1
|
Kruk L, Braun A, Cosset E, Gudermann T, Mammadova-Bach E. Galectin functions in cancer-associated inflammation and thrombosis. Front Cardiovasc Med 2023; 10:1052959. [PMID: 36873388 PMCID: PMC9981828 DOI: 10.3389/fcvm.2023.1052959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/12/2023] [Indexed: 02/19/2023] Open
Abstract
Galectins are carbohydrate-binding proteins that regulate many cellular functions including proliferation, adhesion, migration, and phagocytosis. Increasing experimental and clinical evidence indicates that galectins influence many steps of cancer development by inducing the recruitment of immune cells to the inflammatory sites and modulating the effector function of neutrophils, monocytes, and lymphocytes. Recent studies described that different isoforms of galectins can induce platelet adhesion, aggregation, and granule release through the interaction with platelet-specific glycoproteins and integrins. Patients with cancer and/or deep-venous thrombosis have increased levels of galectins in the vasculature, suggesting that these proteins could be important contributors to cancer-associated inflammation and thrombosis. In this review, we summarize the pathological role of galectins in inflammatory and thrombotic events, influencing tumor progression and metastasis. We also discuss the potential of anti-cancer therapies targeting galectins in the pathological context of cancer-associated inflammation and thrombosis.
Collapse
Affiliation(s)
- Linus Kruk
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Erika Cosset
- CRCL, UMR INSERM 1052, CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
2
|
Fedorka CE, Ali HES, Troedsson MHT. Galectinology of Equine Pregnancy. Animals (Basel) 2022; 13:ani13010129. [PMID: 36611738 PMCID: PMC9817698 DOI: 10.3390/ani13010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
Galectins are a family of proteins that bind to glycans, acting in a cytokine-like manner throughout the body. In the majority of mammalians, galectins have been found to be involved in pregnancy maintenance, but few studies have evaluated this in the horse. Therefore, the objective of this study was to examine the expression of various galectins in pregnant and nonpregnant mares. Next-generation RNA sequencing was performed on the chorioallantois and endometrium of healthy pregnant mares at 120, 180, 300, and 330 days of gestation (n = 4/stage), as well as 45-day chorioallantois (n = 4), postpartum chorioallantois (n = 3), and diestrus endometrium (n = 3). In the endometrium, galectin-1 and galectin-13 were found in the highest expression in the nonpregnant mare, with decreasing levels of expression noted throughout gestation. In contrast, galectin-8 and galectin-12 were found to be the lowest in the nonpregnant mare and reached the highest expression levels in mid-gestation before declining as parturition neared. In the chorioallantois, galectin-1, galectin-3, and galectin-3BP were found to have heightened expression levels at 45 d of gestation, with lesser expression levels noted throughout gestation. In contrast, galectin-9, galectin-12, and galectin-13 experienced the highest expression levels in the late-term chorioallantois (300 d/330 d), with lesser expression noted in early- to mid-gestation. Of note, galectin-1, galectin-3BP, galectin-9, galectin-12, and galectin-13 all experienced the lowest expression levels in the postpartum placenta, with heightened expression noted during gestation. In conclusion, galectins appear to be involved in equine pregnancy, and this is dependent on both the tissue within the feto-maternal interface and the specific galectin involved.
Collapse
Affiliation(s)
- Carleigh E. Fedorka
- Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - Hossam El-Sheikh Ali
- Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
- College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mats H. T. Troedsson
- Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
- Correspondence:
| |
Collapse
|
3
|
Chen M, Shi JL, Zheng ZM, Lin Z, Li MQ, Shao J. Galectins: Important Regulators in Normal and Pathologic Pregnancies. Int J Mol Sci 2022; 23:ijms231710110. [PMID: 36077508 PMCID: PMC9456357 DOI: 10.3390/ijms231710110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Galectins (Gal) are characterized by their affinity for galactoside structures on glycoconjugates. This relationship is mediated by carbohydrate recognition domains, which are multifunctional regulators of basic cellular biological processes with high structural similarity among family members. They participate in both innate and adaptive immune responses, as well as in reproductive immunology. Recently, the discovery that galectins are highly expressed at the maternal–fetal interface has garnerd the interest of experts in human reproduction. Galectins are involved in a variety of functions such as maternal–fetal immune tolerance, angiogenesis, trophoblast invasion and placental development and are considered to be important mediators of successful embryo implantation and during pregnancy. Dysregulation of these galectins is associated with abnormal and pathological pregnancies (e.g., preeclampsia, gestational diabetes mellitus, fetal growth restriction, preterm birth). Our work reviews the regulatory mechanisms of galectins in normal and pathological pregnancies and has implications for clinicians in the prevention, diagnosis and treatment of pregnancy-related diseases.
Collapse
Affiliation(s)
- Min Chen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Jia-Lu Shi
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zi-Meng Zheng
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zhi Lin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
- Correspondence: (M.-Q.L.); (J.S.)
| | - Jun Shao
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
- Department of Obstetrics, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, China
- Correspondence: (M.-Q.L.); (J.S.)
| |
Collapse
|
4
|
Swan J, Sakthivel D, Beddoe T, Stear M, Piedrafita D, Preston S. Evaluation of the Role of Galectins in Parasite Immunity. Methods Mol Biol 2022; 2442:475-515. [PMID: 35320542 DOI: 10.1007/978-1-0716-2055-7_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Galectin-11 (LGALS-11) and galectin-14 (LGALS-14) are ruminant specific galectins, first reported in sheep. Although their roles in parasite immunity are still being elucidated, it appears that they influence protection against parasites. In gastrointestinal infections with the nematode Haemonchus contortus, both galectin-11 and galectin-14 appear to be protective. However, in a chronic infection of liver fluke, Fasciola hepatica, these galectins may aid parasite survival. To unravel the structural, functional, and ligand profile of galectin-11 and galectin-14, recombinant production of these proteins is vital. Here we present the recombinant production of soluble galectin-11 and galectin-14 from domestic sheep for in vitro and structural biology studies. These methods include parasite cultivation and infection, galectin staining of host and parasite tissue, surface staining of parasites with recombinant galectins, pull-down assays to identify endogenous galectin binding proteins, and in vitro assays to monitor the effect of galectins on parasite development.
Collapse
Affiliation(s)
- Jaclyn Swan
- Department of Animal, Plant and Soil Science and Centre for Agri Bioscience (Agri Bio), La Trobe University, Melbourne, VIC, Australia
| | - Dhanasekaran Sakthivel
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Travis Beddoe
- Department of Animal, Plant and Soil Science and Centre for Agri Bioscience (Agri Bio), La Trobe University, Melbourne, VIC, Australia
| | - Michael Stear
- Department of Animal, Plant and Soil Science and Centre for Agri Bioscience (Agri Bio), La Trobe University, Melbourne, VIC, Australia
| | - David Piedrafita
- School of Science, Psychology and Sport, Federation University Australia, Mt Helen, VIC, Australia
| | - Sarah Preston
- School of Science, Psychology and Sport, Federation University Australia, Mt Helen, VIC, Australia.
| |
Collapse
|
5
|
Chaney HL, Grose LF, LaBarbara JM, Sirk AW, Blancke AM, Sánchez JM, Passaro C, Lonergan P, Mathew DJ. Galectin-1 Confers Endometrial Gene Expression and Protein Related to Maternal-Conceptus Immune Tolerance in Cattle. Biol Reprod 2021; 106:487-502. [PMID: 34792096 DOI: 10.1093/biolre/ioab215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Conceptus secretory factors include galectins, a family of carbohydrate binding proteins that elicit cell adhesion and immune suppression by interacting with intracellular and extracellular glycans. In rodents, galectin-1 (LGALS1) promotes maternal-fetal immune tolerance in the decidua through expansion of tolerogenic CD11c+ dendritic cells, increased anti-inflammatory IL-10, and activation of FOXP3+ regulatory T cells (Treg). This study characterized galectin expression in early ruminant conceptuses and endometrium. We also tested the effect of recombinant bovine LGALS1 (rbLGALS1) and progesterone (P4) on endometrial expression of genes and protein related to maternal-fetal immune tolerance in cattle. Elongating bovine and ovine conceptuses expressed several galectins, particularly, LGALS1, LGALS3 and LGALS8. Within bovine endometrium, expression of LGALS3, LGALS7 and LGALS9 was greater on Day 16 of pregnancy compared to the estrous cycle. Within ovine endometrium, LGALS7 was greater during pregnancy compared to the estrous cycle and endometrium of pregnant sheep tended to have greater LGALS9 and LGALS15. Expression of endometrial LGALS4 was less during pregnancy in sheep. Treating bovine endometrium with rbLGALS1 increased endometrial expression of CD11c, IL-10 and FOXP3, within 24 h. Specifically, within caruncular endometrium, both rbLGALS1 and P4 increased FOXP3, suggesting that both ligands may promote Treg expansion. Using IHC, FOXP3+ cells with a leukocyte phenotype were localized to the bovine uterine stratum compactum near the uterine surface and increased in response to rbLGALS1. We hypothesize that galectins have important functions during establishment of pregnancy in ruminants and bovine conceptus LGALS1 and luteal P4 confer mechanisms of maternal-conceptus immune tolerance in cattle.
