1
|
Yang X, Ma J, Mo L, Xiong Y, Xiong X, Lan D, Fu W, Yin S. Molecular cloning and characterization of STC1 gene and its functional analyses in yak (Bos grunniens) cumulus granulosa cells. Theriogenology 2023; 208:185-193. [PMID: 37354862 DOI: 10.1016/j.theriogenology.2023.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
Cumulus granulosa cells (CGCs), an important type of ovarian somatic cells, carries out various functions related to oogenesis, follicular development, and steroidogenesis. Studying the biological mechanisms involved in the development and function of CGCs makes a great contribution to understanding the reproductive regulation in female animals. Stanniocalcin-1 (STC1) is an important Ca2+-regulated glycoprotein hormone that exhibits high expression levels in ovaries. In this study, we cloned the coding sequence of the yak STC1, predicted the structure of STC1 protein, detected the expression and localization of STC1 in yak ovaries, and analyzed the functions of STC1 in yak CGCs. The CDS (coding sequence) region of yak STC1 gene was found to be 744 bp and encoded 247 amino acids. Homology comparison revealed that STC1 protein was highly conserved among mammals. The STC1 mRNA displayed dynamic expression profiles in different stages of yak ovaries, and the highest expression was found in the follicular phase. Regarding localization, STC1 protein was widely distributed in various kinds of yak ovarian cells, including oocytes, mural granulosa cells, CGCs, and thecal cells. Repressing the expression of STC1 resulted in defective proliferation and survival of yak CGCs. In addition, knockdown the expression of STC1 repressed the secretion of progesterone and promoted the secretion of estrogen. Overexpression of STC1 partially rescued the proliferation of CGCs and resulted in opposite effects on the secretion of progesterone and estrogen. Several apoptosis and steroidogenesis-related genes, including BAX, BCL2, HSD3B1, HSD17B1, CYP11A1 and CYP17A1 showed altered expressions after repressing or increasing the expression of STC1 in yak CGCs. To the best of our knowledge, this study is the first to focus on the role of STC1 in yak CGCs, and the outcomes offer fresh insights into the mechanism governing yak reproduction.
Collapse
Affiliation(s)
- Xue Yang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Jun Ma
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Luoyu Mo
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Yan Xiong
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Xianrong Xiong
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Daoliang Lan
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Wei Fu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Shi Yin
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China; Key Laboratory of Modem Technology (Southwest Minzu University), State Ethnic Affairs Commission, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
Kayacık Günday Ö, Fırat F, Yalçın GŞ, Yılmazer M. Association of endometrial polyps with STC-1 and STC-2 in infertile patients. J Obstet Gynaecol Res 2023. [PMID: 37082818 DOI: 10.1111/jog.15658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
OBJECTIVE The present study aimed to evaluate the impact of endometrial polyps (EPs) on the endometrium of patients with unexplained infertility using stanniocalcin-1 and -2 proteins (STC), whose effects on endometrial receptivity have been reported recently. MATERIALS AND METHODS A case-control study was performed, consisting of 26 patients who underwent endometrial sampling for diagnosis and/or treatment and diagnosed with EP on biopsy and/or excision material, and 23 patients with normal endometrial findings in the pathology, for a total of 49 patients with unexplained infertility. An immunohistochemistry examination was performed on paraffin-embedded tissue samples from both groups to understand whether there was a relationship between EP and STC. Staining results of the polyp and control groups for STC-1 and STC-2 were compared, and it was investigated whether STCs were predictive for EP. RESULTS In the comparison performed between the H-score evaluation results of the control and polyp groups after the immunohistochemical staining method, the staining in the polyp group was significantly higher for both STC-1 (p < 0.001) and STC-2 (p < 0.001). There was more staining with STC-1 than STC-2 in all groups (STC-1: 15.08; STC-2: 8.27; p < 0.05). In the logistic regression analysis established with STC-1, STC-2, and age, the predictive effect of STC-1 for EP was statistically significant (p = 0.040; odds ratio: 1.66; 95% confidence interval: 1.02-2.68). In EP, according to receiver operating characteristic curve analysis, area under the curve was 0.980 (likelihood ratio: 20.35; p < 0.05), and the cut-off value was 18 for STC-1. CONCLUSION In infertile patients, since STC-1, which affects endometrial receptivity, is found to be significantly higher in polyps and has a predictive effect on polyps, in patients with unexplained infertility, routine uterine cavity evaluation and routine excision of polypoid lesions detected during this period may have a positive effect on endometrial receptivity.
Collapse
Affiliation(s)
- Özlem Kayacık Günday
- Faculty of Medicine, Department of Obstetrics and Gynecology, Afyonkarahisar University of Health Sciences, Afyonkarahisar, Turkey
| | - Fatma Fırat
- Faculty of Medicine, Department of Histology and Embryology, Afyonkarahisar University of Health Sciences, Afyonkarahisar, Turkey
| | - Gülsüm Şeyma Yalçın
- Faculty of Medicine, Department of Pathology, Afyonkarahisar University of Health Sciences, Afyonkarahisar, Turkey
| | - Mehmet Yılmazer
- Faculty of Medicine, Department of Obstetrics and Gynecology, Afyonkarahisar University of Health Sciences, Afyonkarahisar, Turkey
| |
Collapse
|
3
|
Stenhouse C, Newton MG, Halloran KM, Moses RM, Sah N, Suva LJ, Bazer FW. Phosphate, calcium, and vitamin D signaling, transport, and metabolism in the endometria of cyclic ewes. J Anim Sci Biotechnol 2023; 14:13. [PMID: 36631878 PMCID: PMC9835233 DOI: 10.1186/s40104-022-00803-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/20/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Recent evidence suggests important roles for progesterone (P4) and interferon tau in the regulation of calcium, phosphate, and vitamin D signaling in the uteri of pregnant sheep. However, the effects of P4 and estradiol (E2), with respect to the expression of their receptors PGR and ESR1, respectively, in uterine epithelia on mineral signaling during the estrous cycle has not been investigated. Estrous cycles of mature Suffolk ewes were synchronized, prostaglandin F2α was administered, and ewes were observed for estrus (designated as Day 0) in the presence of vasectomized rams. On Days 1, 9, or 14 of the estrous cycle, hysterectomies were performed. RESULTS 25-hydroxyvitamin D was more abundant in plasma from ewes on Day 14 than Day 1 (P < 0.05). Expression of fibroblast growth factor receptor 2 (FGFR2), a disintegrin and metalloprotease 17 (ADAM17), and parathyroid hormone-related protein (PTHrP) mRNAs was greater in endometria on Day 9 compared to Days 1 and 14 (P < 0.01). Similarly, expression of transient receptor potential cation channel subfamily V member 6 (TRPV6) mRNA was greater in endometria on Day 9 than Day 1 (P < 0.05). ATPase plasma membrane Ca2+ transporting 4 (ATP2B4) and S100 calcium binding protein G (S100G) mRNA expression was greater in endometria on Day 14 than on Days 1 and 9 (P < 0.01). In contrast, endometrial expression of vitamin D receptor (VDR) mRNA was lower on Days 9 and 14 than Day 1 (P < 0.01). Expression of klotho (KL) (P < 0.05) and cytochrome P450 family 24 subfamily A member 1 (CYP24) (P < 0.01) mRNAs was lower on Day 14 than Days 1 and 9. ADAM17, FGF23, CYP2R1, CYP27B1, KL, and VDR proteins immunolocalized to the uterine myometrium, blood vessels, and uterine luminal (LE), superficial glandular (sGE), and glandular (GE) epithelia. S100A9 protein was weakly expressed in the uterine myometrium, LE, sGE, and GE. Immunoreactivity of CYP2R1 and KL proteins in uterine LE and sGE was less on Day 1 than on Days 9 and 14. In contrast, S100G protein was expressed exclusively by GE, and immunoreactive S100G protein was less on Day 9. S100A12 protein localized to stromal cells of the uterine stratum spongiosum and blood vessels, but not by uterine epithelial cells. CONCLUSION Collectively, these results implicate E2, P4, and PGR in the regulation of phosphate, calcium, and vitamin D signaling in cyclic ewes.
