1
|
Monshizadeh K, Tajamolian M, Anbari F, Mehrjardi MYV, Kalantar SM, Dehghani M. The association of RBX1 and BAMBI gene expression with oocyte maturation in PCOS women. BMC Med Genomics 2024; 17:24. [PMID: 38238750 PMCID: PMC10797783 DOI: 10.1186/s12920-024-01800-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Polycystic ovarian syndrome (PCOS) is a common endocrine disorder that affects 6-20% of women of reproductive age. One of the symptoms of PCOS is hyperandrogenism, which can impair follicular development. This disruption can cause issues with the development of oocytes and the growth of embryos. Although the exact cause of PCOS is not yet fully understood, studying the gene expression pattern of cumulus cells, which play a crucial role in the maturation and quality of oocytes, could help identify the genes associated with oocyte maturation in PCOS women. Through indirect activation of APC/Cdc20, RBX1 enables oocytes to bypass the GV (germinal vesicles) stage and advance to the MII (metaphase II) stage. our other gene is the BAMBI gene which stimulates WNT signaling, that is a crucial pathway for healthy ovarian function. This study aims to explore the expression level of the RBX1 and BAMBI genes between GV and MII oocytes of PCOS and non-PCOS groups. METHODS In this experiment, we gathered the cumulus cells of MII (38 cases and 33 control) and GV (38 cases and 33 control) oocytes from women with/without PCOS. Besides, quantitative RT-PCR was used to assess the semi-quantitative expression of BAMBI and RBX1. RESULTS According to our research, the expression level of RBX1 and BAMBI in MII and GV cumulus cells of PCOS patients was significantly lower than that in non-PCOS ones. CONCLUSION This research raises the possibility of RBX1 and BAMBI involvement in oocyte quality in PCOS women.
Collapse
Affiliation(s)
- Kimia Monshizadeh
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Tajamolian
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Anbari
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Yahya Vahidi Mehrjardi
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mehdi Kalantar
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammadreza Dehghani
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
2
|
Akbari A, Aboutorabi R, Kazemi M, Borzouie Z, Feizi A, Naghshineh E, Mostafavi F. Differential Gene Expressions of CALM1, PSMD6, and AK124742 Long Noncoding RNA in Cumulus Cells from Polycystic Ovary Syndrome Patients versus Normal Control Women. Adv Biomed Res 2023; 12:240. [PMID: 38073758 PMCID: PMC10699245 DOI: 10.4103/abr.abr_111_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/20/2021] [Accepted: 09/25/2021] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND One of the well-known causes of subfertility is polycystic ovary syndrome (PCOS). Genetic components play a critical role in the etiology of PCOS. The recognition of differentially expressed genes in PCOS patients might provide a better understanding of the pathophysiology of this syndrome and paves the way for novel therapeutics. Gene expression profiles in cumulus cells (CCs) could be used as biological criteria for embryo competence and their analysis might lead to important molecular information about embryo quality. CALM1, PSMD6, and AK124742 are three well-known genes associated with embryo development. Therefore, the objective of this study was to compare the expression of CALM1, PSMD6, and AK124742 genes in the CCs of infertile PCOS patients with their expression in the CCs of the donor fertile group. MATERIALS AND METHODS CCs were collected from the follicular fluid of 33 patients with PCOS as the experimental group and 33 cumulus donor women who were referred to the infertility center for egg donation as the control group. CCs were frozen until genetic testing. The expression of CALM1, PSMD6, and AK124742 genes was detected by real-time polymerase chain reaction. RESULTS CALM1 and AK124742 gene expressions significantly increased (CALM1 P = 0.003) (AK124742 P = 0.000) and PSMD6 expression significantly decreased (P = 0.002) in the PCOS group compared to the cumulus donor (control) group. CONCLUSION Therefore, our research findings suggest that the potential impact of Polycystic Ovary Syndrome (PCOS) on fertility could be attributed to modifications in the expression levels of genes that affect the reproductive.
Collapse
Affiliation(s)
- Ali Akbari
- Department of Anatomy, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roshanak Aboutorabi
- Department of Anatomy, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Reproductive Sciences and Sexual Health Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Borzouie
- Department of Anatomy, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Naghshineh
- Department of Obstetrics and Gynecology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemesadat Mostafavi
- Department of Anatomy, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Clarke HJ. Transzonal projections: Essential structures mediating intercellular communication in the mammalian ovarian follicle. Mol Reprod Dev 2022; 89:509-525. [PMID: 36112806 DOI: 10.1002/mrd.23645] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 12/25/2022]
Abstract
The development of germ cells relies on contact and communication with neighboring somatic cells that provide metabolic support and regulatory signals. In females, contact is achieved through thin cytoplasmic processes that project from follicle cells surrounding the oocyte, extend through an extracellular matrix (ECM) that lies between them, and reach its surface. In mammals, the ECM is termed the zona pellucida and the follicular cell processes are termed transzonal projections (TZPs). TZPs become detectable when the zona pellucida is laid down during early folliculogenesis and subsequently increase in number as oocyte growth progresses. They then rapidly disappear at the time of ovulation, permanently breaking germ-soma contact. Here we review the life cycle and functions of the TZPs. We begin with an overview of the morphology and cytoskeletal structure of TZPs, in the context of actin- and tubulin-based cytoplasmic processes in other cell types. Next, we review the roles played by TZPs in mediating progression through successive stages of oocyte development. We then discuss two mechanisms that may generate TZPs-stretching at pre-existing points of granulosa cell-oocyte contact and elaboration of new processes that push through the zona pellucida-as well as gene products implicated in their formation or function. Finally, we describe the signaling pathways that cause TZPs to be retracted in response to signals that also trigger meiotic maturation and ovulation of the oocyte. The principles and mechanisms that govern TZP behavior may be relevant to understanding communication between physically separated cells in other physiological contexts.