Collapse
Affiliation(s)
- Heather L Chaney
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Lindsay F Grose
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Jeanna M LaBarbara
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Adam W Sirk
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Alyssa M Blancke
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Jose M Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Claudia Passaro
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Daniel J Mathew
- Department of Animal Science, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
6
|
PPP2R2A affects embryonic implantation by regulating the proliferation and apoptosis of Hu sheep endometrial stromal cells. Theriogenology 2021; 176:149-162. [PMID: 34619436 DOI: 10.1016/j.theriogenology.2021.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Embryonic implantation is a complex reproductive physiological process in mammals. Although several endometrial proteins affecting embryonic implantation have been reported in the past, there are still potential endometrial proteins that have been neglected, and their specific regulatory mechanisms are unclear. This study demonstrated that protein phosphatase 2A regulatory subunit B55α (PPP2R2A) served as a novel regulator in medication of sheep embryonic implantation in vitro. Our results showed that sheep PPP2R2A encoded 447 amino acids and shared 91.74%-92.36% amino acid sequences with its orthologs compared with other species. Meanwhile, PPP2R2A was widely expressed in sheep uterine tissues, and it could regulate the expression levels of key regulators of embryonic implantation in endometrial stromal cells (ESCs). Knockdown of PPP2R2A significantly inhibited cell proliferation by blocking cell cycle transfer G0/G1 into S phase accompanied by downregulation of CDK2, CDK4, CCND1, CCNE1 and upregulation of P21. In contrast to PPP2R2A overexpression, PPP2R2A interference greatly promoted cell apoptosis and the expression of BAX, CASP3, CASP9 and BAX/BCL-2. Taken together, these results suggest that PPP2R2A, as a novel regulatory factor, affects embryonic implantation via regulating the proliferation and apoptosis of Hu sheep ESCs in vitro.
Collapse
|
7
|
Cui X, Sun J, Liang C, Zheng Q, Yang X, Liu S, Yan Q. Progesterone promotes embryo adhesion by upregulating c-Fos/c-Jun transcription factor-mediated poFUT1 expression†. Biol Reprod 2020; 101:675-685. [PMID: 31260062 DOI: 10.1093/biolre/ioz110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 03/29/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022] Open
Abstract
The proliferation and adhesion abilities of placental trophoblasts are critical for embryo implantation and successful pregnancy. Protein O-fucosyltransferase 1 (poFUT1) and the transcription factor c-Fos/c-Jun have been found to promote trophoblastic cell invade into the endometrium. Progesterone is critical to the regulation of embryonic implantation. However, the exact role of poFUT1 in embryo proliferation and adhesion to the endometrium, and the relationship between progesterone, c-Fos/c-Jun, and poFUT1 has not been studied in detail. In the current study, we found that the serum levels of poFUT1 and progesterone significantly was decreased in miscarriage patients compared with those in normal pregnancy women, and there is a positive correlation between the changes in progesterone and poFUT1. Employing a human embryo trophoblastic cell line (JAR), we showed that progesterone facilitated the activation of c-Fos/c-Jun. Using an electrophoretic mobility shift assay and chromatin immunoprecipitation, we confirmed that the specific transcription factor c-Fos/c-Jun regulated the poFUT1 promoter, which could enhance poFUT1 transcriptional activity, thus further increasing trophoblast cell proliferation and adhesion potential. Taking these findings together, progesterone upregulates poFUT1 expression via the specific transcription factor c-Fos/c-Jun, and then increase trophoblast cell proliferation and adhesion potential. poFUT1 and progesterone may be used together as potential markers of miscarriage, and they may be diagnostic and therapeutic targets for miscarriage.
Collapse
Affiliation(s)
- Xinyuan Cui
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, China
| | - Jiaqi Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, China
| | - Caixia Liang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, China
| | - Qin Zheng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, China
| | - Xuesong Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, China
| |
Collapse
|
8
|
Sakthivel D, Preston S, Gasser RB, Costa TPSD, Hernandez JN, Shahine A, Shakif-Azam MD, Lock P, Rossjohn J, Perugini MA, González JF, Meeusen E, Piedrafita D, Beddoe T. The oligomeric assembly of galectin-11 is critical for anti-parasitic activity in sheep (Ovis aries). Commun Biol 2020; 3:464. [PMID: 32826940 PMCID: PMC7442640 DOI: 10.1038/s42003-020-01179-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 07/27/2020] [Indexed: 01/26/2023] Open
Abstract
Galectins are a family of glycan-binding molecules with a characteristic affinity for ß-D-glycosides that mediate a variety of important cellular functions, including immune and inflammatory responses. Galectin-11 (LGALS-11) has been recently identified as a mediator induced specifically in animals against gastrointestinal nematodes and can interfere with parasite growth and development. Here, we report that at least two natural genetic variants of LGALS-11 exist in sheep, and demonstrate fundamental differences in anti-parasitic activity, correlated with their ability to dimerise. This study improves our understanding of the role of galectins in the host immune and inflammatory responses against parasitic nematodes and provides a basis for genetic studies toward selective breeding of animals for resistance to parasites.
Collapse
Affiliation(s)
- Dhanasekaran Sakthivel
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
- School of Science, Psychology and, Sport, Federation University, Churchill, VIC, 3842, Australia
- Department of Animal, Plant and Soil Science and Centre for Agri Bioscience (Agri Bio), La Trobe University, Bundoora, VIC, 3086, Australia
| | - Sarah Preston
- School of Science, Psychology and, Sport, Federation University, Churchill, VIC, 3842, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Bundoora, VIC, 3010, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Julia N Hernandez
- Instituto Universitario de Sanidad Animal, Faculty of Veterinary Medicine, Universidad de Las Palmas de Gran Canaria, Arucas, Spain
| | - Adam Shahine
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - M D Shakif-Azam
- School of Science, Psychology and, Sport, Federation University, Churchill, VIC, 3842, Australia
| | - Peter Lock
- Bioimaging Platform, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, 3800, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jorge Francisco González
- Instituto Universitario de Sanidad Animal, Faculty of Veterinary Medicine, Universidad de Las Palmas de Gran Canaria, Arucas, Spain
| | - Els Meeusen
- School of Science, Psychology and, Sport, Federation University, Churchill, VIC, 3842, Australia
| | - David Piedrafita
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia.
- School of Science, Psychology and, Sport, Federation University, Churchill, VIC, 3842, Australia.
| | - Travis Beddoe
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia.
- Department of Animal, Plant and Soil Science and Centre for Agri Bioscience (Agri Bio), La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
9
|
Swan J, Sakthivel D, Cameron TC, Faou P, Downs R, Rajapaksha H, Piedrafita D, Beddoe T. Proteomic identification of galectin-11 and -14 ligands from Fasciola hepatica. Int J Parasitol 2019; 49:921-932. [PMID: 31560927 DOI: 10.1016/j.ijpara.2019.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022]
Abstract
Fasciola hepatica is a globally distributed zoonotic trematode that causes fasciolosis in livestock, wildlife, ruminants and humans. Fasciolosis causes a significant economic impact on the agricultural sector and affects human health. Due to the increasing prevalence of triclabendazole resistance in F. hepatica, alternative treatment methods are required. Many protein antigens have been trialled as vaccine candidates with low success, however, the tegument of F. hepatica is highly glycosylated and the parasite-derived glycoconjugate molecules have been identified as an important mediator in host-parasite interactions and as prime targets for the host immune system. Galectin-11 (LGALS-11) and galectin-14 (LGALS-14) are two ruminant-specific glycan-binding proteins, showing upregulation in the bile duct of sheep infected with F. hepatica, which are believed to mediate host-parasite interaction and innate immunity against internal parasites. For the first known time, this study presents the ligand profile of whole worm and tegument extracts of F. hepatica that interacted with immobilised LGALS-11 and LGALS-14. LGALS-14 interacted with a total of 255 F. hepatica proteins. The protein which had the greatest interaction was identified as an uncharacterised protein which contained a C-type lectin domain. Many of the other proteins identified were previously trialled vaccine candidates including glutathione S-transferase, paramyosin, cathepsin L, cathepsin B, fatty acid binding protein and leucine aminopeptidase. In comparison to LGALS-14, LGALS-11 interacted with only 49 F. hepatica proteins and it appears to have a much smaller number of binding partners in F. hepatica. This is, to our knowledge, the first time host-specific lectins have been used for the enrichment of F. hepatica glycoproteins and this study has identified a number of glycoproteins that play critical roles in host-parasite interactions which have the potential to be novel vaccine candidates.