Collapse
Affiliation(s)
- Claire Stenhouse
- grid.264756.40000 0004 4687 2082Departments of Animal Science, Texas A&M University, Kleberg Center, TX 77843-2471 College Station, USA
| | - Makenzie G. Newton
- grid.264756.40000 0004 4687 2082Departments of Animal Science, Texas A&M University, Kleberg Center, TX 77843-2471 College Station, USA
| | - Katherine M. Halloran
- grid.264756.40000 0004 4687 2082Departments of Animal Science, Texas A&M University, Kleberg Center, TX 77843-2471 College Station, USA
| | - Robyn M. Moses
- grid.264756.40000 0004 4687 2082Departments of Animal Science, Texas A&M University, Kleberg Center, TX 77843-2471 College Station, USA
| | - Nirvay Sah
- grid.264756.40000 0004 4687 2082Departments of Animal Science, Texas A&M University, Kleberg Center, TX 77843-2471 College Station, USA
| | - Larry J. Suva
- grid.264756.40000 0004 4687 2082Veterinary Physiology and Pharmacology, Texas A&M University, TX 77843 College Station, USA
| | - Fuller W. Bazer
- grid.264756.40000 0004 4687 2082Departments of Animal Science, Texas A&M University, Kleberg Center, TX 77843-2471 College Station, USA
| |
Collapse
|
4
|
Bhatia V, Stevens T, Derks MFL, Dunkelberger J, Knol EF, Ross JW, Dekkers JCM. Identification of the genetic basis of sow pelvic organ prolapse. Front Genet 2023; 14:1154713. [PMID: 37144137 PMCID: PMC10151575 DOI: 10.3389/fgene.2023.1154713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction: Pelvic organ prolapse (POP) is one contributor to recent increases in sow mortality that have been observed in some populations and environments, leading to financial losses and welfare concerns. Methods: With inconsistent previous reports, the objective here was to investigate the role of genetics on susceptibility to POP, using data on 30,429 purebred sows, of which 14,186 were genotyped (25K), collected from 2012 to 2022 in two US multiplier farms with a high POP incidence of 7.1% among culled and dead sows and ranging from 2% to 4% of all sows present by parity. Given the low incidence of POP for parities 1 and >6, only data from parities 2 to 6 were retained for analyses. Genetic analyses were conducted both across parities, using cull data (culled for POP versus another reason), and by parity, using farrowing data. (culled for POP versus culled for another reason or not culled). Results and Discussion: Estimates of heritability from univariate logit models on the underlying scale were 0.35 ± 0.02 for the across-parity analysis and ranged from 0.41 ± 0.03 in parity 2 to 0.15 ± 0.07 in parity 6 for the by-parity analyses. Estimates of genetic correlations of POP between parities based on bivariate linear models indicated a similar genetic basis of POP across parities but less similar with increasing distance between parities. Genome wide association analyses revealed six 1 Mb windows that explained more than 1% of the genetic variance in the across-parity data. Most regions were confirmed in several by-parity analyses. Functional analyses of the identified genomic regions showed a potential role of several genes on chromosomes 1, 3, 7, 10, 12, and 14 in susceptibility to POP, including the Estrogen Receptor gene. Gene set enrichment analyses showed that genomic regions that explained more variation for POP were enriched for several terms from custom transcriptome and gene ontology libraries. Conclusion: The influence of genetics on susceptibility to POP in this population and environment was confirmed and several candidate genes and biological processes were identified that can be targeted to better understand and mitigate the incidence of POP.
Collapse
Affiliation(s)
- Vishesh Bhatia
- Department of Animal Science, Iowa State University, Ames, IA, United States
- *Correspondence: Vishesh Bhatia,
| | - Tomas Stevens
- Topigs Norsvin Research Center, Beuningen, Netherlands
| | | | | | | | - Jason W. Ross
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Jack C. M. Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
5
|
Stenhouse C, Halloran KM, Tanner AR, Suva LJ, Rozance PJ, Anthony RV, Bazer FW. Uptake of Phosphate, Calcium, and Vitamin D by the Pregnant Uterus of Sheep in Late Gestation: Regulation by Chorionic Somatomammotropin Hormone. Int J Mol Sci 2022; 23:7795. [PMID: 35887141 PMCID: PMC9320403 DOI: 10.3390/ijms23147795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Minerals are required for the establishment and maintenance of pregnancy and regulation of fetal growth in mammals. Lentiviral-mediated RNA interference (RNAi) of chorionic somatomammotropin hormone (CSH) results in both an intrauterine growth restriction (IUGR) and a non-IUGR phenotype in sheep. This study determined the effects of CSH RNAi on the concentration and uptake of calcium, phosphate, and vitamin D, and the expression of candidate mRNAs known to mediate mineral signaling in caruncles (maternal component of placentome) and cotyledons (fetal component of placentome) on gestational day 132. CSH RNAi Non-IUGR pregnancies had a lower umbilical vein−umbilical artery calcium gradient (p < 0.05) and less cotyledonary calcium (p < 0.05) and phosphate (p < 0.05) compared to Control RNAi pregnancies. CSH RNAi IUGR pregnancies had less umbilical calcium uptake (p < 0.05), lower uterine arterial and venous concentrations of 25(OH)D (p < 0.05), and trends for lower umbilical 25(OH)D uptake (p = 0.059) compared to Control RNAi pregnancies. Furthermore, CSH RNAi IUGR pregnancies had decreased umbilical uptake of calcium (p < 0.05), less uterine venous 25(OH)D (vitamin D metabolite; p = 0.055), lower caruncular expression of SLC20A2 (sodium-dependent phosphate transporter; p < 0.05) mRNA, and lower cotyledonary expression of KL (klotho; p < 0.01), FGFR1 (fibroblast growth factor receptor 1; p < 0.05), FGFR2 (p < 0.05), and TRPV6 (transient receptor potential vanilloid member 6; p < 0.05) mRNAs compared to CSH RNAi Non-IUGR pregnancies. This study has provided novel insights into the regulatory role of CSH for calcium, phosphate, and vitamin D utilization in late gestation.
Collapse
Affiliation(s)
- Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (C.S.); (K.M.H.)
| | - Katherine M. Halloran
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (C.S.); (K.M.H.)
| | - Amelia R. Tanner
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (A.R.T.); (R.V.A.)
| | - Larry J. Suva
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA;
| | - Paul J. Rozance
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Russell V. Anthony
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA; (A.R.T.); (R.V.A.)
| | - Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (C.S.); (K.M.H.)
| |
Collapse
|
6
|
Phosphate, Calcium, and Vitamin D: Key Regulators of Fetal and Placental Development in Mammals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:77-107. [PMID: 34807438 DOI: 10.1007/978-3-030-85686-1_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Normal calcium and bone homeostasis in the adult is virtually fully explained by the interactions of several key regulatory hormones, including parathyroid hormone, 1,25 dihydroxy vitamin D3, fibroblast growth factor-23, calcitonin, and sex steroids (estradiol and testosterone). In utero, bone and mineral metabolism is regulated differently from the adult. During development, it is the placenta and not the fetal kidneys, intestines, or skeleton that is the primary source of minerals for the fetus. The placenta is able to meet the almost inexhaustible needs of the fetus for minerals by actively driving the transport of calcium and phosphorus from the maternal circulation to the growing fetus. These fundamentally important minerals are maintained in the fetal circulation at higher concentrations than those in maternal blood. Maintenance of these inordinately higher fetal levels is necessary for the developing skeleton to accrue sufficient minerals by term. Importantly, in livestock species, prenatal mineralization of the skeleton is crucial for the high levels of offspring activity soon after birth. Calcium is required for mineralization, as well as a plethora of other physiological functions. Placental calcium and phosphate transport are regulated by several mechanisms that are discussed in this review. It is clear that phosphate and calcium metabolism is intimately interrelated and, therefore, placental transport of these minerals cannot be considered in isolation.
Collapse
|
7
|
Bishop A, Cartwright JE, Whitley GS. Stanniocalcin-1 in the female reproductive system and pregnancy. Hum Reprod Update 2021; 27:1098-1114. [PMID: 34432025 PMCID: PMC8542996 DOI: 10.1093/humupd/dmab028] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 06/15/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Stanniocalcin-1 (STC-1) is a widely expressed glycoprotein hormone involved in a diverse spectrum of physiological and pathophysiological processes including angiogenesis, mineral homeostasis, cell proliferation, inflammation and apoptosis. Over the last 20 years, numerous studies have reported STC-1 expression within female reproductive tissues including the uterus, ovaries and placenta and implicated STC-1 in processes such as ovarian follicular development, blastocyst implantation, vascular remodelling in early pregnancy and placental development. Notably, dysregulation of STC-1 within reproductive tissues has been linked to the onset of severe reproductive disorders including endometriosis, polycystic ovary syndrome, poor trophoblast invasion and placental perfusion in early pregnancy. Furthermore, significant changes in tissue expression and in maternal systemic concentration take place throughout pregnancy and further substantiate the vital role of this protein in reproductive health and disease. OBJECTIVE AND RATIONALE Our aim is to provide a comprehensive overview of the existing literature, to summarise the expression profile and roles of STC-1 within the female reproductive system and its associated pathologies. We highlight the gaps in the current knowledge and suggest potential avenues for future research. SEARCH METHODS Relevant studies were identified through searching the PubMed database using the following search terms: ‘stanniocalcin-1’, ‘placenta’, ‘ovary’, ‘endometrium’, ‘pregnancy’, ‘reproduction’, ‘early gestation’. Only English language papers published between 1995 and 2020 were included. OUTCOMES This review provides compelling evidence of the vital function that STC-1 plays within the female reproductive system. The literature presented summarise the wide expression profile of STC-1 within female reproductive organs, as well as highlighting the putative roles of STC-1 in various functions in the reproductive system. Moreover, the observed link between altered STC-1 expression and the onset of various reproductive pathologies is presented, including those in pregnancy whose aetiology occurs in the first trimester. This summary emphasises the requirement for further studies on the mechanisms underlying the regulation of STC-1 expression and function. WIDER IMPLICATIONS STC-1 is a pleiotropic hormone involved in the regulation of a number of important biological functions needed to maintain female reproductive health. There is also growing evidence that dysregulation of STC-1 is implicated in common reproductive and obstetric disorders. Greater understanding of the physiology and biochemistry of STC-1 within the field may therefore identify possible targets for therapeutic intervention and/or diagnosis.