Collapse
Affiliation(s)
- Hugh J Clarke
- Program in Child Health and Human Development, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Nagyová E, Němcová L, Camaioni A. Cumulus Extracellular Matrix Is an Important Part of Oocyte Microenvironment in Ovarian Follicles: Its Remodeling and Proteolytic Degradation. Int J Mol Sci 2021; 23:54. [PMID: 35008478 PMCID: PMC8744823 DOI: 10.3390/ijms23010054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) is an essential structure with biological activities. It has been shown that the ECM influences gene expression via cytoskeletal components and the gene expression is dependent upon cell interactions with molecules and hormones. The development of ovarian follicles is a hormone dependent process. The surge in the luteinizing hormone triggers ovulatory changes in oocyte microenvironment. In this review, we discuss how proteolytic cleavage affects formation of cumulus ECM following hormonal stimulation; in particular, how the specific proteasome inhibitor MG132 affects gonadotropin-induced cytoskeletal structure, the organization of cumulus ECM, steroidogenesis, and nuclear maturation. We found that after the inhibition of proteolytic cleavage, gonadotropin-stimulated oocyte-cumulus complexes (OCCs) were without any signs of cumulus expansion; they remained compact with preserved cytoskeletal F-actin-rich transzonal projections through the oocyte investments. Concomitantly, a significant decrease was detected in progesterone secretion and in the expression of gonadotropin-stimulated cumulus expansion-related transcripts, such as HAS2 and TNFAIP6. In agreement, the covalent binding between hyaluronan and the heavy chains of serum-derived the inter-alpha-trypsin inhibitor, essential for the organization of cumulus ECM, was missing.
Collapse
Affiliation(s)
- Eva Nagyová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Libechov, Czech Republic;
| | - Lucie Němcová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Libechov, Czech Republic;
| | - Antonella Camaioni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpelier 1, 00133 Rome, Italy;
| |
Collapse
|
5
|
Wang Y, Lv C, Huang HL, Zeng MH, Yi DJ, Tan HJ, Peng TL, Yu WX, Deng HW, Xiao HM. Influence of mouse defective zona pellucida in folliculogenesis on apoptosis of granulosa cells and developmental competence of oocytes†. Biol Reprod 2020; 101:457-465. [PMID: 31162612 DOI: 10.1093/biolre/ioz093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/10/2018] [Accepted: 06/03/2019] [Indexed: 01/22/2023] Open
Abstract
Zona pellucida (ZP), which enwraps the oocyte during folliculogenesis, initially forms in the primary follicle and plays an important role in female fertility. Here, we investigated a mouse strain ("mutant mice" for short) carrying two types of ZP defects in folliculogenesis, i.e., ZP thinned (but intact) and ZP cracked, caused by targeted mutation in the Zp1 gene. Using this mutant mouse strain and wild-type mouse as control, we studied the effects of the ZP defects on the development of oocytes and granulosa cells during folliculogenesis. For each ZP defect, we examined the morphology of transzonal projections and apoptosis of granulosa cells in the corresponding growing follicles, as well as the morphology of corresponding ovulated eggs and their abilities to develop into viable individuals. Our results suggested that ZP integrity rather than thickness or porosity is crucial for preventing the ectopia of granulosa cells, maintaining adequate routine bilateral signaling between oocyte and surrounding granulosa cells, and thus for ensuring the survival of granulosa cells and the establishment of the full developmental competence of oocytes. This is the first study to elucidate the effects of different degrees of ZP defects caused by the same gene mutation, on the apoptosis of granulosa cells and developmental competence of oocytes, and to explore the potential mechanisms underlying these effects.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Center of Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Chao Lv
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Center of Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Hua-Lin Huang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Center of Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Ming-Hua Zeng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Center of Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Da-Jing Yi
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Center of Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Hang-Jing Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Center of Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Tian-Liu Peng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Center of Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Wen-Xian Yu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Center of Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Hong-Wen Deng
- Center of System Biology and Data Science, School of Basic Medical Science, Central South University, Changsha, China.,Tulane Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA
| | - Hong-Mei Xiao
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Center of Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
6
|
Kinterova V, Kanka J, Petruskova V, Toralova T. Inhibition of Skp1-Cullin-F-box complexes during bovine oocyte maturation and preimplantation development leads to delayed development of embryos†. Biol Reprod 2020; 100:896-906. [PMID: 30535233 DOI: 10.1093/biolre/ioy254] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/17/2018] [Accepted: 12/06/2018] [Indexed: 11/12/2022] Open
Abstract
The mechanism of maternal protein degradation during preimplantation development has not been clarified yet. It is thought that a lot of maternal proteins are degraded by the ubiquitin-proteasome system. In this study, we focused on the role of the SCF (Skp1-Cullin-F-box) complexes during early bovine embryogenesis. We inhibited them using MLN4924, an inhibitor of SCF complex ligases controlled by neddylation. Oocytes maturated in MLN4924 could be fertilized, but we found no cumulus cell expansion and a high number of polyspermy after in vitro fertilization. We also found a statistically significant deterioration of development after MLN4924 treatment. After treatment with MLN4924 from the four-cell to late eight-cell stage, we found a statistically significant delay in their development; some of the treated embryos were, however, able to reach the blastocyst stage later. We found reduced levels of mRNA of EGA markers PAPOLA and U2AF1A, which can be related to this developmental delay. The cultivation with MLN4924 caused a significant increase in protein levels in MLN4924-treated oocytes and embryos; no such change was found in cumulus cells. To detect the proteins affected by MLN4924 treatment, we performed a Western blot analysis of selected proteins (SMAD4, ribosomal protein S6, centromeric protein E, P27, NFKB inhibitor alpha, RNA-binding motif protein 19). No statistically significant increase in protein levels was detected in either treated embryos or oocytes. In summary, our study shows that SCF ligases are necessary for the correct maturation of oocytes, cumulus cell expansion, fertilization, and early preimplantation development of cattle.