Collapse
Affiliation(s)
- Jaclyn Swan
- Department of Animal, Plant and Soil Science and Centre for AgriBioscience (AgriBio), La Trobe University, Victoria 3086, Australia; Centre for Livestock Interactions with Pathogens (CLiP), La Trobe University, Victoria 3086, Australia
| | - Dhanasekaran Sakthivel
- Department of Animal, Plant and Soil Science and Centre for AgriBioscience (AgriBio), La Trobe University, Victoria 3086, Australia
| | - Timothy C Cameron
- Department of Animal, Plant and Soil Science and Centre for AgriBioscience (AgriBio), La Trobe University, Victoria 3086, Australia; Centre for Livestock Interactions with Pathogens (CLiP), La Trobe University, Victoria 3086, Australia
| | - Pierre Faou
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
| | - Rachael Downs
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
| | - Harinda Rajapaksha
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
| | - David Piedrafita
- School of Applied and Biomedical Sciences, Federation University, Churchill, Victoria 3842, Australia
| | - Travis Beddoe
- Department of Animal, Plant and Soil Science and Centre for AgriBioscience (AgriBio), La Trobe University, Victoria 3086, Australia; Centre for Livestock Interactions with Pathogens (CLiP), La Trobe University, Victoria 3086, Australia.
| |
Collapse
|
10
|
Ely ZA, Moon JM, Sliwoski GR, Sangha AK, Shen XX, Labella AL, Meiler J, Capra JA, Rokas A. The Impact of Natural Selection on the Evolution and Function of Placentally Expressed Galectins. Genome Biol Evol 2019; 11:2574-2592. [PMID: 31504490 PMCID: PMC6751361 DOI: 10.1093/gbe/evz183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2019] [Indexed: 01/03/2023] Open
Abstract
Immunity genes have repeatedly experienced natural selection during mammalian evolution. Galectins are carbohydrate-binding proteins that regulate diverse immune responses, including maternal-fetal immune tolerance in placental pregnancy. Seven human galectins, four conserved across vertebrates and three specific to primates, are involved in placental development. To comprehensively study the molecular evolution of these galectins, both across mammals and within humans, we conducted a series of between- and within-species evolutionary analyses. By examining patterns of sequence evolution between species, we found that primate-specific galectins showed uniformly high substitution rates, whereas two of the four other galectins experienced accelerated evolution in primates. By examining human population genomic variation, we found that galectin genes and variants, including variants previously linked to immune diseases, showed signatures of recent positive selection in specific human populations. By examining one nonsynonymous variant in Galectin-8 previously associated with autoimmune diseases, we further discovered that it is tightly linked to three other nonsynonymous variants; surprisingly, the global frequency of this four-variant haplotype is ∼50%. To begin understanding the impact of this major haplotype on Galectin-8 protein structure, we modeled its 3D protein structure and found that it differed substantially from the reference protein structure. These results suggest that placentally expressed galectins experienced both ancient and more recent selection in a lineage- and population-specific manner. Furthermore, our discovery that the major Galectin-8 haplotype is structurally distinct from and more commonly found than the reference haplotype illustrates the significance of understanding the evolutionary processes that sculpted variants associated with human genetic disease.
Collapse
Affiliation(s)
- Zackery A Ely
- Department of Biological Sciences, Vanderbilt University
| | - Jiyun M Moon
- Department of Biological Sciences, Vanderbilt University
| | | | - Amandeep K Sangha
- Department of Chemistry, Vanderbilt University
- Center for Structural Biology, Vanderbilt University
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University
| | | | - Jens Meiler
- Department of Chemistry, Vanderbilt University
- Center for Structural Biology, Vanderbilt University
| | - John A Capra
- Department of Biological Sciences, Vanderbilt University
- Department of Biomedical Informatics, Vanderbilt University School of Medicine
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University
- Department of Biomedical Informatics, Vanderbilt University School of Medicine
| |
Collapse
|
11
|
Ott TL. Symposium review: Immunological detection of the bovine conceptus during early pregnancy. J Dairy Sci 2019; 102:3766-3777. [PMID: 30712941 DOI: 10.3168/jds.2018-15668] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/20/2018] [Indexed: 12/31/2022]
Abstract
Infertility and subfertility reduce the economic viability of dairy production. Inflammation reduces conception rates in dairy cattle, but surprisingly little information exists about the populations and the functions of immune cells at the conceptus-maternal interface during the periattachment period in dairy cattle. Early pregnancy is accompanied by immune stimulation at insemination and conceptus secretion of IFN-τ, pregnancy-associated glycoproteins, prostaglandins, and other molecules whose effects on immune function during early pregnancy have not been determined. Our working hypothesis is that pregnancy induces changes in immune cell populations and functions that are biased toward immunological tolerance, tissue remodeling, and angiogenesis. This review summarizes current knowledge, starting with insemination and proceeding through early pregnancy, as this is the period of maximal embryo loss. Results indicated that early pregnancy is accompanied by a marked increase in the proportion of endometrial immune cells expressing markers for natural killer (CD335) cells and cytotoxic T cells (CD8) along with an increase in cells expressing major histocompatibility class II antigens (macrophages and dendritic cells). This is accompanied by increased abundance of mRNA for IL-15, a natural killer growth factor, and IL-10 in the endometrium during early pregnancy. Furthermore, expression of indoleamine 2,3 dioxygenase was 15-fold greater in pregnant compared with cyclic heifers at d 17, but then declined by d 20. This enzyme converts tryptophan to kynurenine, which alters immune function by creating a localized tryptophan deficiency and by activation of the aryl hydrocarbon receptor and induction of downstream tolerogenic mediators. Expression of the aryl hydrocarbon receptor is abundant in the bovine uterus, but its temporal and spatial regulation during early pregnancy have not been characterized. Pregnancy is also associated with increased expression of proteins known to inhibit immune activation, including programed cell death ligand-1 (CD274), lymphocyte activation gene-3 (CD223), and cytotoxic T-lymphocyte associated protein-4 (CD152). These molecules interact with receptors on antigen-presenting cells and induce lymphocyte tolerance. Current results support the hypothesis that early pregnancy signaling in dairy heifers involves changes in the proportions of immune cells in the endometrium as well as induction of molecules known to mediate tolerance. These changes are likely essential for uterine wall remodeling, placentation, and successful pregnancy.
Collapse
Affiliation(s)
- Troy L Ott
- Department of Animal Science, Center for Reproductive Biology and Health, Huck Institutes of the Life Science, Pennsylvania State University, University Park 16802.
| |
Collapse
|
12
|
Ekwemalor K, Adjei-Fremah S, Asiamah E, Eluka-Okoludoh E, Osei B, Worku M. Systemic expression of galectin genes in periparturient goats. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Zhang L, Liu X, Liu J, Ma L, Zhou Z, Song Y, Cao B. The developmental transcriptome landscape of receptive endometrium during embryo implantation in dairy goats. Gene 2017; 633:82-95. [PMID: 28866083 DOI: 10.1016/j.gene.2017.08.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/08/2017] [Accepted: 08/28/2017] [Indexed: 01/24/2023]
Abstract
Under natural conditions, some embryos cannot implant successfully because of the dysfunction of receptive endometrium (RE). Thus, it is imperative for us to study the molecular mechanisms involved in the formation of the RE from pre-receptive endometrium (PE). In this study, the endometrium from gestational day 5 (D5, PE) and gestational day 15 (D15, RE) dairy goats were selected to systematically analyze the transcriptome using strand-specific Ribo-Zero RNA-Seq, >120 million high-quality paired-end reads were generated and 47,616 transcripts were identified in the endometrium of dairy goats. A total of 810 mRNAs were differentially expressed genes (DEGs) between the RE and PE meeting the criteria of P-values<0.05. Bioinformatics analysis of the DEGs revealed that a number of biological processes and pathways were potentially involved in the establishment of the RE, notably energy metabolism and amino acid metabolism. Furthermore, we speculated that CXCL14, IGFBP3, and LGALS15 potentially participated in the development of endometrium. What's more, putative SNPs, InDels and AS events were identified and analyzed in the endometrium. In a word, this resulting view of the transcriptome greatly enhances the comprehensive transcript catalog and uncovers the global trends in gene expression during the formation of receptive endometrium in dairy goats.
Collapse
Affiliation(s)
- Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - XiaoRui Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - JunZe Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Li Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - ZhanQin Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - YuXuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - BinYun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
14
|
Abstract
At implantation, with the acquisition of a receptive phenotype in the uterine epithelium, an initial tenuous attachment of embryonic trophectoderm initiates reorganisation of epithelial polarity to enable stable embryo attachment and the differentiation of invasive trophoblasts. In this Cell Science at a Glance article, we describe cellular and molecular events during the epithelial phase of implantation in rodent, drawing on morphological studies both in vivo and in vitro, and genetic models. Evidence is emerging for a repertoire of transcription factors downstream of the master steroidal regulators estrogen and progesterone that coordinate alterations in epithelial polarity, delivery of signals to the stroma and epithelial cell death or displacement. We discuss what is known of the cell interactions that occur during implantation, before considering specific adhesion molecules. We compare the rodent data with our much more limited knowledge of the human system, where direct mechanistic evidence is hard to obtain. In the accompanying poster, we represent the embryo-epithelium interactions in humans and laboratory rodents, highlighting similarities and differences, as well as depict some of the key cell biological events that enable interstitial implantation to occur.