Collapse
Affiliation(s)
- Alexa Bishop
- Centre for Vascular Biology, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, UK
| | - Judith E Cartwright
- Centre for Vascular Biology, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, UK
| | - Guy S Whitley
- Centre for Vascular Biology, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, UK
| |
Collapse
|
8
|
Klein C, Bruce P, Hammermueller J, Hayes T, Lillie B, Betteridge K. Transcriptional profiling of equine endometrium before, during and after capsule disintegration during normal pregnancy and after oxytocin-induced luteostasis in non-pregnant mares. PLoS One 2021; 16:e0257161. [PMID: 34614002 PMCID: PMC8494348 DOI: 10.1371/journal.pone.0257161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
The current study used RNA sequencing to determine transcriptional profiles of equine endometrium collected 14, 22, and 28 days after ovulation from pregnant mares. In addition, the transcriptomes of endometrial samples obtained 20 days after ovulation from pregnant mares, and from non-pregnant mares which displayed and failed to display extended luteal function following the administration of oxytocin, were determined and compared in order to delineate genes whose expressions depend on the presence of the conceptus as opposed to elevated progesterone alone. A mere fifty-five transcripts were differentially expressed between samples collected from mares at Day 22 and Day 28 of pregnancy. This likely reflects the longer-term exposure to a relatively constant, progesterone-dominated environment with little change in factors secreted by the conceptus that would affect endometrial gene expression. The complement system was amongst the canonical pathways significantly enriched in transcripts differentially expressed between Day 14 and Day 22/28 of pregnancy. The expression of complement components 7 and 8 was confirmed using in situ hybridization. The expression of SERPING1, an inhibitor of the complement system, was confirmed by immunohistochemistry. In line with the resumed capacity of the endometrium to produce prostaglandin, prostaglandin G/H synthase 1 was expressed at higher levels at Days 22 and 28 than at Day 14 of pregnancy. Our data suggest that this up-regulation is enhanced by the presence of the conceptus; samples obtained from mares at Day 20 of pregnancy had significantly higher levels of prostaglandin G/H synthase 1 transcript than mares with extended luteal function.
Collapse
Affiliation(s)
- Claudia Klein
- Friedrich-Loeffler-Institute, Institute of Farm Animal Genetics, Mariensee, Germany
| | - Phoebe Bruce
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jutta Hammermueller
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Tony Hayes
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Brandon Lillie
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Keith Betteridge
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
9
|
Stenhouse C, Halloran KM, Newton MG, Gaddy D, Suva LJ, Bazer FW. Novel mineral regulatory pathways in ovine pregnancy: II. Calcium-binding proteins, calcium transporters, and vitamin D signaling. Biol Reprod 2021; 105:232-243. [PMID: 33822885 DOI: 10.1093/biolre/ioab063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
Mineralization of the fetal mammalian skeleton requires a hypercalcemic gradient across the placenta from mother to fetus. However, the mechanisms responsible for maintaining the placental transport of calcium remain poorly understood. This study aimed to identify calcium and vitamin D regulatory pathway components in ovine endometria and placentae across gestation. Suffolk ewes were bred with fertile rams upon detection of estrus (Day 0). On Days 9, 12, 17, 30, 70, 90, 110, and 125 of pregnancy (n=3-14/Day), ewes were euthanized and hysterectomized. Calcium abundance was influenced by gestational day in uterine flushings and allantoic fluid (P<0.05). The expression of S100G, S100A9, S100A12, ATP2B3, ATP2B4, TRPV5, TRPV6, CYP11A1, CYP2R1, CYP24, and VDR mRNAs known to be involved in calcium binding, calcium transport, and vitamin D metabolism were quantified by qPCR. Mediators of calcium and vitamin D signaling were expressed by Day 17 conceptus tissue, and endometria and placentae across gestation. Gestational day influenced the expression of S100G, S100A9, S100A12, TRPV6, VDR, and CYP24 mRNAs in endometria and placentae (P<0.05). Gestational day influenced endometrial expression of ATP2B3, and placental expression of TRPV5, ATP2B4, and CYP11A1 (P<0.05). VDR protein localized to the endoderm and trophectoderm (Day 17 conceptus) and was expressed in endometria and placentae throughout gestation. The observed spatiotemporal profile suggests a potential role of calcium and vitamin D in the establishment of pregnancy and regulation of fetal and placental growth, providing a platform for further mechanistic investigation.
Collapse
Affiliation(s)
- Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | | | - Makenzie G Newton
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Dana Gaddy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Larry J Suva
- Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
10
|
Identification of Pathways Associated with Placental Adaptation to Maternal Nutrient Restriction in Sheep. Genes (Basel) 2020; 11:genes11091031. [PMID: 32887397 PMCID: PMC7565845 DOI: 10.3390/genes11091031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 01/21/2023] Open
Abstract
Maternal nutrient restriction impairs placental growth and development, but available evidence suggests that adaptive mechanisms exist, in a subset of nutrient restricted (NR) ewes, that support normal fetal growth and do not result in intrauterine growth restriction (IUGR). This study utilized Affymetrix GeneChip Bovine and Ovine Genome 1.0 ST Arrays to identify novel placental genes associated with differential fetal growth rates within NR ewes. Singleton pregnancies were generated by embryo transfer and, beginning on Day 35 of pregnancy, ewes received either a 100% National Research Council (NRC) (control-fed group; n = 7) or 50% NRC (NR group; n = 24) diet until necropsy on Day 125. Fetuses from NR ewes were separated into NR non-IUGR (n = 6) and NR IUGR (n = 6) groups based on Day 125 fetal weight for microarray analysis. Of the 103 differentially expressed genes identified, 15 were upregulated and 88 were downregulated in NR non-IUGR compared to IUGR placentomes. Bioinformatics analysis revealed that upregulated gene clusters in NR non-IUGR placentomes associated with cell membranes, receptors, and signaling. Downregulated gene clusters associated with immune response, nutrient transport, and metabolism. Results illustrate that placentomal gene expression in late gestation is indicative of an altered placental immune response, which is associated with enhanced fetal growth, in a subpopulation of NR ewes.
Collapse
|
11
|
Scaravaggi I, Borel N, Romer R, Imboden I, Ulbrich SE, Zeng S, Bollwein H, Bauersachs S. Cell type-specific endometrial transcriptome changes during initial recognition of pregnancy in the mare. Reprod Fertil Dev 2019; 31:496-508. [PMID: 30253121 DOI: 10.1071/rd18144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022] Open
Abstract
Previous endometrial gene expression studies during the time of conceptus migration did not provide final conclusions on the mechanisms of maternal recognition of pregnancy (MRP) in the mare. This called for a cell type-specific endometrial gene expression analysis in response to embryo signals to improve the understanding of gene expression regulation in the context of MRP. Laser capture microdissection was used to collect luminal epithelium (LE), glandular epithelium and stroma from endometrial biopsies from Day 12 of pregnancy and Day 12 of the oestrous cycle. RNA sequencing (RNA-Seq) showed greater expression differences between cell types than between pregnant and cyclic states; differences between the pregnant and cyclic states were mainly found in LE. Comparison with a previous RNA-Seq dataset for whole biopsy samples revealed the specific origin of gene expression differences. Furthermore, genes specifically differentially expressed (DE) in one cell type were found that were not detectable as DE in biopsies. Overall, this study revealed spatial information about endometrial gene expression during the phase of initial MRP. The conceptus induced changes in the expression of genes involved in blood vessel development, specific spatial regulation of the immune system, growth factors, regulation of prostaglandin synthesis, transport prostaglandin receptors, specifically prostaglandin F receptor (PTGFR) in the context of prevention of luteolysis.
Collapse
Affiliation(s)
- Iside Scaravaggi
- Clinic of Reproductive Medicine, Department for Farm Animals, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Nicole Borel
- Institute of Veterinary Pathology, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Rebekka Romer
- Clinic of Reproductive Medicine, Department for Farm Animals, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Isabel Imboden
- Clinic of Reproductive Medicine, Department for Farm Animals, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Susanne E Ulbrich
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Shuqin Zeng
- Clinic of Reproductive Medicine, Department for Farm Animals, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Department for Farm Animals, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Stefan Bauersachs
- Clinic of Reproductive Medicine, Department for Farm Animals, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
12
|
Spencer TE, Kelleher AM, Bartol FF. Development and Function of Uterine Glands in Domestic Animals. Annu Rev Anim Biosci 2019; 7:125-147. [DOI: 10.1146/annurev-animal-020518-115321] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All mammalian uteri contain glands that synthesize or transport and secrete substances into the uterine lumen. Uterine gland development, or adenogenesis, is uniquely a postnatal event in sheep and pigs and involves differentiation of glandular epithelium from luminal epithelium, followed by invagination and coiling morphogenesis throughout the stroma. Intrinsic transcription factors and extrinsic factors from the ovary and pituitary as well as the mammary gland (lactocrine) regulate uterine adenogenesis. Recurrent pregnancy loss is observed in the ovine uterine gland knockout sheep, providing unequivocal evidence that glands and their products are essential for fertility. Uterine gland hyperplasia and hypertrophy during pregnancy are controlled by sequential actions of hormones from the ovary and/or pituitary as well as the placenta. Gland-derived histotroph is transported by placental areolae for fetal growth. Increased knowledge of uterine gland biology is expected to improve pregnancy outcomes, as well as the health and productivity of mothers and their offspring.
Collapse
Affiliation(s)
- Thomas E. Spencer
- Division of Animal Sciences and Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri 65211, USA;,
| | - Andrew M. Kelleher
- Division of Animal Sciences and Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri 65211, USA;,
| | - Frank F. Bartol
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849-5517, USA
| |
Collapse
|
13
|
Hansen TR, Sinedino LDP, Spencer TE. Paracrine and endocrine actions of interferon tau (IFNT). Reproduction 2017; 154:F45-F59. [DOI: 10.1530/rep-17-0315] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/18/2017] [Accepted: 09/04/2017] [Indexed: 12/22/2022]
Abstract
This review focuses on the paracrine and endocrine actions of interferon tau (IFNT) during pregnancy recognition and establishment in ruminants. Pregnancy recognition involves the suppression of the endometrial luteolytic mechanism by the conceptus to maintain progesterone production by the corpus luteum (CL). The paracrine antiluteolytic effects of conceptus-derived IFNT inhibit upregulation of oxytocin receptors in the endometrial epithelia of the uterus, thereby preventing the production of luteolytic prostaglandin F2 alpha (PGF2α) pulses. In the endometrium, IFNT induces or upregulates a large number of classical IFN-stimulated genes (ISGs) and regulates expression of many other genes in a cell-specific manner that are likely important for conceptus elongation, implantation and establishment of pregnancy. Further, IFNT has endocrine effects on extrauterine cells and tissues. In sheep, IFNT induces luteal resistance to PGF2α, thereby ensuring survival of the CL for maintenance of pregnancy. The ISGs induced in circulating peripheral blood mononuclear cells by IFNT may also be useful as an indicator of pregnancy status in cattle. An increased knowledge of IFNT and ISGs is important to improve the reproductive efficiency in ruminants.