Collapse
Affiliation(s)
- Veronika Kinterova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic.,Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Jiri Kanka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic
| | - Veronika Petruskova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Tereza Toralova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic
| |
Collapse
|
7
|
Cai L, Jeong YW, Hyun SH, Yu IJ, Hwang WS, Jeon Y. Trehalose supplementation during porcine oocytes in vitro maturation improves the developmental capacity of parthenotes. Theriogenology 2019; 141:91-97. [PMID: 31521883 DOI: 10.1016/j.theriogenology.2019.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/20/2019] [Accepted: 09/05/2019] [Indexed: 01/29/2023]
Abstract
Autophagy is a critical process in early mammalian embryogenesis. Mammalian target of rapamycin (mTOR) inhibitors are major regulators of autophagy. However, mTOR plays a vital role in major signaling pathways controlling cell growth and metabolism; thus, more secure autophagy activation methods should be considered. The present study investigated the effects of supplementary trehalose, a novel mTOR-independent autophagy enhancer, on oocyte maturation and embryonic development after parthenogenetic activation (PA). Trehalose treatment during in vitro maturation (IVM) did not affect the nuclear maturation rates of oocytes. Oocytes treated with 25 mM trehalose during IVM had a significantly higher (P < 0.05) blastocyst formation rate (64.2%) after PA compared to that in control oocytes (52.0%). Blastocyst quality was also improved in the trehalose-treated group. The total cell numbers for blastocyst formation and expanded blastocyst formation were significantly increased in the trehalose-treated group (52.2% and 27.7%, respectively) compared to those in the control group (36.9% and 11.0%, respectively). Trehalose treatment led to the increased expression of LC3, an autophagy marker, in metaphase II oocytes and 4-cell stage embryos. Gene expression analysis revealed that the expression of several autophagy related genes (LAMP2, pATG5, and LC3) increased, while the Bax/Bcl2 ratio and pro-apoptotic Bak transcript levels were decreased in the trehalose-treated group. In conclusion, these results indicate that treatment with trehalose during IVM improved the developmental potential of porcine embryos by down-regulation of pro-apoptotic genes and up-regulation of autophagy-related genes and marker. Trehalose may be useful for the large-scale production of high-quality porcine blastocysts in vitro.
Collapse
Affiliation(s)
- Lian Cai
- Sooam Biotech Research Foundation, Seoul, 08359, Republic of Korea; Institute for Stem Cell and Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea; Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yeon-Woo Jeong
- Sooam Biotech Research Foundation, Seoul, 08359, Republic of Korea
| | - Sang-Hwan Hyun
- Institute for Stem Cell and Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea; Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Il-Jeoung Yu
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Woo-Suk Hwang
- Sooam Biotech Research Foundation, Seoul, 08359, Republic of Korea
| | - Yubyeol Jeon
- Sooam Biotech Research Foundation, Seoul, 08359, Republic of Korea; Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
8
|
Demiray SB, Goker ENT, Tavmergen E, Yilmaz O, Calimlioglu N, Soykam HO, Oktem G, Sezerman U. Differential gene expression analysis of human cumulus cells. Clin Exp Reprod Med 2019; 46:76-86. [PMID: 31181875 PMCID: PMC6572664 DOI: 10.5653/cerm.2019.46.2.76] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/02/2019] [Indexed: 12/14/2022] Open
Abstract
Objective This study was performed to explore the possibility that each oocyte and its surrounding cumulus cells might have different genetic expression patterns that could affect human reproduction. Methods Differential gene expression analysis was performed for 10 clusters of cumulus cells obtained from 10 cumulus-oocyte complexes from 10 patients. Same procedures related to oocyte maturation, microinjection, and microarray analyses were performed for each group of cumulus cells. Two differential gene expression analyses were performed: one for the outcome of clinical pregnancy and one for the outcome of live birth. Results Significant genes resulting from these analyses were selected and the top 20 affected pathways in each group were analyzed. Circadian entrainment is determined to be the most affected pathway for clinical pregnancy, and proteoglycans in cancer pathway is the most affected pathway for live birth. Circadian entrainment is also amongst the 12 pathways that are found to be in top 20 affected pathways for both outcomes, and has both lowest p-value and highest number of times found count. Conclusion Although further confirmatory studies are necessary, findings of this study suggest that these pathways, especially circadian entrainment in cumulus cells, may be essential for embryo development and pregnancy.
Collapse
Affiliation(s)
- Sirin Bakti Demiray
- Assisted Reproduction Unit, Tepecik Education and Research Hospital, Izmir, Turkey
| | | | - Erol Tavmergen
- Department of Obstetrics and Gynecology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Ozlem Yilmaz
- Department of Histology and Embryology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Nilufer Calimlioglu
- Department of Obstetrics and Gynecology, Ege University Faculty of Medicine, Izmir, Turkey
| | | | - Gulperi Oktem
- Department of Histology and Embryology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Ugur Sezerman
- Department of Biostatistics and Bioinformatics, Acibadem Mehmet Ali Aydinlar University, Institute of Health Sciences, Istanbul, Turkey
| |
Collapse
|
9
|
Teeli AS, Leszczyński P, Krishnaswamy N, Ogawa H, Tsuchiya M, Śmiech M, Skarzynski D, Taniguchi H. Possible Mechanisms for Maintenance and Regression of Corpus Luteum Through the Ubiquitin-Proteasome and Autophagy System Regulated by Transcriptional Factors. Front Endocrinol (Lausanne) 2019; 10:748. [PMID: 31803139 PMCID: PMC6877548 DOI: 10.3389/fendo.2019.00748] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022] Open
Abstract
The corpus luteum (CL) is an important tissue of the female reproductive process which is established through ovulation of the mature follicle. Pulsatile release of prostaglandin F2α from the uterus leads to the regression of luteal cells and restarts the estrous cycle in most non-primate species. The rapid functional regression of the CL, which coincides with decrease of progesterone production, is followed by its structural regression. Although we now have a better understanding of how the CL is triggered to undergo programmed cell death, the precise mechanisms governing CL protein degradation in a very short period of luteolysis remains unknown. In this context, activation of ubiquitin-proteasome pathway (UPP), unfolded protein response (UPR) and autophagy are potential subcellular mechanisms involved. The ubiquitin-proteasome pathway (UPP) maintains tissue homeostasis in the face of both internal and external stressors. The UPP also controls physiological processes in many gonadal cells. Emerging evidence suggests that UPP dysfunction is involved in male and female reproductive tract dysfunction. Autophagy is activated when cells are exposed to different types of stressors such as hypoxia, starvation, and oxidative stress. While emerging evidence points to an important role for the UPP and autophagy in the CL, the key underlying transcriptional mechanisms have not been well-documented. In this review, we propose how CL regression may be governed by the ubiquitin-proteasome and autophagy pathways. We will further consider potential transcription factors which may regulate these events in the CL.
