrium must adequately repair to limit and stop bleeding. Abnormal uterine bleeding may result from incorrect or inadequate endometrial repair after menstruation. Previous studies have shown an important contribution of activin to skin wound healing, with severely delayed wound repair observed in animals transgenically induced to overexpress activin's natural inhibitor, follistatin. Activin subunits have also been identified within human endometrium; however, their role in endometrial repair is unknown. We assessed the contribution of activin to endometrial repair after menses using a human in vitro cell wounding method and our well-characterized mouse model of endometrial breakdown and repair applied to mice overexpressing follistatin. Endometrial repair after menses is initiated with reepithelialization of the uterine surface. To mimic this repair, we utilized a human endometrial epithelial cell line (ECC-1) and demonstrated significant stimulation of wound closure after activin A administration, and attenuation of this response by addition of follistatin. Immunolocalization of activin subunits, betaA and betaB, in control endometrium from the mouse model demonstrated specific epithelial and stromal localization and some leukocyte staining (betaA) around sites of endometrial repair, suggestive of a role for activin in this process. Follistatin-overexpressing animals had significantly higher circulating follistatin levels than wild-type littermates. There was a significant delay in endometrial repair after breakdown in follistatin transgenic animals compared with control animals. This study demonstrates for the first time a functional role for activin in endometrial repair after menses.
Collapse
|
28
|
Zhao S, Choksuchat C, Zhao Y, Ballagh SA, Kovalevsky GA, Archer DF. Effects of doxycycline on serum and endometrial levels of MMP-2, MMP-9 and TIMP-1 in women using a levonorgestrel-releasing subcutaneous implant. Contraception 2009; 79:469-78. [PMID: 19442784 DOI: 10.1016/j.contraception.2008.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 12/22/2008] [Accepted: 12/23/2008] [Indexed: 11/20/2022]
Abstract
BACKGROUND Endometrial spotting and/or bleeding (ESB) occurs in levonorgestrel subcutaneous implant (LNG SI) users. Matrix metalloproteinases (MMPs) may play a role in ESB. STUDY DESIGN Women between 18 and 40 years with regular menstrual cycles had a baseline evaluation followed by LNG SI insertion and randomization to doxycycline (DOX; 20 mg) or placebo (PL) twice a day. MMP-2, MMP-9 and tissue inhibitor of MMP-1 (TIMP-1) in serum and the endometrium were estimated at baseline and at 1, 3 and 6 months after insertion. RESULTS LNG increased serum MMP-9, while DOX decreased MMP-9 levels compared to PL after 1 month (p<.05). DOX decreased endometrial MMP-9 at 1 and 6 months compared to baseline and PL (p<.05). DOX increased endometrial TIMP-1 at 6 months compared with baseline and PL (p<.05). MMP-2 levels were unchanged. CONCLUSION LNG SI increased serum MMP-9 and TIMP-1 levels, while DOX decreased both serum and endometrial MMP-9 levels.
Collapse
Affiliation(s)
- Shumei Zhao
- Department of Obstetrics and Gynecology, CONRAD Clinical Research Center, Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Quinn C, Casper R. Pinopodes: a questionable role in endometrial receptivity. Hum Reprod Update 2008; 15:229-36. [DOI: 10.1093/humupd/dmn052] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Shahed A, Young KA. Differential activity of matrix metalloproteinases (MMPs) during photoperiod induced uterine regression and recrudescence in Siberian hamsters (Phodopus sungorus). Mol Reprod Dev 2008; 75:1433-40. [PMID: 18213647 DOI: 10.1002/mrd.20879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Siberian hamsters adapt to seasonal changes by reducing their reproductive function during short days (SD). SD exposure reduces uterine mass and reproductive capacity, but underlying cellular mechanisms remain unknown. Because matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are important in uterine development, parturition, and postpartum remodeling, their expression in uterine tissue from Siberian hamsters undergoing photoperiod-mediated reproductive regression and recrudescence was investigated. Female hamsters were exposed to long day (LD, 16L:8D, controls) or SD (8L:16D) for 3-12 weeks (regression); a second group was exposed to SD or LD for 14 weeks and then transferred to LD for 0-8 weeks (recrudescence). Hamsters were euthanized, uteri collected, and homogenates analyzed by gelatin zymography or Western blotting for MMP and TIMP protein levels. Uterine weight decreased (67-75%) at SD weeks 12-14 and increased post-LD transfer (PT) reaching LD values by PT week 2. MMP-2, but not MMP-9 activity was reduced by SD week 12 or 14 but increased to LD levels at PT week 2. MMP-3 expression increased at SD week 9 compared to other SD and LD groups. MMP-14 and -13 protein levels decreased at SD week 3 but returned to LD levels by SD week 6. During recrudescence, MMP-3 (PT weeks 0-2), MMP-13 (PT week 4), and MMP-14 (PT weeks 2, 4) protein levels were higher than LD. TIMP-1 and 2 were present at low levels. Significant and differential variations in uterine MMP activity/expression during photoperiod-induced regression and recrudescence were observed. These changes likely reflect increases in tissue remodeling during both the adaptation to SD and the restoration of reproductive function.