Collapse
|
14
|
Bauersachs S, Wolf E. Uterine responses to the preattachment embryo in domestic ungulates: recognition of pregnancy and preparation for implantation. Annu Rev Anim Biosci 2014; 3:489-511. [PMID: 25387113 DOI: 10.1146/annurev-animal-022114-110639] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endometrium is a tissue newly evolved with the development of mammalian species. Its main function is the support of embryonic growth and development and the nutrition of the fetus. The species-specific differences in establishment and maintenance of pregnancy make the study of this tissue in various mammalian organisms particularly interesting. With the application of omics technologies to various mammalian species, many systematic studies of endometrial gene expression changes during the phase of establishment of pregnancy have been performed to obtain a global view of regulatory events associated with this biological process. This review summarizes the results of trancriptome studies of bovine, porcine, and equine endometrium. Furthermore, the results are compared between these species and to humans. Because an increasing number of studies suggest an important role of small regulatory RNAs (i.e., microRNAs), recent findings related to the regulation of endometrial functions and the development of the conceptus are presented.
Collapse
Affiliation(s)
- Stefan Bauersachs
- Animal Physiology, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland;
| | | |
Collapse
|
15
|
Forde N, Mehta JP, McGettigan PA, Mamo S, Bazer FW, Spencer TE, Lonergan P. Alterations in expression of endometrial genes coding for proteins secreted into the uterine lumen during conceptus elongation in cattle. BMC Genomics 2013; 14:321. [PMID: 23663413 PMCID: PMC3663781 DOI: 10.1186/1471-2164-14-321] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 05/03/2013] [Indexed: 01/06/2023] Open
Abstract
Background We hypothesized that genes that are up-regulated in the uterine endometrium at the initiation of conceptus elongation in cattle, and that encode for secreted proteins, contribute to the composition of the uterine luminal fluid (ULF) and ultimately, drive conceptus elongation. The aims of this study were to: 1) screen endometrial transcriptomic data for genes that encode secreted proteins on Day 13; 2) determine temporal changes in the expression of these genes during the estrous cycle/early pregnancy; 3) determine if expression of these genes is affected by altered concentrations of progesterone (P4) in vivo and 4) determine if the protein products of these genes are detectable in ULF. Results Of the fourteen candidate genes examined, quantitative real-time PCR analysis revealed the expression of APOA1, ARSA, DCN, LCAT, MUC13, NCDN, NMN, NPNT, NXPH3, PENK, PLIN2 and TINAGL1 was modulated in the endometrium (P<0.05) as the estrous cycle/early pregnancy progressed. APOA1, DCN and NPNT expression was higher in cyclic compared to pregnant heifers, and pregnancy increased (P<0.05) the expression of LCAT, NCDN, NMN, PLIN2 and TINAGL1. The magnitude of the increase in expression of APOA1, PENK and TINAGL1 on Day 13 was reduced (P<0.05) in heifers with low P4. Furthermore, low P4 decreased (P<0.05) the expression of LCAT and NPNT on Day 7, while an early increase (P<0.05) in the expression of NXPH3 and PLIN2 was observed in heifers with high P4. The protein products of 5 of the candidate genes (APOA1, ARSA, LCAT, NCDN and PLIN) were detected in the ULF on either Days 13, 16 or 19 of pregnancy. Conclusion Using a candidate gene approach, we determined that both P4 concentration and the presence of the conceptus alter endometrial expression of PLIN2, TINAGL1, NPNT, LCAT, NMN and APOA1. Comparison of the expression profiles of these genes to proteins detected in ULF during conceptus elongation (i.e., Days 13 through 19) revealed the presence of APOA1, ARSA, LCAT, NCDN as well as members of the PLIN family of proteins that may play roles in driving conceptus elongation in cattle.
Collapse
Affiliation(s)
- Niamh Forde
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
16
|
Mid-gestational gene expression profile in placenta and link to pregnancy complications. PLoS One 2012; 7:e49248. [PMID: 23145134 PMCID: PMC3492272 DOI: 10.1371/journal.pone.0049248] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 10/04/2012] [Indexed: 12/25/2022] Open
Abstract
Despite the importance of placenta in mediating rapid physiological changes in pregnancy, data on temporal dynamics of placental gene expression are limited. We completed the first transcriptome profiling of human placental gene expression dynamics (GeneChips, Affymetrix®; ∼47,000 transcripts) from early to mid-gestation (n = 10; gestational weeks 5–18) and report 154 genes with significant transcriptional changes (ANOVA, FDR P<0.1). TaqMan RT-qPCR analysis (n = 43; gestational weeks 5–41) confirmed a significant (ANOVA and t-test, FDR P<0.05) mid-gestational peak of placental gene expression for BMP5, CCNG2, CDH11, FST, GATM, GPR183, ITGBL1, PLAGL1, SLC16A10 and STC1, followed by sharp decrease in mRNA levels at term (t-test, FDR P<0.05). We hypothesized that normal course of late pregnancy may be affected when genes characteristic to mid-gestation placenta remain highly expressed until term, and analyzed their expression in term placentas from normal and complicated pregnancies [preeclampsia (PE), n = 12; gestational diabetes mellitus (GDM), n = 12; small- and large-for-gestational-age newborns (SGA, LGA), n = 12+12]. STC1 (stanniocalcin 1) exhibited increased mRNA levels in all studied complications, with the most significant effect in PE- and SGA-groups (t-test, FDR P<0.05). In post-partum maternal plasma, the highest STC1 hormone levels (ELISA, n = 129) were found in women who had developed PE and delivered a SGA newborn (median 731 vs 418 pg/ml in controls; ANCOVA, P = 0.00048). Significantly higher expression (t-test, FDR P<0.05) of CCNG2 and LYPD6 accompanied with enhanced immunostaining of the protein was detected in placental sections of PE and GDM cases (n = 15). Our study demonstrates the importance of temporal dynamics of placental transcriptional regulation across three trimesters of gestation. Interestingly, many genes with high expression in mid-gestation placenta have also been implicated in adult complex disease, promoting the discussion on the role of placenta in developmental programming. The discovery of elevated maternal plasma STC1 in pregnancy complications warrants further investigations of its potential as a biomarker.
Collapse
|
17
|
Bazer FW, Kim J, Ka H, Johnson GA, Wu G, Song G. Select nutrients in the uterine lumen of sheep and pigs affect conceptus development. J Reprod Dev 2012; 58:180-8. [PMID: 22738901 DOI: 10.1262/jrd.2011-019] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interferon tau (IFNT) is the pregnancy recognition signal from ruminant conceptuses. IFNT also acts with P4 to induce expression of genes for transport of nutrients, such as glucose (Gluc) and arginine (Arg) into the uterine lumen to activate mechanistic mammalian target of rapamycin (MTOR) cell signaling that stimulates proliferation, migration, gene transcription and mRNA translation by conceptus trophectoderm (Tr). In ewes, Arg and Gluc increase significantly in the uterine lumen between Days 10 and 15 of pregnancy due to increased expression of transporters for Gluc (SLC2A1 and SLC5A1) and Arg (SLC7A2B) by uterine epithelia. Arg and Gluc stimulate proliferation, migration and mRNA translation by Tr. Arg increases expression of GTP cyclohydrolase 1 (GCH1) and IFNT mRNAs while Arg and Gluc increase ornithine decarboxylase, nitric oxide synthase 2, and GCH1 mRNAs and proteins by Tr cells. GCH1 is required for synthesis of tetrahydrobiopterin, an essential cofactor for all NOS isoforms. Arg is metabolized to nitric oxide and polyamines that increase proliferation and migration of Tr cells. In pigs, Gluc, Arg, leucine (Leu) and glutamine (Gln) increase in the uterine lumen between Days 12 and 15 of pregnancy due to enhanced expression of transporters for Gluc and amino acids. Transporters for Gluc in porcine uterine LE (SLC2A1) and conceptus trophectoderm (SLC2A2) are abundant. Transporters for glutamate and neutral (SLC1A1, SLC1A4) and cationic (SLC7A1, SLC7A2, SLC7A7, SLC7A9) amino acids are expressed in uterine LE and SLC7A3 mRNA is expressed in conceptus Tr. Arg and Leu increase MTOR cell signaling and proliferation of pig Tr, as do Gluc and fructose. Azaserine, an inhibitor of hexosamine biosynthesis, inhibits effects of Gluc and fructose. Thus, select nutrients in the uterine lumen affect gene transcription and mRNA translation to affect conceptus development.
Collapse
Affiliation(s)
- Fuller W Bazer
- Department of Animal Science and Center for Animal Biotechnology, Texas A&M University, Texas 77843-2471, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Bazer FW, Kim J, Song G, Ka H, Tekwe CD, Wu G. Select nutrients, progesterone, and interferon tau affect conceptus metabolism and development. Ann N Y Acad Sci 2012; 1271:88-96. [PMID: 23050969 PMCID: PMC3485747 DOI: 10.1111/j.1749-6632.2012.06741.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Interferon tau (IFNT), a novel multifunctional type I interferon secreted by trophectoderm, is the pregnancy recognition signal in ruminants that also has antiviral, antiproliferative, and immunomodulatory bioactivities. IFNT, with progesterone, affects availability of the metabolic substrate in the uterine lumen by inducing expression of genes for transport of select nutrients into the uterine lumen that activate mammalian target of rapamycin (mTOR) cell signaling responsible for proliferation, migration, and protein synthesis by conceptus trophectoderm. As an immunomodulatory protein, IFNT induces an anti-inflammatory state affecting metabolic events that decrease adiposity and glutamine:fructose-6-phosphate amidotransferase 1 activity, while increasing insulin sensitivity, nitric oxide production by endothelial cells, and brown adipose tissue in rats. This short review focuses on effects of IFNT and progesterone affecting transport of select nutrients into the uterine lumen to stimulate mTOR cell signaling required for conceptus development, as well as effects of IFNT on the immune system and adiposity in rats with respect to its potential therapeutic value in reducing obesity.