Collapse
Affiliation(s)
- Aamir S. Teeli
- Department of Experimental Embryology, The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Paweł Leszczyński
- Department of Experimental Embryology, The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
| | | | - Hidesato Ogawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Megumi Tsuchiya
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Magdalena Śmiech
- Department of Experimental Embryology, The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Dariusz Skarzynski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland
- *Correspondence: Hiroaki Taniguchi
| |
Collapse
|
10
|
The Biological Role of Hyaluronan-Rich Oocyte-Cumulus Extracellular Matrix in Female Reproduction. Int J Mol Sci 2018; 19:ijms19010283. [PMID: 29346283 PMCID: PMC5796229 DOI: 10.3390/ijms19010283] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/16/2022] Open
Abstract
Fertilization of the mammalian oocyte requires interactions between spermatozoa and expanded cumulus extracellular matrix (ECM) that surrounds the oocyte. This review focuses on key molecules that play an important role in the formation of the cumulus ECM, generated by the oocyte-cumulus complex. In particular, the specific inhibitors (AG1478, lapatinib, indomethacin and MG132) and progesterone receptor antagonist (RU486) exerting their effects through the remodeling of the ECM of the cumulus cells surrounding the oocyte have been described. After gonadotropin stimulus, cumulus cells expand and form hyaluronan (HA)-rich cumulus ECM. In pigs, the proper structure of the cumulus ECM depends on the interaction between HA and serum-derived proteins of the inter-alpha-trypsin inhibitor (IαI) protein family. We have demonstrated the synthesis of HA by cumulus cells, and the presence of the IαI, tumor necrosis factor-alpha-induced protein 6 and pentraxin 3 in expanding oocyte-cumulus complexes (OCC). We have evaluated the covalent linkage of heavy chains of IαI proteins to HA, as the principal component of the expanded HA-rich cumulus ECM, in porcine OCC cultured in medium with specific inhibitors: AG1478 and lapatinib (both inhibitors of epidermal growth factor receptor tyrosine kinase activity); MG132 (a specific proteasomal inhibitor), indomethacin (cyclooxygenase inhibitor); and progesterone receptor antagonist (RU486). We have found that both RU486 and indomethacin does not disrupt the formation of the covalent linkage between the heavy chains of IαI to HA in the expanded OCC. In contrast, the inhibitors AG1478 and lapatinib prevent gonadotropin-induced cumulus expansion. Finally, the formation of oocyte-cumulus ECM relying on the covalent transfer of heavy chains of IαI molecules to HA has been inhibited in the presence of MG132.
Collapse
|
11
|
Clarke HJ. Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:10.1002/wdev.294. [PMID: 28892263 PMCID: PMC5746469 DOI: 10.1002/wdev.294] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/21/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022]
Abstract
Prior to ovulation, the mammalian oocyte undergoes a process of differentiation within the ovarian follicle that confers on it the ability to give rise to an embryo. Differentiation comprises two phases-growth, during which the oocyte increases more than 100-fold in volume as it accumulates macromolecules and organelles that will sustain early embryogenesis; and meiotic maturation, during which the oocyte executes the first meiotic division and prepares for the second division. Entry of an oocyte into the growth phase appears to be triggered when the adjacent granulosa cells produce specific growth factors. As the oocyte grows, it elaborates a thick extracellular coat termed the zona pellucida. Nonetheless, cytoplasmic extensions of the adjacent granulosa cells, termed transzonal projections (TZPs), enable them to maintain contact-dependent communication with the oocyte. Through gap junctions located where the TZP tips meet the oocyte membrane, they provide the oocyte with products that sustain its metabolic activity and signals that regulate its differentiation. Conversely, the oocyte secretes diffusible growth factors that regulate proliferation and differentiation of the granulosa cells. Gap junction-permeable products of the granulosa cells prevent precocious initiation of meiotic maturation, and the gap junctions also enable oocyte maturation to begin in response to hormonal signals received by the granulosa cells. Development of the oocyte or the somatic compartment may also be regulated by extracellular vesicles newly identified in follicular fluid and at TZP tips, which could mediate intercellular transfer of macromolecules. Oocyte differentiation thus depends on continuous signaling interactions with the somatic cells of the follicle. WIREs Dev Biol 2018, 7:e294. doi: 10.1002/wdev.294 This article is categorized under: Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Signaling Pathways > Cell Fate Signaling Early Embryonic Development > Gametogenesis.
Collapse
Affiliation(s)
- Hugh J Clarke
- Department of Obstetrics and Gynecology, Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| |
Collapse
|
12
|
Labas V, Teixeira-Gomes AP, Bouguereau L, Gargaros A, Spina L, Marestaing A, Uzbekova S. Intact cell MALDI-TOF mass spectrometry on single bovine oocyte and follicular cells combined with top-down proteomics: A novel approach to characterise markers of oocyte maturation. J Proteomics 2017; 175:56-74. [PMID: 28385661 DOI: 10.1016/j.jprot.2017.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/23/2017] [Accepted: 03/31/2017] [Indexed: 12/18/2022]
Abstract
Intact cell MALDI-TOF mass spectrometry (ICM-MS) was adapted to bovine follicular cells from individual ovarian follicles to obtain the protein/peptide signatures (<17kDa) of single oocytes, cumulus cells (CC) and granulosa cells (GC), which shared a total of 439 peaks. By comparing the ICM-MS profiles of single oocytes and CC before and after in vitro maturation (IVM), 71 different peaks were characterised, and their relative abundance was found to vary depending on the stage of oocyte meiotic maturation. To identify these endogenous biomolecules, top-down workflow using high resolution MS/MS (TD HR-MS) was performed on the protein extracts from oocytes, CC and GC. The TD HR-MS proteomic approach allowed for: (1) identification of 386 peptide/proteoforms encoded by 194 genes; and (2) characterisation of proteolysis products likely resulting from the action of kallikreins and caspases. In total, 136 peaks observed by ICM-MS were annotated by TD HR-MS (ProteomeXchange PXD004892). Among these, 16 markers of maturation were identified, including IGF2 binding protein 3 and hemoglobin B in the oocyte, thymosins beta-4 and beta-10, histone H2B and ubiquitin in CC. The combination of ICM-MS and TD HR-MS proved to be a suitable strategy to identify non-invasive markers of oocyte quality using limited biological samples. BIOLOGICAL SIGNIFICANCE Intact cell MALDI-TOF mass spectrometry on single oocytes and their surrounding cumulus cells, coupled to an optimised top-down HR-MS proteomic approach on ovarian follicular cells, was used to identify specific markers of oocyte meiotic maturation represented by whole low molecular weight proteins or products of degradation by specific proteases.