Collapse
Affiliation(s)
- Asha Shahed
- Department of Biological Sciences, California State University Long Beach, Long Beach, California 90840, USA
| | | |
Collapse
|
31
|
Morison NB, Kaitu'u-Lino TJ, Fraser IS, Salamonsen LA. Stimulation of epithelial repair is a likely mechanism for the action of mifepristone in reducing duration of bleeding in users of progestogen-only contraceptives. Reproduction 2008; 136:267-74. [DOI: 10.1530/rep-08-0076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many women using progestogen (P)-only contraceptives experience uterine bleeding problems. In clinical trials, a single low dose of mifepristone, given to Implanon users at the beginning of a bleeding episode reduced the number of bleeding days by ∼50% compared with controls. In this study, a single dose of mifepristone was administered to etonogestrel (ENG)-exposed pseudo-pregnant mice, 5 days after artificial decidualization was induced when the endometrium showed signs of bleeding. Control mice received vehicle alone. Mice were culled 12-, 18-, 24- and 48-h post-treatment. In the continued presence of ENG, a single dose of mifepristone stimulated tissue breakdown followed by very rapid repair: most treated tissues were fully restored to the pre-decidualized state by 48 h post-treatment. During repair, proliferating cells (Ki67 immunostained) were localized to a band of cells around the basal area in breaking down tissues and to the repairing luminal epithelium and glands. Progesterone receptor-positive cells were largely localized to the basal area of the breaking down tissue in treated mice compared with decidual cells in controls. Oestrogen receptor-positive cells were observed in the repairing luminal epithelium and glands compared with the decidua and the basal region in control tissues. It is concluded that mifepristone treatment stimulates rapid restoration of luminal epithelial integrity: such action may be a key event in reducing the number of bleeding days observed in women using Implanon who were treated with a single dose of mifepristone.
Collapse
|
32
|
Hickey M, Salamonsen LA. Endometrial structural and inflammatory changes with exogenous progestogens. Trends Endocrinol Metab 2008; 19:167-74. [PMID: 18434186 DOI: 10.1016/j.tem.2008.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 02/11/2008] [Accepted: 02/20/2008] [Indexed: 01/06/2023]
Abstract
Safe and effective contraception is an international public health priority. The long-acting progestogen-only contraceptives are used by over 20 million women worldwide but their main drawback is abnormal uterine bleeding. Such bleeding arises owing to structural and inflammatory changes which compromise endometrial microvascular and epithelial integrity. The molecular and structural changes that lead to the vessel and surface epithelial fragility, and hence the side effect of abnormal uterine bleeding commonly seen with exogenous progestogen use, might be lessened by short-term treatments shown to shorten bleeding episodes.
Collapse
Affiliation(s)
- Martha Hickey
- School of Women's and Infants' Health, University of Western Australia, King Edward Memorial Hospital, Subiaco, WA, Australia
| | | |
Collapse
|
33
|
Ingman WV, Jones RL. Cytokine knockouts in reproduction: the use of gene ablation to dissect roles of cytokines in reproductive biology. Hum Reprod Update 2007; 14:179-92. [PMID: 18063609 DOI: 10.1093/humupd/dmm042] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cytokines play many diverse and important roles in reproductive biology, and dissecting the complex interactions between these proteins and the different reproductive organs is a difficult task. One approach is to use gene ablation, or 'knockout', to analyse the effect of deletion of a single cytokine on mouse reproductive function. This review summarizes the essential roles of cytokines in reproductive biology that have been revealed by gene knockout studies, including development and regulation of the hypothalamo-pituitary-gondal axis, ovarian folliculogenesis, implantation and immune system modulation during pregnancy. However, successful utilization of this approach must consider the caveats associated with gene ablation studies, e.g. embryonic lethality, systemic effects of cytokine ablation on local reproductive processes and the limited exposure to pathogens in mice housed in laboratory conditions. New sophisticated technology that temporally or spatially regulates gene ablation can overcome some of these limitations. Discoveries on the roles of cytokines in reproductive function uncovered by gene ablation studies can now be applied to improve in vitro fertilization for infertile couples and in the development of contraceptive therapies.