Collapse
Affiliation(s)
- Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
There is a dialogue between the developing conceptus (embryo-fetus and associated placental membranes) and maternal uterus which must be established during the peri-implantation period for pregnancy recognition signaling, implantation, regulation of gene expression by uterine epithelial and stromal cells, placentation and exchange of nutrients and gases. The uterus provide a microenvironment in which molecules secreted by uterine epithelia or transported into the uterine lumen represent histotroph required for growth and development of the conceptus and receptivity of the uterus to implantation. Pregnancy recognition signaling mechanisms sustain the functional lifespan of the corpora lutea (CL) which produce progesterone, the hormone of pregnancy essential for uterine functions that support implantation and placentation required for a successful outcome of pregnancy. It is within the peri-implantation period that most embryonic deaths occur due to deficiencies attributed to uterine functions or failure of the conceptus to develop appropriately, signal pregnancy recognition and/or undergo implantation and placentation. With proper placentation, the fetal fluids and fetal membranes each have unique functions to ensure hematotrophic and histotrophic nutrition in support of growth and development of the fetus. The endocrine status of the pregnant female and her nutritional status are critical for successful establishment and maintenance of pregnancy. This review addresses the complexity of key mechanisms that are characteristic of successful reproduction in sheep and pigs and gaps in knowledge that must be the subject of research in order to enhance fertility and reproductive health of livestock species.
Collapse
|
20
|
Bazer FW, Song G, Kim J, Erikson DW, Johnson GA, Burghardt RC, Gao H, Carey Satterfield M, Spencer TE, Wu G. Mechanistic mammalian target of rapamycin (MTOR) cell signaling: effects of select nutrients and secreted phosphoprotein 1 on development of mammalian conceptuses. Mol Cell Endocrinol 2012; 354:22-33. [PMID: 21907263 DOI: 10.1016/j.mce.2011.08.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/16/2011] [Accepted: 08/17/2011] [Indexed: 01/30/2023]
Abstract
Morphological differentiation of uterine glands in mammals is a postnatal event vulnerable to adverse effects of endocrine disruptors. Exposure of ewe lambs to a progestin from birth to postnatal day 56 prevents development of uterine glands and, as adults, the ewes are unable to exhibit estrous cycles or maintain pregnancy. Uterine epithelia secrete proteins and transport nutrients into the uterine lumen necessary for conceptus development, pregnancy recognition signaling and implantation, including arginine and secreted phosphoprotein 1 (SPP1). Arginine can be metabolized to nitric oxide and to polyamines or act directly to activate MTOR cell signaling to stimulate proliferation, migration, and mRNA translation in trophectoderm cells. SPP1 binds αvβ3 and α5β1 integrins and induces focal adhesion assembly, adhesion and migration of conceptus trophectoderm cells during implantation. Thus, arginine and SPP1 mediate growth, migration, cytoskeletal remodeling and adhesion of trophectoderm essential for pregnancy recognition signaling and implantation.
Collapse
Affiliation(s)
- Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, TX, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ciriello J, Oiamo T, Moreau J, Turner J, Wagner G. Effects of the calcium-regulating glycoprotein hormone stanniocalcin-1 within the nucleus of the solitary tract on arterial pressure and the baroreceptor reflex. Neuroscience 2012; 207:88-102. [DOI: 10.1016/j.neuroscience.2012.01.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 11/29/2022]
|
22
|
Yeung BHY, Law AYS, Wong CKC. Evolution and roles of stanniocalcin. Mol Cell Endocrinol 2012; 349:272-80. [PMID: 22115958 DOI: 10.1016/j.mce.2011.11.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 11/07/2011] [Indexed: 12/11/2022]
Abstract
In fish, stanniocalcin-1 (STC1) is a key endocrine factor that acts on gill, intestine and kidney to regulate serum calcium and phosphate homeostasis. The recent identification and study of mammalian STCs (STC1 and STC2) revealed that the hormones are made in virtually all tissues and they act primarily as paracrine/autocrine factors to regulate various biological functions. Based on their ubiquitous expression patterns and generally undetectable levels in blood serum, it is unlikely that the mammalian STCs play important roles in serum Ca(2+)/P(i) homeostasis. However current evidences still support the local action of STCs in Ca(2+) and P(i) transport, probably via their action on Ca(2+)-channels and Na(+)/P(i) co-transporter. At present, information about the sequence, expression and distribution of the STC receptor(s) is lacking. However, recent emerging evidence hints the involvement of STC1 and STC2 in the sub-cellular functions of mitochondria and endoplasmic reticulum respectively, particularly responding to oxidative stress and unfolded protein response. With increasing evidence that demonstrates the local actions of STCs, the focus of the research has been moved to cellular inflammation and carcinogenesis. This review integrates the information available on STCs in fish and mammals, focusing mainly on their embryonic origin, tissue distribution, their potential regulatory mechanisms and the modes of action, and their physiological and pathophysiological functions, particularly in cancer biology.
Collapse
Affiliation(s)
- B H Y Yeung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | | |
Collapse
|
23
|
Hormone receptor and ERBB2 status in gene expression profiles of human breast tumor samples. PLoS One 2011; 6:e26023. [PMID: 22022496 PMCID: PMC3192779 DOI: 10.1371/journal.pone.0026023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/15/2011] [Indexed: 11/19/2022] Open
Abstract
The occurrence of large publically available repositories of human breast tumor gene expression profiles provides an important resource to discover new breast cancer biomarkers and therapeutic targets. For example, knowledge of the expression of the estrogen and progesterone hormone receptors (ER and PR), and that of the ERBB2 in breast tumor samples enables choice of therapies for the breast cancer patients that express these proteins. Identifying new biomarkers and therapeutic agents affecting the activity of signaling pathways regulated by the hormone receptors or ERBB2 might be accelerated by knowledge of their expression levels in large gene expression profiling data sets. Unfortunately, the status of these receptors is not invariably reported in public databases of breast tumor gene expression profiles. Attempts have been made to employ a single probe set to identify ER, PR and ERBB2 status, but the specificity or sensitivity of their prediction is low. We enquired whether estimation of ER, PR and ERBB2 status of profiled tumor samples could be improved by using multiple probe sets representing these three genes and others with related expression.We used 8 independent datasets of human breast tumor samples to define gene expression signatures comprising 24, 51 and 14 genes predictive of ER, PR and ERBB2 status respectively. These signatures, as demonstrated by sensitivity and specificity measures, reliably identified hormone receptor and ERBB2 expression in breast tumors that had been previously determined using protein and DNA based assays. Our findings demonstrate that gene signatures can be identified which reliably predict the expression status of the estrogen and progesterone hormone receptors and that of ERBB2 in publically available gene expression profiles of breast tumor samples. Using these signatures to query transcript profiles of breast tumor specimens may enable discovery of new biomarkers and therapeutic targets for particular subtypes of breast cancer.
Collapse
|
24
|
Bazer FW, Wu G, Johnson GA, Kim J, Song G. Uterine histotroph and conceptus development: select nutrients and secreted phosphoprotein 1 affect mechanistic target of rapamycin cell signaling in ewes. Biol Reprod 2011; 85:1094-107. [PMID: 21865556 DOI: 10.1095/biolreprod.111.094722] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Interferon tau (IFNT), the pregnancy recognition signal in ruminants, abrogates the uterine luteolytic mechanism to ensure maintenance of function for the corpora lutea to produce progesterone (P4). IFNT also suppresses expression of classical IFN-stimulated genes by uterine lumenal epithelium (LE) and superficial glandular (sGE) epithelium but, acting in concert with progesterone, affects expression of a multitude of genes critical to growth and development of the conceptus. The LE and sGE secrete proteins and transport nutrients into the uterine lumen necessary for conceptus development, pregnancy recognition signaling, and implantation. Secretions include arginine and secreted phosphoprotein 1 (SPP1). Arginine can be metabolized to nitric oxide and to polyamines or act directly to activate the mechanistic target of rapamycin cell signaling pathway to stimulate proliferation, migration, and mRNA translation in trophectoderm cells. SPP1 binds alphavbeta3 and alpha5beta1 integrins to induce focal adhesion assembly, adhesion, and migration of conceptus trophectoderm cells during implantation. Thus, arginine and SPP1 mediate growth, migration, cytoskeletal remodeling, and adhesion of trophectoderm essential for pregnancy recognition signaling and implantation. This minireview focuses on components of histotroph that affect conceptus development in the ewe.
Collapse
Affiliation(s)
- Fuller W Bazer
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas, USA.
| | | | | | | | | |
Collapse
|
25
|
Baioni L, Basini G, Bussolati S, Grasselli F. Stanniocalcin 1 affects redox status of swine granulosa cells. ACTA ACUST UNITED AC 2011; 168:45-9. [PMID: 21419174 DOI: 10.1016/j.regpep.2011.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 03/01/2011] [Accepted: 03/09/2011] [Indexed: 12/14/2022]
Abstract
Stanniocalcin 1 (STC1) is a glycoprotein hormone expressed in different mammalian tissues. In previous studies, we showed STC1 expression in swine ovarian follicles and we demonstrated that STC1 may be a physiological regulator of follicular function. Since reactive oxygen species (ROS) are important signal transducers in the ovary, the present study was undertaken to investigate STC1 action on ROS generation and on the activity of the major enzymatic and non-enzymatic scavengers in swine granulosa cells. O(2)- generation, catalase activity and FRAP levels were increased by STC1, whereas H(2)O(2) generation and peroxidase activity were decreased by STC1. Taken together, our data show that STC1 modulates redox status in swine granulosa cells.