Collapse
Affiliation(s)
- John D Aplin
- Maternal and Fetal Health Research Group, Manchester Academic Health Sciences Centre, St Mary's Hospital, University of Manchester, Manchester M13 9WL, UK
| | - Peter T Ruane
- Maternal and Fetal Health Research Group, Manchester Academic Health Sciences Centre, St Mary's Hospital, University of Manchester, Manchester M13 9WL, UK
| |
Collapse
|
15
|
Vasudevan S, Kamat MM, Walusimbi SS, Pate JL, Ott TL. Effects of early pregnancy on uterine lymphocytes and endometrial expression of immune-regulatory molecules in dairy heifers†. Biol Reprod 2017. [DOI: 10.1093/biolre/iox061] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
16
|
Spencer TE, Forde N, Lonergan P. Insights into conceptus elongation and establishment of pregnancy in ruminants. Reprod Fertil Dev 2017; 29:84-100. [DOI: 10.1071/rd16359] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This review integrates established and new information on the factors and pathways regulating conceptus–endometrial interactions, conceptus elongation and establishment of pregnancy in sheep and cattle. Establishment of pregnancy in domestic ruminants begins at the conceptus stage (embryo or fetus and associated extra-embryonic membranes) and includes pregnancy recognition signalling, implantation and the onset of placentation. Survival and growth of the preimplantation blastocyst and elongating conceptus require embryotrophic factors (amino acids, carbohydrates, proteins, lipids and other substances) provided by the uterus. The coordinated and interactive actions of ovarian progesterone and conceptus-derived factors (interferon-τ and prostaglandins) regulate expression of elongation- and implantation-related genes in the endometrial epithelia that alter the uterine luminal milieu and affect trophectoderm proliferation, migration, attachment, differentiation and function. A comparison of sheep and cattle finds both conserved and non-conserved embryotrophic factors in the uterus; however, the overall biological pathways governing conceptus elongation and establishment of pregnancy are likely conserved. Given that most pregnancy losses in ruminants occur during the first month of pregnancy, increased knowledge is necessary to understand why and provide a basis for new strategies to improve pregnancy outcome and reproductive efficiency.
Collapse
|
17
|
The sheep conceptus modulates proteome profiles in caruncular endometrium during early pregnancy. Anim Reprod Sci 2016; 175:48-56. [DOI: 10.1016/j.anireprosci.2016.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/29/2016] [Accepted: 11/01/2016] [Indexed: 01/08/2023]
|
18
|
Nio-Kobayashi J. Tissue- and cell-specific localization of galectins, β-galactose-binding animal lectins, and their potential functions in health and disease. Anat Sci Int 2016; 92:25-36. [PMID: 27590897 DOI: 10.1007/s12565-016-0366-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/17/2016] [Indexed: 01/13/2023]
Abstract
Fifteen galectins, β-galactose-binding animal lectins, are known to be distributed throughout the body. We herein summarize current knowledge on the tissue- and cell-specific localization of galectins and their potential functions in health and disease. Galectin-3 is widely distributed in epithelia, including the simple columnar epithelium in the gut, stratified squamous epithelium in the gut and skin, and transitional epithelium and several regions in nephrons in the urinary tract. Galectin-2 and galectin-4/6 are gut-specific, while galectin-7 is found in the stratified squamous epithelium in the gut and skin. The reproductive tract mainly contains galectin-1 and galectin-3, and their expression markedly changes during the estrous/menstrual cycle. The galectin subtype expressed in the corpus luteum (CL) changes in association with luteal function. The CL of women and cows displays a "galectin switch" with coordinated changes in the major galectin subtype and its ligand glycoconjugate structure. Macrophages express galectin-3, which may be involved in phagocytotic activity. Lymphoid tissues contain galectin-3-positive macrophages, which are not always stained with the macrophage marker, F4/80. Subsets of neurons in the brain and dorsal root ganglion express galectin-1 and galectin-3, which may contribute to the regeneration of damaged axons, stem cell differentiation, and pain control. The subtype-specific contribution of galectins to implantation, fibrosis, and diabetes are also discussed. The function of galectins may differ depending on the tissues or cells in which they act. The ligand glycoconjugate structures mediated by glycosyltransferases including MGAT5, ST6GAL1, and C2GnT are important for revealing the functions of galectins in healthy and disease states.
Collapse
Affiliation(s)
- Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine, Kita 15-Nishi 7, Kita-ku, Sapporo, 060-8638, Japan.
| |
Collapse
|
19
|
Spencer TE, Forde N, Lonergan P. The role of progesterone and conceptus-derived factors in uterine biology during early pregnancy in ruminants. J Dairy Sci 2016; 99:5941-5950. [DOI: 10.3168/jds.2015-10070] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/03/2015] [Indexed: 11/19/2022]
|
20
|
Preston S, Beddoe T, Walkden-Brown S, Meeusen E, Piedrafita D. Galectin-11: A novel host mediator targeting specific stages of the gastrointestinal nematode parasite, Haemonchus contortus. Int J Parasitol 2015. [DOI: 10.1016/j.ijpara.2015.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Forde N, Bazer FW, Spencer TE, Lonergan P. 'Conceptualizing' the Endometrium: Identification of Conceptus-Derived Proteins During Early Pregnancy in Cattle. Biol Reprod 2015; 92:156. [PMID: 25947061 DOI: 10.1095/biolreprod.115.129296] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/05/2015] [Indexed: 01/27/2023] Open
Abstract
The aim of this study was to identify conceptus-derived proteins, in addition to IFNT, that may facilitate pregnancy recognition in cattle. Analysis of the protein content of the uterine luminal fluid (ULF) from cyclic heifers on Day 16 by nano liquid chromatography tandem mass spectrometry identified 334 proteins. Comparison of these data with 299 proteins identified in the ULF of pregnant heifers on Day 16 identified 85 proteins only present in the ULF of pregnant heifers. Analysis of Day 16 conceptus-conditioned culture medium revealed the presence of 1005 proteins of which 30 proteins were unique to ULF from Day 16 pregnant heifers. Of these 30 proteins, 12 had mRNA expression values at least 2-fold higher in abundance (P < 0.05) in the conceptus compared to the endometrium (ARPC5L, CAPG, CKMT1, CSTB, HSPA8, HSPE1, LGALS3, MSN, NUTF2, P4HB, PRKAR2A, TKT) as determined by RNA sequencing. In addition, genes that have a significant biological interaction with the proteins (ACO2, CKMT1, CSTB, EEF2, GDI1, GLB1, GPLD1, HNRNPA1, HNRNPA2B1, HNRNPF, HSPA8, HSPE1, IDH2, KRT75, LGALS3, MSN, NUTF2, P4HB, PRKAR2A, PSMA4, PSMB5, PSMC4, SERPINA3, TKT) were differentially expressed in the endometrium of pregnant compared to cyclic heifers during the pregnancy recognition period (Days 16-18). These results indicate that 30 proteins unique to ULF from pregnant heifers and produced by short-term in vitro cultured Day 16 conceptuses could potentially be involved in facilitating the interactions between the conceptus and the endometrium during the pregnancy recognition period.
Collapse
Affiliation(s)
- Niamh Forde
- School of Agriculture and Food Science, University College Dublin, Ireland
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Ireland
| |
Collapse
|
22
|
Than NG, Romero R, Balogh A, Karpati E, Mastrolia SA, Staretz-Chacham O, Hahn S, Erez O, Papp Z, Kim CJ. Galectins: Double-edged Swords in the Cross-roads of Pregnancy Complications and Female Reproductive Tract Inflammation and Neoplasia. J Pathol Transl Med 2015; 49:181-208. [PMID: 26018511 PMCID: PMC4440931 DOI: 10.4132/jptm.2015.02.25] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/25/2015] [Indexed: 02/07/2023] Open
Abstract
Galectins are an evolutionarily ancient and widely expressed family of lectins that have unique glycan-binding characteristics. They are pleiotropic regulators of key biological processes, such as cell growth, proliferation, differentiation, apoptosis, signal transduction, and pre-mRNA splicing, as well as homo- and heterotypic cell-cell and cell-extracellular matrix interactions. Galectins are also pivotal in immune responses since they regulate host-pathogen interactions, innate and adaptive immune responses, acute and chronic inflammation, and immune tolerance. Some galectins are also central to the regulation of angiogenesis, cell migration and invasion. Expression and functional data provide convincing evidence that, due to these functions, galectins play key roles in shared and unique pathways of normal embryonic and placental development as well as oncodevelopmental processes in tumorigenesis. Therefore, galectins may sometimes act as double-edged swords since they have beneficial but also harmful effects for the organism. Recent advances facilitate the use of galectins as biomarkers in obstetrical syndromes and in various malignancies, and their therapeutic applications are also under investigation. This review provides a general overview of galectins and a focused review of this lectin subfamily in the context of inflammation, infection and tumors of the female reproductive tract as well as in normal pregnancies and those complicated by the great obstetrical syndromes.