Collapse
Affiliation(s)
- Wendy V Ingman
- Discipline of Obstetrics and Gynaecology, Research Centre for Reproductive Health, University of Adelaide, South Australia 5005, Australia.
| | | |
Collapse
|
34
|
Kaitu'u-Lino TJ, Morison NB, Salamonsen LA. Estrogen is not essential for full endometrial restoration after breakdown: lessons from a mouse model. Endocrinology 2007; 148:5105-11. [PMID: 17640986 DOI: 10.1210/en.2007-0716] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The current dogma surrounding endometrial regeneration after menses includes a critical need for estrogen-primed proliferation. Although some evidence suggests that estrogen may not be required for the initial reepithelialization of the uterine surface, it is widely believed that it is essential for successful stromal renewal. This study aimed to identify proliferating cell types during endometrial repair and to examine whether estrogen is required for successful repair using a previously developed mouse model. In the model, decidualization is artificially induced, and progesterone support withdrawn; the endometrial tissue progressively breaks down by 24 h after progesterone withdrawal and by 48 h has usually undergone complete repair. Although the mice are ovariectomized, restoration of both the stromal and epithelial components proceeds rapidly after breakdown and results in what appears to be a normal endometrium. However, potential estrogenic influences from extraovarian sources (particularly the diet and fat) remain. In this study, complete removal of extraovarian estrogen was achieved by maintenance of animals on a soy-free diet and administration of aromatase inhibitor letrozole. No significant differences in uterine weight or estrogen-responsive genes lactoferrin and progesterone receptor were observed compared with control ovariectomized but otherwise untreated mice, whereas significantly higher measurements were obtained from an estrogen-added group. Importantly, no significant difference in the rate of endometrial repair was observed in the complete absence of estrogen, demonstrating that estrogen is not essential for complete endometrial restoration in this model.
Collapse
Affiliation(s)
- Tu'uhevaha J Kaitu'u-Lino
- Prince Henry's Institute of Medical Research, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria 3168, Australia.
| | | | | |
Collapse
|
35
|
Morison NB, Zhang J, Kaitu'u-Lino TJ, Fraser IS, Salamonsen LA. The long-term actions of etonogestrel and levonorgestrel on decidualized and non-decidualized endometrium in a mouse model mimic some effects of progestogen-only contraceptives in women. Reproduction 2007; 133:309-21. [PMID: 17244756 DOI: 10.1530/rep.1.01171] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Breakthrough bleeding (BTB), a major side effect of long-acting progestogen (p)-only contraceptives in women, is the main reason for discontinuation of their use. To understand the mechanisms of BTB, a mouse model of endometrial breakdown and repair was adapted to evaluate the effects of long-term progestogens on the endometrium. Appropriately prepared mice received either an etonogestrel (ENG)- or levonorgestrel (LNG)-releasing subdermal implant. Forty eight hours after decidualization was induced in one uterine horn the majority of tissues were highly decidualized, designated 0 day (0d). Uteri were collected subsequently at 5-day intervals (to 45d) and both decidualized and non-decidualized horns were analysed for morphological changes, leukocyte infiltration and matrix metalloproteinase expression (MMP). In decidualized horns, large blood vessels (BV) developed and disturbance of tissue integrity was observed at 5d with substantial stromal breakdown by 10d, progressing until 25d when re-epithelialization was initiated. By 45d, the tissue was restored to its pre-decidualized state but with considerable tortuosity of the luminal epithelium. Tissue remodelling was not apparent in the non-decidualized horns before 35d, when hyperproliferation of the luminal epithelium resulted in tortuosity. Changes in morphology were similar with the two progestogens, but occurred more rapidly with LNG. Apart from macrophages, few leukocytes were present in non-decidualized horns but large infiltrates of neutrophils and uterine natural killer cells (uNK) were associated with tissue breakdown in decidualized tissue, many of these cells were MMP9-positive. MMP7 was primarily associated with tissue repair. Therefore, this model mimics some of the changes observed in endometria of women using p-only contraceptives and provides an opportunity for functional studies.