Collapse
Affiliation(s)
- Laura Baioni
- Dipartimento di Produzioni Animali, Biotecnologie Veterinarie, Qualità e Sicurezza degli Alimenti, Sezione di Fisiologia Veterinaria, Università degli Studi di Parma, Italy
| | | | | | | |
Collapse
|
26
|
Song G, Fleming JAGW, Kim J, Spencer TE, Bazer FW. Pregnancy and interferon tau regulate N-myc interactor in the ovine uterus. Domest Anim Endocrinol 2011; 40:87-97. [PMID: 21067885 DOI: 10.1016/j.domaniend.2010.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 09/09/2010] [Accepted: 09/09/2010] [Indexed: 01/24/2023]
Abstract
In ruminants, interferon tau (IFNT) is synthesized and secreted by the mononuclear trophectoderm cells of the conceptus and maintains the corpus luteum and its secretion of progesterone for successful implantation and maintenance of pregnancy. In this study, we examined regulation of the expression of N-myc interactor (NMI) gene by IFNT in the ovine uterus based on results of microarray data from a study that compared gene expression by human 2fTGH and U3A (STAT1-null 2fTGH) cell lines in response to treatment with IFNT or vehicle. In the present study, semiquantitative reverse transcription-polymerase chain reaction analyses verified that IFNT stimulated expression of NMI mRNA in 2fTGH (ie, in a STAT1-dependent manner), but not in U3A (STAT1-null) cells. Furthermore, results of western blot analyses indicated that immunoreactive NMI proteins in 2fTGH and U3A cell lines increased in a time-dependent manner only in response to IFNT. In ovine endometria, steady-state levels of NMI mRNA increased between days 14 and 16 of pregnancy and then decreased slightly by day 20, but there was no effect of day of the estrous cycle. Expression of NMI mRNA was most abundant in endometrial stromal cells, glandular epithelium, and conceptus trophectoderm. Intrauterine infusion of IFNT in cyclic ewes increased expression of NMI in the endometrium. Expression of NMI in ovine and bovine uterine cell lines increased in response to IFNT. Collectively, the results of the present study indicate that IFNT regulates expression of NMI mRNA and protein in ovine endometria during pregnancy via a STAT1-dependent cell signaling pathway.
Collapse
Affiliation(s)
- G Song
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|
27
|
Song G, Fleming JAGW, Kim J, Spencer TE, Bazer FW. Pregnancy and interferon tau regulate DDX58 and PLSCR1 in the ovine uterus during the peri-implantation period. Reproduction 2011; 141:127-38. [PMID: 20926691 DOI: 10.1530/rep-10-0348] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interferon τ (IFNT), the pregnancy recognition signal in ruminants, abrogates the luteolytic mechanism for maintenance of the corpus luteum for production of progesterone (P(4)). This study examined the expression of DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 (DDX58) and phospholipid scramblase 1 (PLSCR1) mRNAs in the ovine uterus as these genes were increased most in 2fTGH (STAT1 positive) cells by IFNT. The results of this study indicated that IFNT regulates expression of DDX58 and PLSCR1 mRNAs in the ovine uterus, which confirmed the results of the in vitro transcriptional profiling experiment with the 2fTGH (parental STAT1 positive) and U3A (STAT1 null) cell lines. Steady-state levels of DDX58 and PLSCR1 mRNAs increased in cells of the ovine uterus between days 12 and 20 of pregnancy, but not between days 10 and 16 of the estrous cycle. The expression of DDX58 and PLSCR1 mRNAs was greatest in endometrial stromal cells, but there was transient expression in uterine luminal and superficial glandular epithelial cells. P(4) alone did not induce expression of DDX58 and PLSCR1 mRNAs; however, intrauterine injections of IFNT did induce expression of DDX58 and PLSCR1 mRNAs in the endometria of nonpregnant ewes independent of effects of P(4). These results indicate that IFNT induces expression of DDX58 and PLSCR1 in ovine endometrial cells via the classical STAT1-mediated cell signaling pathway. Based on their known biological effects, DDX58 and PLSCR1 are IFN-stimulated genes, which may increase the antiviral status of cells of the pregnant uterus to protect against viral infection and/or enhance secretion of type I IFNs that inhibit viral replication.
Collapse
Affiliation(s)
- Gwonhwa Song
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | | | | | | | | |
Collapse
|
28
|
Kikuchi M, Nakano Y, Nambo Y, Haneda S, Matsui M, Miyake Y, Macleod JN, Nagaoka K, Imakawa K. Production of calcium maintenance factor Stanniocalcin-1 (STC1) by the equine endometrium during the early pregnant period. J Reprod Dev 2010; 57:203-11. [PMID: 21139325 DOI: 10.1262/jrd.10-079k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A factor responsible for progression to pregnancy establishment in the mare has not been definitively characterized. To identify factors possibly involved in the establishment of equine pregnancy, the endometrium was collected from day 13 (day 0=day of ovulation) cyclic and day 13, 19 and 25 pregnant animals. From initial subtractive hybridization studies, a calcium regulating factor, Stanniocalcin-1 (STC1) mRNA, was found as a candidate molecule expressed uniquely in the pregnant endometrium. Endometrial expression of STC1 mRNA was noted on day 19 and was markedly increased in the day 25 gravid endometrium. STC1 protein was found in the extracts of day 25 gravid endometrium and immunochemically localized in the uterine glands. In addition, STC1 protein was detected in uterine flushing media collected from day 25 pregnant mares. High concentrations of estradiol-17 β (E(2)) were detected in day 25 conceptuses. E(2) levels were much higher in the gravid endometrium than in other regions, whereas progesterone levels did not differ among the samples from different endometrial regions. Expression of STC1 mRNA, however, was not significantly upregulated in cultured endometrial explants treated with various concentrations of E(2) (0.01-100 ng/ml) with or without 10 ng/ml progesterone. These results indicate that an increase in STC1 expression appears to coincide with capsule disappearance in the conceptus, and suggest that STC1 from the uterine glands likely plays a role in conceptus development during the pregnancy establishment period in the mare.
Collapse
Affiliation(s)
- Masato Kikuchi
- Faculty of Agriculture, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Merkl M, Ulbrich SE, Otzdorff C, Herbach N, Wanke R, Wolf E, Handler J, Bauersachs S. Microarray analysis of equine endometrium at days 8 and 12 of pregnancy. Biol Reprod 2010; 83:874-86. [PMID: 20631402 DOI: 10.1095/biolreprod.110.085233] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Establishment and maintenance of pregnancy in equids is only partially understood. To provide new insights into early events of this process, we performed a systematic analysis of transcriptome changes in the endometrium at Days 8 and 12 of pregnancy. Endometrial biopsy samples from pregnant and nonpregnant stages were taken from the same mares. Composition of the collected biopsy samples was analyzed using quantitative stereological techniques to determine proportions of surface and glandular epithelium and blood vessels. Microarray analysis did not reveal detectable changes in gene expression at Day 8, whereas at Day 12 of pregnancy 374 differentially expressed genes were identified, 332 with higher and 42 with lower transcript levels in pregnant endometrium. Expression of selected genes was validated by quantitative real-time RT-PCR. Gene set enrichment analysis, functional annotation clustering, and cocitation analysis were performed to characterize the genes differentially expressed in Day 12 pregnant endometrium. Many known estrogen-induced genes and genes involved in regulation of estrogen signaling were found, but also genes known to be regulated by progesterone and prostaglandin E2. Additionally, differential expression of a number of genes related to angiogenesis and vascular remodeling suggests an important role of this process. Furthermore, genes that probably have conserved functions across species, such as CRYAB, ERRFI1, FGF9, IGFBP2, NR2F2, STC1, and TNFSF10, were identified. This study revealed the potential target genes and pathways of conceptus-derived estrogens, progesterone, and prostaglandin E2 in the equine endometrium probably involved in the early events of establishment and maintenance of pregnancy in the mare.
Collapse
Affiliation(s)
- M Merkl
- Clinic for Horses, Center for Clinical Veterinary Medicine, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians University of Munich, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Basini G, Baioni L, Bussolati S, Grolli S, Kramer LH, Wagner GF, Grasselli F. Expression and localization of stanniocalcin 1 in swine ovary. Gen Comp Endocrinol 2010; 166:404-8. [PMID: 20035757 DOI: 10.1016/j.ygcen.2009.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 12/10/2009] [Accepted: 12/16/2009] [Indexed: 10/20/2022]
Abstract
Stanniocalcin 1 (STC 1) is a glycoprotein involved in mineral homeostasis and was first identified in fish. Its mammalian homologue has been implicated in the regulation of various biological processes, including angiogenesis and steroidogenesis both of which are fundamental events in ovarian function. Interestingly, the highest level of STC 1 expression in mammals occurs in ovarian tissue but no information is available on swine species. Therefore, the present study was undertaken to investigate the expression and the immunolocalization of STC 1 in swine ovary. In addition, we evaluated whether swine granulosa cells synthesize STC 1 and its possible modulation by hypoxia, a physiological condition in ovarian follicle growth. Our data show STC 1 for the first time in swine ovary; moreover, we demonstrate STC 1 production by granulosa cells, both in basal condition and in response to oxygen deprivation. The latter is suggestive of a potential modulatory role for STC 1 in hypoxia-driven angiogenesis.