Collapse
Affiliation(s)
- Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Budapest, Budapest, Hungary
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hangary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
| | - Andrea Balogh
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Eva Karpati
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Budapest, Budapest, Hungary
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Salvatore Andrea Mastrolia
- Department of Obstetrics and Gynecology, Ben-Gurion University, Beer-Sheva, Israel
- Department of Obstetrics and Gynecology, University of Bari Aldo Moro, Bari, Italy
| | | | - Sinuhe Hahn
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Ben-Gurion University, Beer-Sheva, Israel
| | - Zoltan Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hangary
| | - Chong Jai Kim
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Pathology, Wayne State University, Detroit, MI, USA
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Preston S, Dunphy J, Beddoe T, Meeusen E, Young A. Evaluation of the role of galectins in parasite immunity. Methods Mol Biol 2015; 1207:371-95. [PMID: 25253154 DOI: 10.1007/978-1-4939-1396-1_25] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Galectin-11 and galectin-14 are ruminant galectins involved in parasitic infections. Although their roles in parasite immunity are still being elucidated, its appears that their functions are parasite specific. In gastrointestinal infections with the nematode Haemonchus contortus, both galectin-11 and galectin-14 appear to be protective. However, in a chronic infection of liver fluke, Fasciola hepatica, these galectins may aid parasite survival. This chapter discusses the methods designed to study parasitic infections in sheep, which have provided us with insight into the functions of galectin-11 and galectin-14 during host-parasite interactions. These methods include parasite cultivation and infection, galectin staining of host and parasite tissue, surface staining of parasites with recombinant galectins and in vitro assays to monitor the effect of galectins on larval development.
Collapse
Affiliation(s)
- Sarah Preston
- Biotechnology Research Laboratories, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia
| | | | | | | | | |
Collapse
|
24
|
Brooks K, Burns G, Spencer TE. Conceptus elongation in ruminants: roles of progesterone, prostaglandin, interferon tau and cortisol. J Anim Sci Biotechnol 2014; 5:53. [PMID: 25810904 PMCID: PMC4373033 DOI: 10.1186/2049-1891-5-53] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/28/2014] [Indexed: 02/07/2023] Open
Abstract
The majority of pregnancy loss in ruminants occurs during the first three weeks after conception, particularly during the period of conceptus elongation that occurs prior to pregnancy recognition and implantation. This review integrates established and new information on the biological role of ovarian progesterone (P4), prostaglandins (PGs), interferon tau (IFNT) and cortisol in endometrial function and conceptus elongation. Progesterone is secreted by the ovarian corpus luteum (CL) and is the unequivocal hormone of pregnancy. Prostaglandins (PGs) and cortisol are produced by both the epithelial cells of the endometrium and the trophectoderm of the elongating conceptus. In contrast, IFNT is produced solely by the conceptus trophectoderm and is the maternal recognition of pregnancy signal that inhibits production of luteolytic pulses of PGF2α by the endometrium to maintain the CL and thus production of P4. Available results in sheep support the idea that the individual, interactive, and coordinated actions of P4, PGs, IFNT and cortisol regulate conceptus elongation and implantation by controlling expression of genes in the endometrium and/or trophectoderm. An increased knowledge of conceptus-endometrial interactions during early pregnancy in ruminants is necessary to understand and elucidate the causes of infertility and recurrent early pregnancy loss and provide new strategies to improve fertility and thus reproductive efficiency.
Collapse
Affiliation(s)
- Kelsey Brooks
- Department of Animal Science and Center for Reproductive Biology, Washington State University, Pullman, WA 99164 USA
| | - Greg Burns
- Department of Animal Science and Center for Reproductive Biology, Washington State University, Pullman, WA 99164 USA
| | - Thomas E Spencer
- Department of Animal Science and Center for Reproductive Biology, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
25
|
Forde N, McGettigan PA, Mehta JP, O'Hara L, Mamo S, Bazer FW, Spencer TE, Lonergan P. Proteomic analysis of uterine fluid during the pre-implantation period of pregnancy in cattle. Reproduction 2014; 147:575-87. [PMID: 24478148 DOI: 10.1530/rep-13-0010] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aims of this study were (i) to characterize the global changes in the composition of the uterine luminal fluid (ULF) from pregnant heifers during pregnancy recognition (day 16) using nano-LC MS/MS; (ii) to describe quantitative changes in selected proteins in the ULF from days 10, 13, 16 and 19 by Isobaric tags for Relative and Absolute Quantification (iTRAQ) analysis; and (iii) to determine whether these proteins are of endometrial or conceptus origin, by examining the expression profiles of the associated transcripts by RNA sequencing. On day 16, 1652 peptides were identified in the ULF by nano-LC MS/MS. Of the most abundant proteins present, iTRAQ analysis revealed that RPB4, TIMP2 and GC had the same expression pattern as IFNT, while the abundance of IDH1, CST6 and GDI2 decreased on either day 16 or 19. ALDOA, CO3, GSN, HSP90A1, SERPINA31 and VCN proteins decreased on day 13 compared with day 10 but subsequently increased on day 16 (P<0.05). Purine nucleoside phosphorylase (PNP) and HSPA8 decreased on day 13, increased on day 16 and decreased and increased on day 19 (P<0.05). The abundance of CATD, CO3, CST6, GDA, GELS, IDHC, PNPH and TIMP2 mRNAs was greater (P<0.001) in the endometrium than in the conceptus. By contrast, the abundance of ACTB, ALDOA, ALDR, CAP1, CATB, CATG, GD1B, HSP7C, HSP90A, RET4 and TERA was greater (P<0.05) in the conceptus than in the endometrium. In conclusion, significant changes in the protein content of the ULF occur during the pre-implantation period of pregnancy reflecting the morphological changes that occur in the conceptus.
Collapse
Affiliation(s)
- Niamh Forde
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Expression and function of galectins in the endometrium and at the human feto-maternal interface. Placenta 2013; 34:863-72. [PMID: 23911101 DOI: 10.1016/j.placenta.2013.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 12/12/2022]
Abstract
Galectins are classified as lectins that share structural similarities and bind β-galactosides via a conserved carbohydrate recognition domain. So far 16 out of 19 identified galectins were shown to be present in humans and numerous studies revealed galectins as pivotal modulators of cell death, differentiation and growth. Galectins were highlighted to interact with both the adaptive and innate immune response. In the field of reproductive medicine and placenta research different roles for galectins have been proposed. Several galectins, being abundantly present at the human feto-maternal interphase and endometrium, were hypothesized to significantly contribute to endometrial receptivity and pregnancy physiology. Hence, this review outlines selected aspects of galectin action within endometrial function and at the feto-maternal interphase. Further current knowledge on galectins in reproductive and pregnancy disorders like endometriosis, abortion or preeclampsia is summarized.
Collapse
|
27
|
Forde N, Mehta JP, McGettigan PA, Mamo S, Bazer FW, Spencer TE, Lonergan P. Alterations in expression of endometrial genes coding for proteins secreted into the uterine lumen during conceptus elongation in cattle. BMC Genomics 2013; 14:321. [PMID: 23663413 PMCID: PMC3663781 DOI: 10.1186/1471-2164-14-321] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 05/03/2013] [Indexed: 01/06/2023] Open
Abstract
Background We hypothesized that genes that are up-regulated in the uterine endometrium at the initiation of conceptus elongation in cattle, and that encode for secreted proteins, contribute to the composition of the uterine luminal fluid (ULF) and ultimately, drive conceptus elongation. The aims of this study were to: 1) screen endometrial transcriptomic data for genes that encode secreted proteins on Day 13; 2) determine temporal changes in the expression of these genes during the estrous cycle/early pregnancy; 3) determine if expression of these genes is affected by altered concentrations of progesterone (P4) in vivo and 4) determine if the protein products of these genes are detectable in ULF. Results Of the fourteen candidate genes examined, quantitative real-time PCR analysis revealed the expression of APOA1, ARSA, DCN, LCAT, MUC13, NCDN, NMN, NPNT, NXPH3, PENK, PLIN2 and TINAGL1 was modulated in the endometrium (P<0.05) as the estrous cycle/early pregnancy progressed. APOA1, DCN and NPNT expression was higher in cyclic compared to pregnant heifers, and pregnancy increased (P<0.05) the expression of LCAT, NCDN, NMN, PLIN2 and TINAGL1. The magnitude of the increase in expression of APOA1, PENK and TINAGL1 on Day 13 was reduced (P<0.05) in heifers with low P4. Furthermore, low P4 decreased (P<0.05) the expression of LCAT and NPNT on Day 7, while an early increase (P<0.05) in the expression of NXPH3 and PLIN2 was observed in heifers with high P4. The protein products of 5 of the candidate genes (APOA1, ARSA, LCAT, NCDN and PLIN) were detected in the ULF on either Days 13, 16 or 19 of pregnancy. Conclusion Using a candidate gene approach, we determined that both P4 concentration and the presence of the conceptus alter endometrial expression of PLIN2, TINAGL1, NPNT, LCAT, NMN and APOA1. Comparison of the expression profiles of these genes to proteins detected in ULF during conceptus elongation (i.e., Days 13 through 19) revealed the presence of APOA1, ARSA, LCAT, NCDN as well as members of the PLIN family of proteins that may play roles in driving conceptus elongation in cattle.