Collapse
Affiliation(s)
- Valérie Labas
- UMR PRC, INRA 85, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France; INRA, Plateforme d'Analyse Intégrative des Biomolécules, Laboratoire de Spectrométrie de Masse, 37380 Nouzilly, France
| | - Ana-Paula Teixeira-Gomes
- UMR ISP, INRA, Université de Tours, 37380 Nouzilly, France; INRA, Plateforme d'Analyse Intégrative des Biomolécules, Laboratoire de Spectrométrie de Masse, 37380 Nouzilly, France
| | - Laura Bouguereau
- UMR ISP, INRA, Université de Tours, 37380 Nouzilly, France; INRA, Plateforme d'Analyse Intégrative des Biomolécules, Laboratoire de Spectrométrie de Masse, 37380 Nouzilly, France
| | - Audrey Gargaros
- UMR PRC, INRA 85, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France; INRA, Plateforme d'Analyse Intégrative des Biomolécules, Laboratoire de Spectrométrie de Masse, 37380 Nouzilly, France
| | - Lucie Spina
- INRA, Plateforme d'Analyse Intégrative des Biomolécules, Laboratoire de Spectrométrie de Masse, 37380 Nouzilly, France; INSA/CNRS 5504 - UMR INSA/INRA 792, Toulouse, France
| | - Aurélie Marestaing
- UMR PRC, INRA 85, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France; INRA, Plateforme d'Analyse Intégrative des Biomolécules, Laboratoire de Spectrométrie de Masse, 37380 Nouzilly, France
| | - Svetlana Uzbekova
- UMR PRC, INRA 85, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France; INRA, Plateforme d'Analyse Intégrative des Biomolécules, Laboratoire de Spectrométrie de Masse, 37380 Nouzilly, France.
| |
Collapse
|
13
|
Nouraee N, Khazaei S, Vasei M, Razavipour SF, Sadeghizadeh M, Mowla SJ. MicroRNAs contribution in tumor microenvironment of esophageal cancer. Cancer Biomark 2016; 16:367-76. [PMID: 26889983 DOI: 10.3233/cbm-160575] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND miRNAs have recently been implicated in tumor's microenvironment remodeling and tumor-stromal cells interactions. We have previously reported a signaling role for miR-21, as a secretory molecule released by cancer associated fibroblasts (CAF) adjacent to esophagus tumor cells. OBJECTIVE To discover other potential signaling miRNAs, we employed a co-culture system of esophageal cancer cell line and normal fibroblasts to mimic the tumor microenvironment. METHODS We measured the expression profile of secretory miRNAs in the conditioned media (CM) of our co-culture system using a panel PCR array. We used pathway enrichment analysis to define potential pathways regulated by these miRNAs. Then using ultracentrifugation, we purified exosomes secreted to the CM of co-cultured cell lines and evaluated exosomal secretion of these miRNAs. RESULTS We found 18 miRNAs which were significantly up/down-regulated in the CM of co-culture system. Pathways related to cell adhesion, endocytosis and cell junctions were among the enriched pathways that might be related to CAF phenotype and tumor progression. Moreover, we detected higher exosomal levels of miR-33a and miR-326 in the purified exosomes both in co-cultured and untreated CM. So, these miRNAs are mainly secreted into the CM by means of exosomes. CONCLUSIONS Briefly, our data shed more light on the role of CAFs through secretion of miRNAs within tumor microenvironment and propose novel therapeutic targets for esophageal and probably other cancer types.
Collapse
Affiliation(s)
- Nazila Nouraee
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Samaneh Khazaei
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| | - Mohammad Vasei
- Pathology Laboratory, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Fatemeh Razavipour
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
Chandrasekaran AP, Suresh B, Kim HH, Kim KS, Ramakrishna S. Concise Review: Fate Determination of Stem Cells by Deubiquitinating Enzymes. Stem Cells 2016; 35:9-16. [PMID: 27341175 DOI: 10.1002/stem.2446] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/05/2016] [Indexed: 12/22/2022]
Abstract
Post-translational modification by ubiquitin molecules is a key regulatory process for stem cell fate determination. Ubiquitination and deubiquitination are the major cellular processes used to balance the protein turnover of several transcription factors that regulate stem cell differentiation. Deubiquitinating enzymes (DUBs), which facilitate the processing of ubiquitin, significantly influence stem cell fate choices. Specifically, DUBs play a critical regulatory role during development by directing the production of new specialized cells. This review focuses on the regulatory role of DUBs in various cellular processes, including stem cell pluripotency and differentiation, adult stem cell signaling, cellular reprogramming, spermatogenesis, and oogenesis. Specifically, the identification of interactions of DUBs with core transcription factors has provided new insight into the role of DUBs in regulating stem cell fate determination. Thus, DUBs have emerged as key pharmacologic targets in the search to develop highly specific agents to treat various illnesses. Stem Cells 2017;35:9-16.
Collapse
Affiliation(s)
| | - Bharathi Suresh
- Department of Pharmacology and Brain Korea 21 plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyongbum Henry Kim
- Department of Pharmacology and Brain Korea 21 plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.,College of Medicine, Hanyang University, Seoul, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.,College of Medicine, Hanyang University, Seoul, South Korea
| |
Collapse
|
15
|
Yi YJ, Sutovsky M, Song WH, Sutovsky P. Protein deubiquitination during oocyte maturation influences sperm function during fertilisation, antipolyspermy defense and embryo development. Reprod Fertil Dev 2015; 27:1154-67. [DOI: 10.1071/rd14012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/08/2014] [Indexed: 01/08/2023] Open
Abstract
Ubiquitination is a covalent post-translational modification of proteins by the chaperone protein ubiquitin. Upon docking to the 26S proteasome, ubiquitin is released from the substrate protein by deubiquitinating enzymes (DUBs). We hypothesised that specific inhibitors of two closely related oocyte DUBs, namely inhibitors of the ubiquitin C-terminal hydrolases (UCH) UCHL1 (L1 inhibitor) and UCHL3 (L3 inhibitor), would alter porcine oocyte maturation and influence sperm function and embryo development. Aberrant cortical granule (CG) migration and meiotic spindle defects were observed in oocytes matured with the L1 or L3 inhibitor. Embryo development was delayed or blocked in oocytes matured with the general DUB inhibitor PR-619. Aggresomes, the cellular stress-inducible aggregates of ubiquitinated proteins, formed in oocytes matured with L1 inhibitor or PR-619, a likely consequence of impaired protein turnover. Proteomic analysis identified the major vault protein (MVP) as the most prominent protein accumulated in oocytes matured with PR-619, suggesting that the inhibition of deubiquitination altered the turnover of MVP. The mitophagy/autophagy of sperm-contributed mitochondria inside the fertilised oocytes was hindered by DUB inhibitors. It is concluded that DUB inhibitors alter porcine oocyte maturation, fertilisation and preimplantation embryo development. By regulating the turnover of oocyte proteins and mono-ubiquitin regeneration, the DUBs may promote the acquisition of developmental competence during oocyte maturation.