Collapse
Affiliation(s)
- G Basini
- Sezione di Fisiologia Veterinaria, Dipartimento di Produzioni Animali, Biotecnologie Veterinarie, Qualità e Sicurezza degli Alimenti, Italy.
| | | | | | | | | | | | | |
Collapse
|
31
|
Klein C, Scoggin KE, Ealy AD, Troedsson MHT. Transcriptional profiling of equine endometrium during the time of maternal recognition of pregnancy. Biol Reprod 2010; 83:102-13. [PMID: 20335638 DOI: 10.1095/biolreprod.109.081612] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Establishment and maintenance of pregnancy are critically dependent on embryo-maternal communication during the preimplantation period. To gain new insights into this complex process in the horse, transcriptional profiling of Day 13.5 pregnant and cyclic endometrial tissue samples was carried out using custom-designed microarrays. Selected array data were validated using quantitative RT-PCR, and proteins of interest were localized using immunohistochemistry. One hundred and six transcripts were up-regulated, whereas 47 transcripts showed lower expression levels in pregnant mares, that is, were down-regulated in pregnant mares. Half of the genes with known or inferred function are classically regulated by estrogens. Elevated transcript levels were found for genes involved in cell-cell signaling, heat shock response, and secretory proteins, among others. Solute carrier family 36 (proton/amino acid symporter), member 2, SLC36A2, was one of the most highly up-regulated genes, potentially reflecting the nutritional needs of the rapidly developing embryo. Among the genes showing lower expression in pregnant mares, estrogen receptor 1 was of particular interest because of its potential involvement in the initiation of luteolysis in cyclic mares. We hypothesize that either conceptus' estrogens or luteinizing hormone of uterine origin is involved in the observed down-regulation of estrogen receptor 1. Several of the genes identified in the current study are known to play a role in early pregnancy in species other than the horse. Thus, products of these commonly expressed genes likely contain universal activities for controlling endometrial receptivity to the conceptus, whereas other factors play unique roles within specific species in ensuring ongoing corpus luteum function. This is the first systematic study of endometrial transcriptome changes in response to the presence of an embryo during maternal recognition of pregnancy and an important step toward deciphering the embryo-maternal dialogue in equids.
Collapse
Affiliation(s)
- Claudia Klein
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.
| | | | | | | |
Collapse
|
32
|
Gao H, Wu G, Spencer TE, Johnson GA, Bazer FW. Select Nutrients in the Ovine Uterine Lumen. III. Cationic Amino Acid Transporters in the Ovine Uterus and Peri-Implantation Conceptuses1. Biol Reprod 2009; 80:602-9. [DOI: 10.1095/biolreprod.108.073890] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
33
|
Song G, Dunlap KA, Kim J, Bailey DW, Spencer TE, Burghardt RC, Wagner GF, Johnson GA, Bazer FW. Stanniocalcin 1 is a luminal epithelial marker for implantation in pigs regulated by progesterone and estradiol. Endocrinology 2009; 150:936-45. [PMID: 18845628 DOI: 10.1210/en.2008-1026] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stanniocalcin 1 (STC1) is a glycoprotein that decreases calcium and increases phosphate in cells/tissues. This investigation examined endocrine regulation of STC1 in endometria of pigs during the estrous cycle and pregnancy. STC1 mRNA was present exclusively in luminal epithelium (LE) between d 12 and 15 of the estrous cycle, increased between d 12 and d 20, and was not detectable by d 30 of pregnancy. STC1 protein was also detected in uterine flushings. To determine effects of estrogen and progesterone, pigs were ovariectomized and treated with these hormones alone or together. Progesterone, but not estrogen, induced STC1 in LE. Cotreatment with progesterone and estrogen further stimulated STC1 over progesterone alone. To determine effects of pseudopregnancy, nonpregnant gilts were given daily injections of estradiol benzoate from d 11 to d 14. STC1 was not expressed in LE on d 90 of pseudopregnancy, suggesting that the estradiol given to induce pseudopregnancy and/or long-term exposure to progesterone are required for down-regulation of STC1. To determine effects of long-term progesterone, without effects of estradiol, pigs were ovariectomized on d 12, given daily injections of progesterone through d 39, and hysterectomized on d 40 after estrus. STC1 was expressed in LE of progesterone-treated pigs, suggesting that estrogen is involved in down-regulation of STC1. We conclude that STC1 is induced in LE by progesterone and further stimulated by estrogen, and its down-regulation in LE by d 25 likely requires exposure of the progestinized uterus to estrogen. The temporal and cell type-specific expression of STC1 makes this gene a unique marker for implantation in pigs.
Collapse
Affiliation(s)
- Gwonhwa Song
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843-2471, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tremblay G, Delbecchi L, Loiselle MC, Ster C, Wagner GF, Talbot BG, Lacasse P. Serum levels of stanniocalcin-1 in Holstein heifers and cows. Domest Anim Endocrinol 2009; 36:105-9. [PMID: 19101107 DOI: 10.1016/j.domaniend.2008.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 09/23/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
Abstract
Stanniocalcin-1 is a hormone that possesses both paracrine and endocrine functions and has recently been identified in mammals. While paracrine functions have been determined for several organs, the role of circulating stanniocalcin-1 in cattle is still unclear but, observations in mice and cows suggest that stanniocalcin-1 plays a role in both gestation and lactation. The changes in serum stanniocalcin-1 content in different physiological states have never been evaluated in ruminants. We measured stanniocalcin-1 levels in sera from cattle ranging in age from post-weaned calves to 17-month-old heifers and in sera from cows during lactation and pregnancy. Our results indicate that the blood concentration of stanniocalcin-1 is increased by pregnancy, but not by lactation. The highest levels of stanniocalcin-1 were found in young calves and during the non-lactating period preceding calving. This suggests that stanniocalcin-1 is important for gestation and the preparation of the mammary gland for lactation.
Collapse
Affiliation(s)
- G Tremblay
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Song G, Satterfield MC, Kim J, Bazer FW, Spencer TE. Progesterone and interferon tau regulate leukemia inhibitory factor receptor and IL6ST in the ovine uterus during early pregnancy. Reproduction 2008; 137:553-65. [PMID: 19060097 DOI: 10.1530/rep-08-0437] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The actions of leukemia inhibitory factor (LIF) via LIF receptor (LIFR) and its co-receptor, IL6 signal transducer (IL6ST), are implicated in uterine receptivity to conceptus implantation in a number of species including sheep. The present study determined the effects of the estrous cycle, pregnancy, progesterone (P4), and interferon tau (IFNT) on the expression of LIFR and IL6ST in the ovine uterus. LIFR mRNA and protein were localized to the endometrial luminal (LE) and superficial glandular epithelia (sGE), whereas IL6ST mRNA and protein were localized primarily in the middle to deep GE. Both LIFR and IL6ST mRNAs and protein were more abundant in pregnant than cyclic ewes and increased from days 10 to 20 of pregnancy. Treatment of ovariectomized ewes with P4 and/or infusion of ovine IFNT increased LIFR and IL6ST in endometrial LE/sGE and GE respectively. Co-expression of LIFR and IL6ST as well as phosphorylated STAT3 was observed only in the upper GE of the endometrium as well as in the conceptus trophectoderm on days 18 and 20. In mononuclear trophectoderm and GE cells, LIF elicited an increase in phosphorylated STAT3 and MAPK3/1 MAPK proteins. Collectively, these results suggest that LIFR and IL6ST are both stimulated by IFNT and regulated by P4 in a complex stage- and cell-specific manner, and support the hypothesis that LIF exerts effects on the endometrial GE as well as conceptus trophectoderm during early pregnancy in sheep. Thus, LIF and STAT3 may have biological roles in endometrial function and trophectoderm growth and differentiation.
Collapse
Affiliation(s)
- Gwonhwa Song
- Department of Animal Science, Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas 77843-2471, USA
| | | | | | | | | |
Collapse
|
36
|
Song G, Satterfield MC, Kim J, Bazer FW, Spencer TE. Gastrin-releasing peptide (GRP) in the ovine uterus: regulation by interferon tau and progesterone. Biol Reprod 2008; 79:376-86. [PMID: 18448839 DOI: 10.1095/biolreprod.108.068403] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Gastrin-releasing peptide (GRP) is abundantly expressed by endometrial glands of the ovine uterus and processed into different bioactive peptides, including GRP1-27, GRP18-27, and a C-terminus, that affect cell proliferation and migration. However, little information is available concerning the hormonal regulation of endometrial GRP and expression of GRP receptors in the ovine endometrium and conceptus. These studies determined the effects of pregnancy, progesterone (P4), interferon tau (IFNT), placental lactogen (CSH1), and growth hormone (GH) on expression of GRP in the endometrium and GRP receptors (GRPR, NMBR, BRS3) in the endometrium, conceptus, and placenta. In pregnant ewes, GRP mRNA and protein were first detected predominantly in endometrial glands after Day 10 and were abundant from Days 18 through 120 of gestation. Treatment with IFNT and progesterone but not CSH1 or GH stimulated GRP expression in the endometrial glands. Western blot analyses identified proGRP in uterine luminal fluid and allantoic fluid from Day 80 unilateral pregnant ewes but not in uterine luminal fluid of either cyclic or early pregnant ewes. GRPR mRNA was very low in the Day 18 conceptus and undetectable in the endometrium and placenta; NMBR and BRS3 mRNAs were undetectable in ovine uteroplacental tissues. Collectively, the present studies validate GRP as a novel IFNT-stimulated gene in the glands of the ovine uterus, revealed that IFNT induction of GRP is dependent on P4, and found that exposure of the ovine uterus to P4 for 20 days induces GRP expression in endometrial glands.