Collapse
Affiliation(s)
- Naomi B Morison
- Prince Henry's Institute, PO Box 5152, Clayton, Victoria, Australia.
| | | | | | | | | |
Collapse
|
36
|
Li R, Luo X, Archer DF, Chegini N. RETRACTED: Doxycycline alters the expression of matrix metalloproteases in the endometrial cells exposed to ovarian steroids and pro-inflammatory cytokine. J Reprod Immunol 2007; 73:118-129. [PMID: 17010446 DOI: 10.1016/j.jri.2006.08.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 08/06/2006] [Accepted: 08/14/2006] [Indexed: 11/23/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
This article has been retracted at the request of the Editors following an investigation by the Office of Research Integrity (ORI) at the Department of Health and Human Services. The investigation confirmed that the data presented has been falsified by the last author.
Collapse
Affiliation(s)
- Rongxiu Li
- Department of OB/GYN, University of Florida, Gainesville, FL, USA
| | - Xiaoping Luo
- Department of OB/GYN, University of Florida, Gainesville, FL, USA
| | | | - Nasser Chegini
- Department of OB/GYN, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
37
|
Kaitu'u-Lino TJ, Morison NB, Salamonsen LA. Neutrophil depletion retards endometrial repair in a mouse model. Cell Tissue Res 2006; 328:197-206. [PMID: 17186309 DOI: 10.1007/s00441-006-0358-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 11/07/2006] [Indexed: 11/27/2022]
Abstract
The contribution of the high abundance of inflammatory cells present in the human endometrium prior to and during menstruation is unknown with respect to endometrial repair and/or menstruation. In this study, the presence and localisation of markers for key inflammatory cells have been examined in a mouse model of endometrial breakdown and repair and the functional contribution of neutrophils has been determined. In the model, decidualisation is artificially induced and progesterone support withdrawn; the endometrial tissue progressively breaks down by 24 h after progesterone withdrawal and, by 48 h, has usually undergone complete repair. Neutrophils have been identified in low abundance in decidual tissue, rise in number during breakdown and are most abundant during early repair. Macrophages are barely detectable during breakdown or repair in this model, whereas uterine natural killer cells are found only in intact decidua. The functional contribution of neutrophils to endometrial breakdown and repair has been assessed via neutrophil depletion by using the antibody RB6-8C5. This antibody significantly depletes neutrophils from the circulation and tissue, affects endometrial breakdown and markedly delays endometrial repair. This study has therefore demonstrated that neutrophils are the most abundant leucocyte in this model and that they play an important functional role in the processes of endometrial breakdown and repair.
Collapse
Affiliation(s)
- Tu'uhevaha J Kaitu'u-Lino
- Monash Medical Centre, Prince Henry's Institute of Medical Research, 246 Clayton Road, Clayton, Victoria 3168, Australia.
| | | | | |
Collapse
|
38
|
Goshen T, Shpigel NY. Evaluation of intrauterine antibiotic treatment of clinical metritis and retained fetal membranes in dairy cows. Theriogenology 2006; 66:2210-8. [PMID: 16962164 DOI: 10.1016/j.theriogenology.2006.07.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 07/16/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
Retained fetal membranes (RFM) and clinical metritis (CM) are frequently diagnosed disease conditions in dairy cows and considered of major economic impact due to negative effect on reproduction and milk production. The objective of this study was to evaluate the efficacy of i.u. tetracycline for the treatment of RFM and CM in dairy cows. Affected cows were randomly assigned to two groups; treatment group animals received i.u. 5g chlortetracycline twice weekly for 2 wks, and no treatment group. A total of 1416 cows and 804 heifers in 5 herds calved during the study period. CM was diagnosed in 18.6% (inter farm range; 15.2-23.5%) and 30% (19.4-42.3%) of cows and heifers, respectively. RFM was diagnosed in 13.1% (9.4-18.1%) and 9.2% (3.6-13.8%) of cows and heifers, respectively. Conception rates after first insemination were 38.3%, 42.5% and 18% in normal, treated and non-treated CM cows, respectively. Numbers of days open were 140.5, 136.2 and 165.5 in normal, treated and non-treated CM cows, respectively. Based on 305-d corrected milk yield, cows and heifers affected by RFM and CM produced 300-500kg less milk compared with their normal herd mates. Cows treated for CM produced 654kg more milk per 305-d corrected lactation compared to non-treated control cows. Treatment of RFM had no effect on reproductive performance or milk production. In conclusion, i.u. chlortetracycline treatment was proven to prevent the detrimental effect of CM on reproductive performance in heifers and cows and on milk production in cows only.