Collapse
|
16
|
Tsukamoto S. Autophagic activity as an indicator for selecting good quality embryos. Reprod Med Biol 2014; 14:57-64. [PMID: 29259403 DOI: 10.1007/s12522-014-0197-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/09/2014] [Indexed: 01/07/2023] Open
Abstract
Is it possible to predict the quality of embryos that appear to be morphologically identical when viewed under a microscope? Thirty-five years have passed since the world's first human birth from in vitro fertilization. While the dissemination of assisted reproduction technologies during this time has been remarkable, the evaluation of embryo quality in both humans and mice currently relies entirely on morphological observation. More efficient infertility treatments will likely be possible if high-quality embryos can be selected by screening. To develop a novel quality evaluation method that does not rely on morphology, we focused on autophagy, one of the molecular mechanisms essential for the early embryonic development. Autophagy is a massive cytoplasmic degradation pathway mediated by the lysosome. Our previous studies have demonstrated that fertilization-induced autophagy is essential for preimplantation embryonic development. This autophagy is thought to supply the nutrients and amino acids necessary for maintaining subsequent embryo development, through the bulk degradation of maternal cytoplasmic factors that are accumulated during oogenesis. Here, we briefly summarize autophagy and its physiological function, and describe a recently developed method for using autophagic activity as an indicator to predict embryo quality.
Collapse
Affiliation(s)
- Satoshi Tsukamoto
- Laboratory Animal and Genome Sciences Section National Institute of Radiological Sciences 4-9-1 Anagawa, Inage-ku 263-8555 Chiba Japan
| |
Collapse
|
17
|
Deubiquitinating enzymes in oocyte maturation, fertilization and preimplantation embryo development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:89-110. [PMID: 25030761 DOI: 10.1007/978-1-4939-0817-2_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Post-translational modifications of cellular proteins by ubiquitin and ubiquitin-like protein modifiers are important regulatory events involved in diverse aspects of gamete and embryo physiology including oocyte maturation, fertilization and development of embryos to term. Deubiquitinating enzymes (DUBs) regulate proteolysis by reversing ubiquitination, which targets proteins to the 26S proteasome. The ubiquitin C-terminal hydrolases (UCHs) comprise are DUBs that play a role in the removal of multi-ubiquitin chains. We review here the roles of UCHs in oocytes maturation, fertilization and development in mouse, bovine, porcine and rhesus monkeys. Oocyte UCHs contributes to fertilization and embryogenesis by regulating the physiology of the oocyte and blastomere cortex as well as oocyte spindle. Lack of UCHs in embryos reduces fertilization, while mutant embryos fail to undergo compaction and blastocyst formation. In addition to advancing our understanding of reproductive process, research on the role of deubiquitinating enzymes will allow us to better understand and treat human infertility, and to optimize reproductive performance in agriculturally important livestock species.
Collapse
|
18
|
Comparative gene expression profiling in human cumulus cells according to ovarian gonadotropin treatments. BIOMED RESEARCH INTERNATIONAL 2013; 2013:354582. [PMID: 24151596 PMCID: PMC3786475 DOI: 10.1155/2013/354582] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/08/2013] [Indexed: 12/22/2022]
Abstract
In in vitro fertilization cycles, both HP-hMG and rFSH gonadotropin treatments are widely used to control human follicle development. The objectives of this study are (i) to characterize and compare gene expression profiles in cumulus cells (CCs) of periovulatory follicles obtained from patients stimulated with HP-hMG or rFSH in a GnRH antagonist cycle and (ii) to examine their relationship with in vitro embryo development, using Human Genome U133 Plus 2.0 microarrays. Genes that were upregulated in HP-hMG-treated CCs are involved in lipid metabolism (GM2A) and cell-to-cell interactions (GJA5). Conversely, genes upregulated in rFSH-treated CCs are implicated in cell assembly and organization (COL1A1 and COL3A1). Interestingly, some genes specific to each gonadotropin treatment (NPY1R and GM2A for HP-hMG; GREM1 and OSBPL6 for rFSH) were associated with day 3 embryo quality and blastocyst grade at day 5, while others (STC2 and PTX3) were related to in vitro embryo quality in both gonadotropin treatments. These genes may prove valuable as biomarkers of in vitro embryo quality.
Collapse
|
19
|
Diz AP, Dudley E, Cogswell A, MacDonald BW, Kenchington ELR, Zouros E, Skibinski DOF. Proteomic analysis of eggs from Mytilus edulis females differing in mitochondrial DNA transmission mode. Mol Cell Proteomics 2013; 12:3068-80. [PMID: 23869045 DOI: 10.1074/mcp.m113.031401] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Many bivalves have an unusual mechanism of mitochondrial DNA (mtDNA) inheritance called doubly uniparental inheritance (DUI) in which distinctly different genomes are inherited through the female (F genome) and male (M genome) lineages. In fertilized eggs that will develop into male embryos, the sperm mitochondria remain in an aggregation, which is believed to be delivered to the primordial germ cells and passed to the next generation through the sperm. In fertilized eggs that will develop into female embryos, the sperm mitochondria are dispersed throughout the developing embryo and make little if any contribution to the next generation. The frequency of embryos with the aggregated or dispersed mitochondrial type varies among females. Previous models of DUI have predicted that maternal nuclear factors cause molecular differences among unfertilized eggs from females producing embryos with predominantly dispersed or aggregated mitochondria. We test this hypothesis using females of each of the two types from a natural population. We have found small, yet detectable, differences of the predicted type at the proteome level. We also provide evidence that eggs of females giving the dispersed pattern have consistently lower expression for different proteasome subunits than eggs of females giving the aggregated pattern. These results, combined with those of an earlier study in which we used hatchery lines of Mytilus, and with a transcriptomic study in a clam that has the DUI system of mtDNA transmission, reinforce the hypothesis that the ubiquitin-proteasome system plays a key role in the mechanism of DUI and sex determination in bivalves. We also report that eggs of females giving the dispersed pattern have higher expression for arginine kinase and enolase, enzymes involved in energy production, whereas ferritin, which is involved in iron homeostasis, has lower expression. We discuss these results in the context of genetic models for DUI and suggest experimental methods for further understanding the role of these proteins in DUI.