Collapse
Affiliation(s)
- Gwonhwa Song
- Center for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | |
Collapse
|
37
|
Haig D. Placental Growth Hormone-Related Proteins and Prolactin-Related Proteins. Placenta 2008; 29 Suppl A:S36-41. [DOI: 10.1016/j.placenta.2007.09.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 09/25/2007] [Accepted: 09/26/2007] [Indexed: 11/16/2022]
|
38
|
Spencer TE, Sandra O, Wolf E. Genes involved in conceptus–endometrial interactions in ruminants: insights from reductionism and thoughts on holistic approaches. Reproduction 2008; 135:165-79. [DOI: 10.1530/rep-07-0327] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review summarizes new knowledge on expression of genes and provides insights into approaches for study of conceptus–endometrial interactions in ruminants with emphasis on the peri-implantation stage of pregnancy. Conceptus–endometrial interactions in ruminants are complex and involve carefully orchestrated temporal and spatial alterations in gene expression regulated by hormones from the ovary and conceptus. Progesterone is the hormone of pregnancy and acts on the uterus to stimulate blastocyst survival, growth, and development. Inadequate progesterone levels or a delayed rise in progesterone is associated with pregnancy loss. The mononuclear trophectoderm cells of the elongating blastocyst synthesize and secrete interferon-τ (IFNT), the pregnancy recognition signal. Trophoblast giant binucleate cells begin to differentiate and produce hormones including chorionic somatomammotropin 1 (CSH1 or placental lactogen). A number of genes, induced or stimulated by progesterone, IFNT, and/or CSH1 in a cell-specific manner, are implicated in trophectoderm adhesion to the endometrial luminal epithelium and regulation of conceptus growth and differentiation. Transcriptional profiling experiments are beginning to unravel the complex dynamics of conceptus–endometrial interactions in cattle and sheep. Future experiments should incorporate physiological models of pregnancy loss and be complemented by metabolomic studies of uterine lumen contents to more completely define factors required for blastocyst survival, growth, and implantation. Both reduction and holistic approaches will be important to understand the multifactorial phenomenon of recurrent pregnancy loss and provide a basis for new strategies to improve pregnancy outcome and reproductive efficiency in cattle and other domestic animals.
Collapse
|
39
|
Liu Y, Lee KF, Ng EHY, Yeung WSB, Ho PC. Gene expression profiling of human peri-implantation endometria between natural and stimulated cycles. Fertil Steril 2008; 90:2152-64. [PMID: 18191855 DOI: 10.1016/j.fertnstert.2007.10.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 10/03/2007] [Accepted: 10/03/2007] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the effect of high serum E(2) levels in gonadotropin-stimulated cycles (hCG+7) on the gene expression patterns of human endometrium compared with natural cycles on the seventh day of LH surge (LH+7) and elucidate the underlying molecular changes that may be related to endometrial receptivity. DESIGN Observational study. SETTING University Hospital. PATIENTS(S) Infertile patients with normal menstrual cycles undergoing IVF treatment. INTERVENTION(S) Gonadotropin stimulation and endometrial biopsy. MAIN OUTCOME MEASURE(S) Gene expression by microarray and quantitative polymerase chain reaction (qPCR). RESULT(S) Endometrial samples from natural (n = 5) and stimulated (n = 8) cycles were collected. Patients in the stimulated cycles were classified as moderate (n = 4) or excessive (n = 4) responders if their serum E(2) levels on the day of administration of hCG were <or=20,000 pmol/L or >20,000 pmol/L, respectively. The RNA transcripts were profiled by Affymetrix HG-U133A microarray. Clustering and principal component analysis demonstrated a significant difference (>or=2-fold) in the expression patterns of 411 genes among the three groups. Putative estrogen response elements or progesterone response elements were identified in the promoter regions of 49 differentially expressed genes of diverse biologic functions. The qPCR confirmed the microarray result in 47 endometrial samples. CONCLUSION(S) High serum E(2) and/or progesterone modulate the gene expression profiles of human endometrium and may affect endometrial receptivity.
Collapse
Affiliation(s)
- Yunao Liu
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|
40
|
Ushizawa K, Takahashi T, Hosoe M, Ohkoshi K, Hashizume K. Expression and characterization of novel ovine orthologs of bovine placental prolactin-related proteins. BMC Mol Biol 2007; 8:95. [PMID: 17961217 PMCID: PMC2233639 DOI: 10.1186/1471-2199-8-95] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 10/25/2007] [Indexed: 11/10/2022] Open
Abstract
Background The prolactin-related proteins (PRPs) are non-classical placental-specific members of the prolactin/growth hormone family. Among ruminants, they are expressed in the cotyledonary villi of cattle and goat. We investigated placental PRP in sheep in order to gain a comprehensive understanding of the function and evolution of these molecules. We also examined the sequence properties, expression and lactogenic activation of the cloned genes. Results We cloned two novel ovine PRPs, named oPRP1 and oPRP2. oPRP2 had a typical PRP sequence similar to bovine PRP1 (bPRP1). oPRP1 had a short sequence identical with bovine or caprine type PRP but the reading frame was shifted. Both oPRPs were expressed in trophoblast giant binucleate cells (BNC) as in cattle and goat. oPRP1 expression declined from the early to the middle stage of gestation. In contrast, oPRP2 expression remained constant throughout the gestation period. oPRP2 was translated to form a mature protein in a mammalian cell expression system. Western blotting showed a molecular mass of 35 kDa for the FLAG-tag fusion oPRP2 protein. This recombinant protein and bPRP1 were bioassayed using Nb2 lymphoma cells; it was confirmed that neither ruminant PRP had lactogenic activity because the Nb2 lymphoma cells did not proliferate. Conclusion We have identified two novel PRPs, oPRP1 and oPRP2, in ovine placenta. Both these ovine PRPs were localized and quantitatively expressed in BNC. Absence of lactogenic activity was confirmed for the oPRP2 molecule. It is anticipated that novel and known ruminant PRPs have common functions, except for lactogenic activity.
Collapse
Affiliation(s)
- Koichi Ushizawa
- Reproductive Biology Research Unit, Division of Animal Sciences, National Institute of Agrobiological Sciences, 2 Ikenodai, Tsukuba, Ibaraki 305-8602, Japan.
| | | | | | | | | |
Collapse
|
41
|
Burney RO, Talbi S, Hamilton AE, Vo KC, Nyegaard M, Nezhat CR, Lessey BA, Giudice LC. Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis. Endocrinology 2007; 148:3814-26. [PMID: 17510236 DOI: 10.1210/en.2006-1692] [Citation(s) in RCA: 514] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The identification of molecular differences in the endometrium of women with endometriosis is an important step toward understanding the pathogenesis of this condition and toward developing novel strategies for the treatment of associated infertility and pain. In this study, we conducted global gene expression analysis of endometrium from women with and without moderate/severe stage endometriosis and compared the gene expression signatures across various phases of the menstrual cycle. The transcriptome analysis revealed molecular dysregulation of the proliferative-to-secretory transition in endometrium of women with endometriosis. Paralleled gene expression analysis of endometrial specimens obtained during the early secretory phase demonstrated a signature of enhanced cellular survival and persistent expression of genes involved in DNA synthesis and cellular mitosis in the setting of endometriosis. Comparative gene expression analysis of progesterone-regulated genes in secretory phase endometrium confirmed the observation of attenuated progesterone response. Additionally, interesting candidate susceptibility genes were identified that may be associated with this disorder, including FOXO1A, MIG6, and CYP26A1. Collectively these findings provide a framework for further investigations on causality and mechanisms underlying attenuated progesterone response in endometrium of women with endometriosis.
Collapse
Affiliation(s)
- Richard O Burney
- Department of Obstetrics and Gynecology, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Gene expression profiles of novel caprine placental prolactin-related proteins similar to bovine placental prolactin-related proteins. BMC DEVELOPMENTAL BIOLOGY 2007; 7:16. [PMID: 17359547 PMCID: PMC1847437 DOI: 10.1186/1471-213x-7-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 03/15/2007] [Indexed: 11/25/2022]
Abstract
Background This study reports the identification of a full-length cDNA sequence for two novel caprine prolactin-related proteins (cPRP1 and cPRP6), and their localization and quantitative expression in the placenta. Caprine PRPs are compared with known bovine PRPs. We examined their evolution and role in the ruminant placenta. Results Full-length cPRP1 and cPRP6 cDNA were cloned with a 717- and 720- nucleotide open-reading frame corresponding to proteins of 238 and 239 amino acids. The cPRP1 predicted amino acid sequence shares a 72% homology with bovine PRP1 (bPRP1). The cPRP6 predicted amino acid sequence shares a 74% homology with bovine PRP6 (bPRP6). The two cPRPs as well as bPRPs were detected only in the placentome by RT-PCR. Analysis by in situ hybridization revealed the presence of both cPRPs mRNA in the trophoblast binucleate cells. These mRNA were quantified by real-time RT-PCR analysis of the placentome at 30, 50, 90 and 140 days of pregnancy. Both new cPRP genes were able to translate a mature protein in a mammalian cell-expression system. Western blotting established the molecular sizes of 33 kDa for cPRP1 with FLAG-tag and 45 kDa for cPRP6 with FLAG-tag. The sequence properties and localized expression of cPRP1 and cPRP6 were similar to those of bovine. However, their expression profiles differed from those in bovine placenta. Although this study demonstrated possible roles of PRPs in caprine placenta, PRPs may regulate binucleate-cell functions like those in bovine, but their crucial roles are still unclear. Conclusion We have identified the novel PRPs in caprine placenta. Localization and quantitative expression of caprine PRPs were compared with bovine PRPs. The data indicate that PRP genes in caprine placenta have coordination functions for gestation, as they do in bovine. This is the first study of PRPs function in caprine placenta.
Collapse
|