Collapse
Affiliation(s)
- Niamh Forde
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
28
|
Blidner AG, Rabinovich GA. ‘Sweetening’ Pregnancy: Galectins at the Fetomaternal Interface. Am J Reprod Immunol 2013; 69:369-82. [DOI: 10.1111/aji.12090] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ada G. Blidner
- Instituto de Oncología Ángel H. Roffo; Universidad de Buenos Aires; Buenos Aires; Argentina
| | | |
Collapse
|
29
|
Nimbkar-Joshi S, Katkam RR, Chaudhari UK, Jacob S, Manjramkar DD, Metkari SM, Hinduja I, Mangoli V, Desai S, Kholkute SD, Puri CP, Sachdeva G. Endometrial epithelial cell modifications in response to embryonic signals in bonnet monkeys (Macaca radiata). Histochem Cell Biol 2012; 138:289-304. [DOI: 10.1007/s00418-012-0951-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
|
30
|
Than NG, Romero R, Kim CJ, McGowen MR, Papp Z, Wildman DE. Galectins: guardians of eutherian pregnancy at the maternal-fetal interface. Trends Endocrinol Metab 2012; 23:23-31. [PMID: 22036528 PMCID: PMC3640805 DOI: 10.1016/j.tem.2011.09.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/21/2011] [Accepted: 09/13/2011] [Indexed: 01/03/2023]
Abstract
Galectins are multifunctional regulators of fundamental cellular processes. They are also involved in innate and adaptive immune responses, and play a functional role in immune-endocrine crosstalk. Some galectins have attracted attention in the reproductive sciences because they are highly expressed at the maternal-fetal interface, their functional significance in eutherian pregnancies has been documented, and their dysregulated expression is observed in the 'great obstetrical syndromes'. The evolution of these galectins has been linked to the emergence of eutherian mammals. Based on published evidence, galectins expressed at the maternal-fetal interface may serve as important proteins involved in maternal-fetal interactions, and the study of these galectins may facilitate the prediction, prevention, diagnosis, and treatment of pregnancy complications.
Collapse
Affiliation(s)
- Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Detroit, MI, USA.
| | | | | | | | | | | |
Collapse
|
31
|
HOORENS P, RINALDI M, MIHI B, DREESEN L, GRIT G, MEEUSEN E, LI RW, GELDHOF P. Galectin-11 induction in the gastrointestinal tract of cattle following nematode and protozoan infections. Parasite Immunol 2011; 33:669-78. [DOI: 10.1111/j.1365-3024.2011.01336.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
32
|
Kliman HJ, Sammar M, Grimpel YI, Lynch SK, Milano KM, Pick E, Bejar J, Arad A, Lee JJ, Meiri H, Gonen R. Placental protein 13 and decidual zones of necrosis: an immunologic diversion that may be linked to preeclampsia. Reprod Sci 2011; 19:16-30. [PMID: 21989657 DOI: 10.1177/1933719111424445] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We evaluated the role of placental protein 13 (PP13; galectin 13) in the process of trophoblast invasion and decidual necrosis. Immunohistochemical analysis for PP13, immune cells, human placental lactogen, cytokeratin, and apoptosis markers was performed on 20 elective pregnancy termination specimens between 6 and 15 weeks of gestation. Placental protein 13 was localized to syncytiotrophoblasts in the chorionic villi and to occasional multinucleated luminal trophoblasts within converted decidual spiral arterioles. Cytotrophoblasts, anchoring trophoblasts, and invasive trophoblasts did not stain for PP13. Extracellular PP13 aggregates were found around decidual veins associated with T-cell-, neutrophil- and macrophage-containing decidual zones of necrosis (ZONEs). We hypothesize that PP13 is secreted into the intervillus space, drains through the decidua basalis veins, and forms perivenous PP13 aggregates which attract and activate maternal immune cells. Thus, syncytiotrophoblast-derived PP13 may create a ZONE that facilitates trophoblast invasion and conversion of the maternal spiral arterioles.
Collapse
Affiliation(s)
- Harvey J Kliman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT 06520, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Okumu LA, Fair T, Szekeres-Bartho J, O'Doherty AM, Crowe MA, Roche JF, Lonergan P, Forde N. Endometrial expression of progesterone-induced blocking factor and galectins-1, -3, -9, and -3 binding protein in the luteal phase and early pregnancy in cattle. Physiol Genomics 2011; 43:903-10. [DOI: 10.1152/physiolgenomics.00251.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Progesterone-induced blocking factor (PIBF) and galectins modulate the maternal immune response during pregnancy. We hypothesized that the relative transcript abundance of the above genes would be different during the luteal phase/early pregnancy and would be affected by progesterone supplementation. To further test this, hypothesis protein expression analyses were carried out to evaluate the abundance and localization of LGALS9 and PIBF. Following estrus synchronization, heifers were inseminated ( n = 140) or not ( n = 70). Half the heifers in each status (cyclic or potentially pregnant) were randomly assigned to receive a progesterone-releasing intravaginal device (PRID) on day 3 after estrus, which elevated progesterone concentrations from day 3.5 to 8 ( P < 0.05), resulting in four treatment groups: cyclic and pregnant heifers, each with normal and high progesterone. After confirmation of pregnancy status in inseminated animals, uterine tissue was collected on days 5, 7, 13, or 16 of the luteal phase of the cycle/pregnancy. Gene and protein expression was determined using Q-RT-PCR and IHC, respectively, on 5 heifers per treatment per time point (i.e., 80 in total). Progesterone concentrations did not affect expression of any of the genes ( P > 0.05). LGALS9 and LGALS3BP were expressed at low levels in both cyclic and pregnant endometria until day 13. On day 16, expression increased only in the pregnant heifers ( P < 0.0001). LGALS1 and LGALS3 decreased on day 7 ( P < 0.0001) and remained low until day 16. Pregnancy had no effect on the expression of LGALS1, LGALS3, and PIBF. Additionally, LGALS9 and PIBF proteins were expressed in distinct uterine cell types. These results indicate that the galectins may be involved in uterine receptivity and/or implantation in heifers.
Collapse
Affiliation(s)
- L. A. Okumu
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland; and
| | - T. Fair
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland; and
| | - J. Szekeres-Bartho
- Department of Medical Microbiology & Immunology, Medical School, Pecs University, Pecs, Hungary
| | - A. M. O'Doherty
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland; and
| | - M. A. Crowe
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland; and
| | - J. F. Roche
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland; and
| | - P. Lonergan
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland; and
| | - N. Forde
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland; and
| |
Collapse
|
34
|
Yang QE, Giassetti MI, Ealy AD. Fibroblast growth factors activate mitogen-activated protein kinase pathways to promote migration in ovine trophoblast cells. Reproduction 2011; 141:707-14. [PMID: 21310815 DOI: 10.1530/rep-10-0541] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fibroblast growth factors (FGFs) 2 and FGF10 are uterine- and conceptus-derived factors that mediate trophoblast activities in cattle and sheep. To extend our understanding of how FGFs may control peri-implantation development in ruminants, we determined whether FGF2 and FGF10 impact trophoblast cell migration. Transwell inserts containing 8 μm pores were used to examine whether FGF2 or FGF10 supplementation increased oTr1 cell migration. Supplementation with 0.5 ng/ml FGF2 or FGF10 did not affect oTr1 cell migration number, but exposure to 5 or 50 ng/ml FGF2 or FGF10 increased (P<0.05) oTr1 cell migration when compared with controls. The involvement of specific MAP kinase (MAPK) cascades in mediating this FGF response was examined by using pharmacological inhibitors of specific MAPKs. Western blot analysis indicated that FGF2 and FGF10 increased phosphorylation status of MAPKs 1, 3, 8, 9, and 14. Exposure to specific inhibitors blocked FGF induction of each MAPK. Exposure to inhibitors before supplementation with FGF2 or FGF10 prevented FGF induction of cell migration, indicating that each of these signaling molecules was required for FGF effects. A final series of studies examined whether FGF2 and FGF10 also mediated the migration of a bovine trophoblast line (CT1 cell). Increases in migration were detected in each cell line by supplementing 5 or 50 ng/ml FGF2 or FGF10 (P<0.05). In summary, FGF2 and FGF10 regulate migratory activity of ovine trophoblast cells through MAPK-dependent pathways. These outcomes provide further evidence that FGFs function as mediators of peri-implantation conceptus development in cattle and sheep.