Collapse
Affiliation(s)
- Angel P Diz
- Institute of Life Science, College of Medicine, Swansea University, Swansea SA28PP, Wales UK
| | | | | | | | | | | | | |
Collapse
|
20
|
Spikings E, Zampolla T, Rawson D, Wang Y, Zhang T. Effect of methanol on mitochondrial organization in zebrafish (Danio rerio) ovarian follicles. Theriogenology 2012; 77:28-38. [PMID: 21855987 DOI: 10.1016/j.theriogenology.2011.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/15/2011] [Accepted: 07/04/2011] [Indexed: 10/17/2022]
Abstract
Successful cryopreservation is usually measured in terms of cell survival. However, there may also be more subtle effects within cells that survive. Previous studies on zebrafish have produced evidence of mitochondrial DNA (mtDNA) damage in cryopreserved embryonic blastomeres and, after exposure to cryoprotectants, alterations in mtDNA replication in embryos and decreased mitochondrial membrane potential, mtDNA and ATP production in ovarian follicles. This study shows that the decreased ATP levels previously observed in stage III zebrafish ovarian follicles exposed to ≥3 M methanol persisted in those follicles that subsequently developed to stage IV. However, the decreased mtDNA levels were restored in those follicles. In order to determine whether mitochondrial distribution and/or their transport network was affected by the methanol exposure, immunocytochemistry analysis of tubulin and mitochondrial cytochrome c oxidase I (COX-I) was performed, along with phalloidin staining of polymerized actin. Neat arrangements of all proteins were observed in control follicles, with COX-I and tubulin being colocalized near granulosa cell nuclei, while actin formed hexagonal and/or polygonal structures nearer granulosa cell membranes and projected into the oocyte surface. Exposure to methanol (2 to 4 M) disrupted the COX-I and tubulin arrangements and the hexagonal and/or polygonal actin distribution and actin projections into the oocyte. These effects were still observed in those follicles that developed to stage IV, although the severity was reduced. In summary, the disruption to function and distribution of mitochondria in ovarian follicles exposed to >2 M methanol may be mediated via disruption of the mitochondrial transport system. Some recovery of this disruption may take place after methanol removal and subsequent follicle maturation.
Collapse
Affiliation(s)
- E Spikings
- LIRANS Institute of Research in the Applied Natural Sciences, University of Bedfordshire, Bedfordshire, UK
| | | | | | | | | |
Collapse
|
21
|
Cao S, Guo X, Zhou Z, Sha J. Comparative proteomic analysis of proteins involved in oocyte meiotic maturation in mice. Mol Reprod Dev 2012; 79:413-22. [PMID: 22508577 DOI: 10.1002/mrd.22044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 04/05/2012] [Indexed: 12/16/2022]
Abstract
After birth, oocytes stay at the diplotene stage in prophase of meiosis I. Meiosis resumes about 1 day before ovulation, and arrests in metaphase II (MII) after ovulation. The mature, MII oocytes are then ready for fertilization and to provide materials for early embryonic development. Proteomic characterization of oocytes can help identify proteins that are important for female meiotic maturation and early embryonic development. In this study, we compared the proteomic profiles between the germinal vesicle and MII mouse oocytes by two-dimensional electrophoresis; 95 differentially expressed protein spots corresponding to 63 proteins were identified. Many of these proteins are known to be essential for oocyte meiosis and early embryonic development, such as adenylosuccinate synthetase, nucleoplasmin-2, and protein-arginine deiminase type-6. Of the 12 proteins that were identified and are highly expressed in oocytes, a novel protein, E330034G19Rik, was found to be oocyte-specific. According to analysis by bioinformatics, it may regulate chromosome segregation during meiosis or cleavage. An in-depth study of these proteins will help us better understand the mechanisms of oocyte meiotic maturation, fertilization, and early embryogenesis. It will also help us understand the mechanisms of diseases that stem from abnormal oocyte maturation, such as polycystic ovary syndrome and premature ovary failure.
Collapse
Affiliation(s)
- Senyang Cao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, PR China
| | | | | | | |
Collapse
|
22
|
Mtango NR, Sutovsky M, Vandevoort CA, Latham KE, Sutovsky P. Essential role of ubiquitin C-terminal hydrolases UCHL1 and UCHL3 in mammalian oocyte maturation. J Cell Physiol 2012; 227:2022-9. [PMID: 21751213 DOI: 10.1002/jcp.22931] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ubiquitin C-terminal hydrolases (UCHs) comprise a family of deubiquitinating enzymes that play a role in the removal of multi-ubiquitin chains from proteins that are posttranslationally modified by ubiquitination to be targeted for proteolysis by the 26S proteasome. The UCH-enzymes also generate free monomeric ubiquitin from precursor multi-ubiquitin chains and, in some instances, may rescue ubiquitinated proteins from degradation. This study examined the roles of two oocyte-expressed UCHs, UCHL1, and UCHL3 in murine and rhesus monkey oocyte maturation. The Uchl1 and Uchl3 mRNAs were highly expressed in GV and MII oocytes, and were associated with the oocyte cortex (UCHL1) and meiotic spindle (UCHL3). Microinjection of the UCH-family enzyme inhibitor, ubiquitin-aldehyde (UBAL) to GV oocytes prevented oocyte meiotic progression beyond metaphase I in a majority of treated oocytes and caused spindle and first polar body anomalies. Injection of antibodies against UCHL3 disrupted oocyte maturation and caused meiotic anomalies, including abnormally long meiotic spindles. A selective, cell permeant inhibitor of UCHL3, 4, 5, 6, 7-tetrachloroidan-1, 3-dione also caused meiotic defects and chromosome misalignment. Cortical granule localization in the oocyte cortex was disrupted by UBAL injected after oocyte maturation. We conclude that the activity of oocyte UCHs contributes to oocyte maturation by regulating the oocyte cortex and meiotic spindle.