Collapse
Affiliation(s)
- Tamir Goshen
- The Koret School of Veterinary Medicine, Faculty of Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | | |
Collapse
|
39
|
Chegini N, Luo X, Pan Q, Rhoton-Vlasak A, Archer DF. Endometrial expression of epithelial neutrophil-activating peptide-78 during the menstrual cycle or in progestin-only contraceptive users with breakthrough bleeding and the influence of doxycycline therapy. Hum Reprod 2006; 22:427-33. [PMID: 17095519 DOI: 10.1093/humrep/del398] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Endometrial breakthrough bleeding is characterized by an inflammatory reaction and increased production of proinflammatory mediators, one of which may be epithelial neutrophil-activating peptide-78 (ENA-78), a chemokine with neutrophil-activating properties. METHODS AND RESULTS We therefore investigated the endometrial expression of ENA-78 in Norplant users as progestin-only contraceptive with various bleeding patterns (n=35) as compared with non-users with a normal menstrual cycle (n=55). The endometrial stromal cells (ESCs) were the major site of ENA-78 expression with the highest levels found during the secretory phase. The expression of ENA-78 was increased in Norplant users with irregular bleeding as compared with those with regular cycles and amenorrhoea. The levels of ENA-78 detected in uterine washes and sera after the use of Norplant for 3-6 months (n=25) increased compared with baseline (P < 0.05). These levels did not significantly change in Norplant users who received doxycycline (Dox) therapy (25 mg/twice daily for 6 months) when measured midway through or at the conclusion of study when compared with the baseline (n=25). Treatments with medroxyprogesterone acetate (MPA) and tumour necrosis factor-alpha (TNF-alpha) (25 ng/ml), but not 17beta-estradiol (E2) or E2 + MPA (10(-8) M), representing endometrium exposed to contraceptive and inflammatory conditions, respectively, increased the levels of ENA-78 production by ESCs, and this was reduced by co-treatments with Dox (25 microg/ml) (P < 0.05). CONCLUSIONS The endometrial production of ENA-78 is altered in progestin-only contraceptive users experiencing breakthrough bleeding and is regulated by MPA and TNF-alpha in ESCs. Although Dox therapy did not alter uterine ENA-78 secretion, its suppression in ESCs suggests that Dox, acting site-specifically and through an anti-inflammatory mechanism, may influence the outcome of breakthrough bleeding in contraceptive users.
Collapse
Affiliation(s)
- N Chegini
- Department of Obstetrics/Gynecology, University of Florida, Gainesville, FL 32610-0294, USA.
| | | | | | | | | |
Collapse
|
40
|
Li R, Luo X, Pan Q, Zineh I, Archer DF, Williams RS, Chegini N. Doxycycline alters the expression of inflammatory and immune-related cytokines and chemokines in human endometrial cells: implication in irregular uterine bleeding*. Hum Reprod 2006; 21:2555-63. [PMID: 16891626 DOI: 10.1093/humrep/del206] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Increased production of pro-inflammatory mediators is considered central in the manifestation of events leading to irregular uterine bleeding in progestin-only contraceptive users. Evidence suggests that in addition to its antimicrobial property, doxycycline (Dox) acts as an anti-inflammatory agent mainly through the suppression of pro-inflammatory mediators. METHODS We tested this hypothesis in the endometrial environment using an in vitro model consisting of isolated human endometrial glandular epithelial and stromal cells and a human endometrial surface (HES) epithelial cell line cultured under defined conditions. RESULTS We found that Dox at doses ranging from 1 to 100 microg/ml had a limited growth-inhibitory effect on these cells, whereas Dox in a dose-dependent manner inhibited the production of tumour necrosis factor-alpha (TNF-alpha). Using multiplex cytokine/chemokine protein analysis to test a broader range of Dox activity, we found that Dox at 25 microg/ml either alone or in the presence of 17beta-estradiol (E2), medroxyprogesterone acetate (MPA) and E2+MPA (10(-8) M) as well as TNF-alpha (25 ng/ml), representing the endometrial environment exposed to contraceptives as well as inflammatory conditions, respectively, altered the production of multiple cytokines and chemokines as compared with untreated controls. These actions of Dox occurred in cell-, ovarian steroid- and cytokine/chemokine-dependent manners. Although Dox reduced the regulatory action of steroids on the production of these cytokines/chemokines, it was less effective on TNF-alpha-treated cells. CONCLUSIONS The results support the hypothesis that Dox, by modulating the endometrial expression of multiple inflammatory-related cytokines/chemokines in a cell- and cytokine/chemokine-dependent manner, may have a therapeutic potential in patients experiencing irregular uterine bleeding, in particular in progestin-dominant contraceptive users.
Collapse
Affiliation(s)
- Rongxiu Li
- Department of Obstetrics & Gynecology, University of Florida, Gainesville 32610-0294, USA
| | | | | | | | | | | | | |
Collapse
|