Collapse
Affiliation(s)
- Qi En Yang
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, PO Box 110910, Gainesville, Florida 32611-0910, USA
| | | | | |
Collapse
|
35
|
Viral particles of endogenous betaretroviruses are released in the sheep uterus and infect the conceptus trophectoderm in a transspecies embryo transfer model. J Virol 2010; 84:9078-85. [PMID: 20610723 DOI: 10.1128/jvi.00950-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The sheep genome contains multiple copies of endogenous betaretroviruses highly related to the exogenous and oncogenic jaagsiekte sheep retrovirus (JSRV). The endogenous JSRVs (enJSRVs) are abundantly expressed in the uterine luminal and glandular epithelia as well as in the conceptus trophectoderm and are essential for conceptus elongation and trophectoderm growth and development. Of note, enJSRVs are present in sheep and goats but not cattle. At least 5 of the 27 enJSRV loci cloned to date possess an intact genomic organization and are able to produce viral particles in vitro. In this study, we found that enJSRVs form viral particles that are released into the uterine lumen of sheep. In order to test the infectious potential of enJSRV particles in the uterus, we transferred bovine blastocysts into synchronized ovine recipients and allowed them to develop for 13 days. Analysis of microdissected trophectoderm of the bovine conceptuses revealed the presence of enJSRV RNA and, in some cases, DNA. Interestingly, we found that RNAs belonging to only the most recently integrated enJSRV loci were packaged into viral particles and transmitted to the trophectoderm. Collectively, these results support the hypothesis that intact enJSRV loci expressed in the uterine endometrial epithelia are shed into the uterine lumen and could potentially transduce the conceptus trophectoderm. The essential role played by enJSRVs in sheep reproductive biology could also be played by endometrium-derived viral particles that influence development and differentiation of the trophectoderm.
Collapse
|
36
|
Forde N, Spencer TE, Bazer FW, Song G, Roche JF, Lonergan P. Effect of pregnancy and progesterone concentration on expression of genes encoding for transporters or secreted proteins in the bovine endometrium. Physiol Genomics 2010; 41:53-62. [DOI: 10.1152/physiolgenomics.00162.2009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The objective of this study was to determine the temporal and spatial expression patterns of genes encoding transporters, as well as selected secreted proteins that may be regulated by progesterone (P4) and/or the presence of the conceptus in the bovine endometrium. Estrus-synchronized beef heifers were randomly assigned to either: 1) pregnant, high P4; 2) pregnant, normal P4; 3) cyclic, high P4; or 4) cyclic, normal P4. Uteri were collected on days 5, 7, 13, and 16 of the estrous cycle or pregnancy. Localization of mRNAs for ANPEP, CTGF, LPL, LTF, and SLC5A1 in the uteri was determined by radioactive in situ hybridization, and expression quantified in the endometria by quantitative real-time PCR. ANPEP localized to luminal (LE) and superficial glandular (sGE) epithelia of all heifers on days 5 and 7 only. SLC5A1 mRNA was detected in the LE and sGE on days 13 and 16 in all heifers, and expression increased on day 16 in pregnant groups. CTGF localized weakly to the LE and GE on days 5 and 7 but increased on days 13 and 16 with an increase ( P < 0.05) in CTGF expression in high P4 ( day 7) and pregnant heifers ( day 16). Both LPL and LTF localized to the GE only on days 5 and 7. In conclusion we have characterized the temporal expression pattern of these genes and modulation of their transcript abundance by P4 ( CTGF, LPL) and/or the conceptus ( CTGF, SLC5A1) likely modifies the uterine microenvironment, enhancing histotroph composition and contributing to advanced conceptus elongation.
Collapse
Affiliation(s)
- N. Forde
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland; and
| | - T. E. Spencer
- Centre for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, Texas
| | - F. W. Bazer
- Centre for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, Texas
| | - G. Song
- Centre for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, Texas
| | - J. F. Roche
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland; and
| | - P. Lonergan
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland; and
| |
Collapse
|
37
|
Satterfield MC, Song G, Kochan KJ, Riggs PK, Simmons RM, Elsik CG, Adelson DL, Bazer FW, Zhou H, Spencer TE. Discovery of candidate genes and pathways in the endometrium regulating ovine blastocyst growth and conceptus elongation. Physiol Genomics 2009; 39:85-99. [DOI: 10.1152/physiolgenomics.00001.2009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Establishment of pregnancy in ruminants requires blastocyst growth to form an elongated conceptus that produces interferon tau, the pregnancy recognition signal, and initiates implantation. Blastocyst growth and development requires secretions from the uterine endometrium. An early increase in circulating concentrations of progesterone (P4) stimulates blastocyst growth and elongation in ruminants. This study utilized sheep as a model to identify candidate genes and regulatory networks in the endometrium that govern preimplantation blastocyst growth and development. Ewes were treated daily with either P4 or corn oil vehicle from day 1.5 after mating to either day 9 or day 12 of pregnancy when endometrium was obtained by hysterectomy. Microarray analyses revealed many differentially expressed genes in the endometria affected by day of pregnancy and early P4 treatment. In situ hybridization analyses revealed that many differentially expressed genes were expressed in a cell-specific manner within the endometrium. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used to identify functional groups of genes and biological processes in the endometrium that are associated with growth and development of preimplantation blastocysts. Notably, biological processes affected by day of pregnancy and/or early P4 treatment included lipid biosynthesis and metabolism, angiogenesis, transport, extracellular space, defense and inflammatory response, proteolysis, amino acid transport and metabolism, and hormone metabolism. This transcriptomic data provides novel insights into the biology of endometrial function and preimplantation blastocyst growth and development in sheep.
Collapse
Affiliation(s)
| | - Gwonhwa Song
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Kelli J. Kochan
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Penny K. Riggs
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Rebecca M. Simmons
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Christine G. Elsik
- Department of Biology, Georgetown University, Washington, District of Columbia
| | - David L. Adelson
- Department of Biology, Georgetown University, Washington, District of Columbia
| | - Fuller W. Bazer
- Centre for Bioinformatics and Computational Genetics, University of Adelaide, Australia; and
| | - Huaijun Zhou
- Department of Poultry Science, Texas A&M University, College Station, Texas
| | - Thomas E. Spencer
- Department of Animal Science, Texas A&M University, College Station, Texas
| |
Collapse
|
38
|
Simmons RM, Erikson DW, Kim J, Burghardt RC, Bazer FW, Johnson GA, Spencer TE. Insulin-like growth factor binding protein-1 in the ruminant uterus: potential endometrial marker and regulator of conceptus elongation. Endocrinology 2009; 150:4295-305. [PMID: 19497977 DOI: 10.1210/en.2009-0060] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Establishment of pregnancy in ruminants requires conceptus elongation and production of interferon-tau (IFNT), the pregnancy recognition signal that maintains ovarian progesterone (P4) production. These studies determined temporal and spatial alterations in IGF binding protein (IGFBP)-1 and IGFBP3 in the ovine and bovine uterus; effects of P4 and IFNT on their expression in the ovine uterus; and effects of IGFBP1 on ovine trophectoderm cell proliferation, migration, and attachment. IGFBP1 and IGFBP3 were studied because they are the only IGFBPs specifically expressed by the endometrial luminal epithelia in sheep. In sheep, IGFBP1 and IGFBP3 expression was coordinate with the period of conceptus elongation, whereas only IGFBP1 expression was coordinate with conceptus elongation in cattle. IGFBP1 mRNA in the ovine endometria was between 5- and 29-fold more abundant between d 12 and 16 of pregnancy compared with the estrous cycle and greater on d 16 of pregnancy than nonpregnancy in the bovine uterus. In sheep, P4 induced and IFNT stimulated expression of IGFBP1 but not IGFBP3; however, the effect of IFNT did not mimic the abundant increase observed in pregnant ewes. Therefore, IGFBP1 expression in the endometrium is regulated by another factor from the conceptus. IGFBP1 did not affect the proliferation of ovine trophectoderm cells in vitro but did stimulate their migration and mediate their attachment. These studies reveal that IGFBP1 is a common endometrial marker of conceptus elongation in sheep and cattle and most likely regulates conceptus elongation by stimulating migration and attachment of the trophectoderm.