Collapse
Affiliation(s)
- Namdori R Mtango
- The Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
23
|
Nagyova E, Scsukova S, Nemcova L, Mlynarcikova A, Yi YJ, Sutovsky M, Sutovsky P. Inhibition of proteasomal proteolysis affects expression of extracellular matrix components and steroidogenesis in porcine oocyte-cumulus complexes. Domest Anim Endocrinol 2012; 42:50-62. [PMID: 22032857 DOI: 10.1016/j.domaniend.2011.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 09/07/2011] [Accepted: 09/10/2011] [Indexed: 12/25/2022]
Abstract
Porcine oocyte-cumulus complexes (OCCs) form an expanded cumulus extracellular matrix (ECM) in response to gonadotropins during meiotic maturation. Essential components of ECM are hyaluronan (HA), tumor necrosis factor α-induced protein 6 (TNFAIP6) and heavy chains (HC) of interalpha-trypsin inhibitor. To form expanded cumulus ECM, intermediate complexes (TNFAIP6-HC) must bind to HA to allow HC transfer onto HA. Protein turnover by the ubiquitin-proteasome pathway is poorly characterized in this process. It is known that the specific proteasomal inhibitor MG132 prevents cumulus expansion and formation of ECM. To determine whether inhibition of proteasomal proteolysis with MG132 affects cumulus cell steroidogenesis and expression of the cumulus expansion-related components (hyaluronan synthase type 2, HAS2, TNFAIP6) we cultured porcine OCCs and granulosa cells (GCs) in a medium supplemented with FSH/LH. Methods performed included real-time reverse transcription PCR, immunofluorescence and RIAs. The expression of TNFAIP6 and HAS2 transcripts increased significantly after the stimulation of OCCs and GCs with FSH/LH. In contrast, treatment with MG132 reduced the expression of TNFAIP6 and HAS2. Hyaluronan was detected with biotinylated HA-binding proteins within FSH/LH-stimulated expanded OCCs but not in those treated with MG132. Progesterone production, although increased almost three times after OCCs stimulation with FSH/LH, was significantly suppressed by MG132. The FSH/LH-stimulated a 40-fold increase in progesterone secretion by GCs was inhibited in the presence of MG132. In conclusion, MG132 affects progesterone secretion and expression of cumulus expansion-related components by cumulus and GCs, suggesting the requirement of ubiquitin-proteasome pathway-regulated protein turnover for formation of ECM during cumulus expansion in the preovulatory period in the pig.
Collapse
Affiliation(s)
- E Nagyova
- Academy of Sciences of the Czech Republic, Institute of Animal Physiology and Genetics, 27721 Libechov, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
24
|
You J, Kim J, Lee H, Hyun SH, Hansen PJ, Lee E. MG132 treatment during oocyte maturation improves embryonic development after somatic cell nuclear transfer and alters oocyte and embryo transcript abundance in pigs. Mol Reprod Dev 2011; 79:41-50. [PMID: 22083810 DOI: 10.1002/mrd.21402] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 10/05/2011] [Indexed: 11/08/2022]
Abstract
The objective of this study was to examine the effect of treating pig oocytes during in vitro maturation (IVM) with a proteasome inhibitor, MG132, on oocyte maturation and embryonic development. In one series of experiments, oocytes from medium-sized follicles (3-8 mm in diameter) were untreated (MCO) or treated with MG132 during 0-22 hr (M0-22) or 30-42 hr (M30-42) of IVM. There was no significant effect of MG132 on nuclear maturation or cytoplasmic maturation (as assessed by intracellular amounts of glutathione and p34cdc2 kinase activity). Blastocyst formation after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT), however, was increased for M30-42 (65.2% and 27.7% for PA and SCNT, respectively) compared to MCO (42.6% and 13.6%, respectively) and M0-22 (45.3% and 19.5%, respectively; P<0.05). Expression of PCNA and ERK2 was increased in M30-42 for IVM oocytes while transcript abundance for POUF51, DNMT1, FGFR2, and PCNA was increased in M30-42 for 4-cell SCNT embryos. When oocytes derived from small follicles (<3 mm in diameter) were untreated (SCO) or treated with MG132 during 0-22 hr (S0-22), 30-42 hr (S30-42) of IVM, or 0-22 and 30-42 hr of IVM (S0-22/30-42), expression of POU5F1, DNMT1, FGFR2, and PCNA and blastocyst formation were increased for SCNT embryos derived from S30 to 42 (16.5%) and S0-22/30-42 oocytes (20.8%) as compared to embryos from SCO (8.7%) or S0-22 oocytes (8.8%; P<0.05). Results demonstrate that treatment of oocytes with MG132 during the later stage of IVM improves embryonic development and alters gene expression in pigs.
Collapse
Affiliation(s)
- Jinyoung You
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | | | | | | | | | | |
Collapse
|
25
|
Susor A, Liskova L, Toralova T, Pavlok A, Pivonkova K, Karabinova P, Lopatarova M, Sutovsky P, Kubelka M. Role of ubiquitin C-terminal hydrolase-L1 in antipolyspermy defense of mammalian oocytes. Biol Reprod 2010; 82:1151-61. [PMID: 20164442 DOI: 10.1095/biolreprod.109.081547] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The ubiquitin-proteasome system regulates many cellular processes through rapid proteasomal degradation of ubiquitin-tagged proteins. Ubiquitin C-terminal hydrolase-L1 (UCHL1) is one of the most abundant proteins in mammalian oocytes. It has weak hydrolytic activity as a monomer and acts as a ubiquitin ligase in its dimeric or oligomeric form. Recently published data show that insufficiency in UCHL1 activity coincides with polyspermic fertilization; however, the mechanism by which UCHL1 contributes to this process remains unclear. Using UCHL1-specific inhibitors, we induced a high rate of polyspermy in bovine zygotes after in vitro fertilization. We also detected decreased levels in the monomeric ubiquitin and polyubiquitin pool. The presence of UCHL1 inhibitors in maturation medium enhanced formation of presumptive UCHL1 oligomers and subsequently increased abundance of K63-linked polyubiquitin chains in oocytes. We analyzed the dynamics of cortical granules (CGs) in UCHL1-inhibited oocytes; both migration of CGs toward the cortex during oocyte maturation and fertilization-induced extrusion of CGs were impaired. These alterations in CG dynamics coincided with high polyspermy incidence in in vitro-produced UCHL1-inhibited zygotes. These data indicate that antipolyspermy defense in bovine oocytes may rely on UCHL1-controlled functioning of CGs.
Collapse
Affiliation(s)
- Andrej Susor
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Total fertilization failure and molecular abnormalities in metaphase II oocytes. Reprod Biomed Online 2008; 17:772-81. [DOI: 10.1016/s1472-6483(10)60404-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|