Collapse
Affiliation(s)
- Rebecca M Simmons
- Department of Animal Science, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Mansouri-Attia N, Aubert J, Reinaud P, Giraud-Delville C, Taghouti G, Galio L, Everts RE, Degrelle S, Richard C, Hue I, Yang X, Tian XC, Lewin HA, Renard JP, Sandra O. Gene expression profiles of bovine caruncular and intercaruncular endometrium at implantation. Physiol Genomics 2009; 39:14-27. [PMID: 19622795 DOI: 10.1152/physiolgenomics.90404.2008] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
At implantation the endometrium undergoes modifications necessary for its physical interactions with the trophoblast as well as the development of the conceptus. We aim to identify endometrial factors and pathways essential for a successful implantation in the caruncular (C) and the intercaruncular (IC) areas in cattle. Using a 13,257-element bovine oligonucleotide array, we established expression profiles at day 20 of the estrous cycle or pregnancy (implantation), revealing 446 and 1,295 differentially expressed genes (DEG) in C and IC areas, respectively (false discovery rate = 0.08). The impact of the conceptus was higher on the immune response function in C but more prominent on the regulation of metabolism function in IC. The C vs. IC direct comparison revealed 1,177 and 453 DEG in cyclic and pregnant animals respectively (false discovery rate = 0.05), with a major impact of the conceptus on metabolism and cell adhesion. We selected 15 genes including C11ORF34, CXCL12, CXCR4, PLAC8, SCARA5, and NPY and confirmed their differential expression by quantitative RT-PCR. The cellular localization was analyzed by in situ hybridization and, upon pregnancy, showed gene-specific patterns of cell distribution, including a high level of expression in the luminal epithelium for C11ORF34 and MX1. Using primary cultures of bovine endometrial cells, we identified PTN, PLAC8, and CXCL12 as interferon-tau (IFNT) target genes and MSX1 and CXCR7 as IFNT-regulated genes, whereas C11ORF34 was not an IFNT-regulated gene. Our transcriptomic data provide novel molecular insights accounting for the biological functions related to the C or IC endometrial areas and may contribute to the identification of potential biomarkers for normal and perturbed early pregnancy.
Collapse
Affiliation(s)
- Nadéra Mansouri-Attia
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche (UMR) 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
A primate subfamily of galectins expressed at the maternal-fetal interface that promote immune cell death. Proc Natl Acad Sci U S A 2009; 106:9731-6. [PMID: 19497882 DOI: 10.1073/pnas.0903568106] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Galectins are proteins that regulate immune responses through the recognition of cell-surface glycans. We present evidence that 16 human galectin genes are expressed at the maternal-fetal interface and demonstrate that a cluster of 5 galectin genes on human chromosome 19 emerged during primate evolution as a result of duplication and rearrangement of genes and pseudogenes via a birth and death process primarily mediated by transposable long interspersed nuclear elements (LINEs). Genes in the cluster are found only in anthropoids, a group of primate species that differ from their strepsirrhine counterparts by having relatively large brains and long gestations. Three of the human cluster genes (LGALS13, -14, and -16) were found to be placenta-specific. Homology modeling revealed conserved three-dimensional structures of galectins in the human cluster; however, analyses of 24 newly derived and 69 publicly available sequences in 10 anthropoid species indicate functional diversification by evidence of positive selection and amino acid replacements in carbohydrate-recognition domains. Moreover, we demonstrate altered sugar-binding capacities of 6 recombinant galectins in the cluster. We show that human placenta-specific galectins are predominantly expressed by the syncytiotrophoblast, a primary site of metabolic exchange where, early during pregnancy, the fetus comes in contact with immune cells circulating in maternal blood. Because ex vivo functional assays demonstrate that placenta-specific galectins induce the apoptosis of T lymphocytes, we propose that these galectins reduce the danger of maternal immune attacks on the fetal semiallograft, presumably conferring additional immune tolerance mechanisms and in turn sustaining hemochorial placentation during the long gestation of anthropoid primates.
Collapse
|
41
|
Burghardt RC, Burghardt JR, Taylor JD, Reeder AT, Nguen BT, Spencer TE, Bayless KJ, Johnson GA. Enhanced focal adhesion assembly reflects increased mechanosensation and mechanotransduction at maternal–conceptus interface and uterine wall during ovine pregnancy. Reproduction 2009; 137:567-82. [DOI: 10.1530/rep-08-0304] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The integrity of the fetal–maternal interface is critical for proper fetal nourishment during pregnancy. Integrins are important adhesion molecules present at the interface during implantation; however,in vivoevidence for integrin activation and focal adhesion formation at the maternal–conceptus interface is limited. We hypothesized that focal adhesion assembly in uterine luminal epithelium (LE) and conceptus trophectoderm (Tr) results from integrin binding of extracellular matrix (ECM) at this interface to provide increased tensile forces and signaling to coordinate utero-placental development. An ovine model of unilateral pregnancy was used to evaluate mechanotransduction events leading to focal adhesion assembly at the maternal–conceptus interface and within the uterine wall. Animals were hysterectomized on days 40, 80, or 120 of pregnancy, and uteri immunostained for integrins (ITGAV, ITGA4, ITGA5, ITGB1, ITGB3, and ITGB5), ECM proteins (SPP1, LGALS15, fibronectin (FN), and vitronectin (VTN)), cytoskeletal molecules (ACTN and TLN1), and a signal generator (PTK2). Focal adhesion assembly in myometrium and stroma was also studied to provide a frame of reference for mechanical stretch of the uterine wall. Large focal adhesions containing aggregates of ITGAV, ITGA4, ITGA5, ITGB1, ITGB5, ACTN, and PTK2 were detected in interplacentomal uterine LE and Tr of gravid but not non-gravid uterine horns and increased during pregnancy. SPP1 and LGALS15, but not FN or VTN, were present along LE and Tr interfaces in both uterine horns. These data support the idea that focal adhesion assembly at the maternal–conceptus interface reflects adaptation to increasing forces caused by the growing fetus. Cooperative binding of multiple integrins to SPP1 deposited at the maternal–conceptus interface forms an adhesive mosaic to maintain a tight connection between uterine and placental surfaces along regions of epitheliochorial placentation in sheep.
Collapse
|
42
|
Igwebuike UM. A review of uterine structural modifications that influence conceptus implantation and development in sheep and goats. Anim Reprod Sci 2008; 112:1-7. [PMID: 19162416 DOI: 10.1016/j.anireprosci.2008.12.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 12/01/2008] [Accepted: 12/10/2008] [Indexed: 10/21/2022]
Abstract
Evolution of the placenta and viviparity in eutherian animals underscores the need for an intimate relationship between the developing conceptus (embryo/foetus and associated extra-embryonic membranes) and the dam throughout the period of pregnancy. Thus, maternal support is unequivocally important for conceptus survival and development in utero. Under the influence of several pregnancy-associated hormones, the maternal uterine architecture undergoes rapid growth and substantial remodeling early in gestation. These changes are necessary preparations to accommodate and support rapid conceptus development and growth in the later two-thirds of pregnancy. There are species variations in the nature and extent of uterine remodeling during pregnancy. The regulatory influence of these uterine wall modifications on conceptus survival, implantation and placentation in sheep and goats are discussed in this review.
Collapse
Affiliation(s)
- U M Igwebuike
- Department of Veterinary Anatomy, University of Nigeria, Nsukka, Nigeria.
| |
Collapse
|
43
|
Spencer TE, Sandra O, Wolf E. Genes involved in conceptus–endometrial interactions in ruminants: insights from reductionism and thoughts on holistic approaches. Reproduction 2008; 135:165-79. [DOI: 10.1530/rep-07-0327] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review summarizes new knowledge on expression of genes and provides insights into approaches for study of conceptus–endometrial interactions in ruminants with emphasis on the peri-implantation stage of pregnancy. Conceptus–endometrial interactions in ruminants are complex and involve carefully orchestrated temporal and spatial alterations in gene expression regulated by hormones from the ovary and conceptus. Progesterone is the hormone of pregnancy and acts on the uterus to stimulate blastocyst survival, growth, and development. Inadequate progesterone levels or a delayed rise in progesterone is associated with pregnancy loss. The mononuclear trophectoderm cells of the elongating blastocyst synthesize and secrete interferon-τ (IFNT), the pregnancy recognition signal. Trophoblast giant binucleate cells begin to differentiate and produce hormones including chorionic somatomammotropin 1 (CSH1 or placental lactogen). A number of genes, induced or stimulated by progesterone, IFNT, and/or CSH1 in a cell-specific manner, are implicated in trophectoderm adhesion to the endometrial luminal epithelium and regulation of conceptus growth and differentiation. Transcriptional profiling experiments are beginning to unravel the complex dynamics of conceptus–endometrial interactions in cattle and sheep. Future experiments should incorporate physiological models of pregnancy loss and be complemented by metabolomic studies of uterine lumen contents to more completely define factors required for blastocyst survival, growth, and implantation. Both reduction and holistic approaches will be important to understand the multifactorial phenomenon of recurrent pregnancy loss and provide a basis for new strategies to improve pregnancy outcome and reproductive efficiency in cattle and other domestic animals.
Collapse
|