1
|
Zou L, Yang K, Yu Y, Wang C, Zhao J, Lu C, He D. Analysis of joint protein expression profile in anterior disc displacement of TMJ with or without OA. Oral Dis 2024; 30:4463-4482. [PMID: 38251222 DOI: 10.1111/odi.14871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/09/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024]
Abstract
OBJECTIVE Anterior disc displacement (ADD) is a common clinical issue and may cause osteoarthritis (OA). However, the research of protein changes in synovial fluid as disease development marker and potential treatment clue is still insufficient. MATERIALS AND METHODS We conducted the high-resolution mass spectrometry (MS) of synovial fluid collected from 60 patients with normal disk position to ADD and ADD with osteoarthritis (OA). The proteins with significant changes among the 3 groups were analyzed by biological information and further validated by in primary rat condyle chondrocytes and OA animal model. RESULTS FGL2, THBS4, TNC, FN1, OMD etc. were significantly increased in ADD without OA (p < 0.05), which reflected the active extracellular matrix and collagen metabolism. FGFR1, FBLN2, GRB2 etc. were significantly increased in ADD with OA group (p < 0.05), which revealed an association with apoptosis and ferroptosis. Proteins such as P4HB, CBLN4, FHL1, VIM continuously increase in the whole disease progress (p < 0.05). Both the in vitro and in vivo results are consistent with protein changes detected in MS profile. CONCLUSION This study firstly provides the expression changes of proteins from normal disc condyle relationship toward ADD with OA, which can be selected and studied further as disease progress marker and potential treatment targets.
Collapse
Affiliation(s)
- Luxiang Zou
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- National Clinical Research Center of Stomatology, Shanghai, China
| | - Kaiwen Yang
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- National Clinical Research Center of Stomatology, Shanghai, China
| | - Yeke Yu
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- National Clinical Research Center of Stomatology, Shanghai, China
| | - Chuyao Wang
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- National Clinical Research Center of Stomatology, Shanghai, China
| | - Jieyun Zhao
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- National Clinical Research Center of Stomatology, Shanghai, China
| | - Chuan Lu
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- National Clinical Research Center of Stomatology, Shanghai, China
| | - Dongmei He
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- National Clinical Research Center of Stomatology, Shanghai, China
| |
Collapse
|
2
|
Biosca-Brull J, Ona G, Alarcón-Franco L, Colomina MT. A transcriptomic analysis in mice following a single dose of ibogaine identifies new potential therapeutic targets. Transl Psychiatry 2024; 14:41. [PMID: 38242896 PMCID: PMC10798990 DOI: 10.1038/s41398-024-02773-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024] Open
Abstract
Ibogaine (IBO) is an atypical psychedelic with a complex mechanism of action. To date, the mechanisms that may underlie its anti-addictive effects are still not defined. This study aims to identify changes in gene expression induced by a single oral dose of IBO in the cortex of mice by means of a transcriptomic analysis for the first time. Our results showed significant alterations in gene expression in mouse frontal cortex samples 4 h after a single oral dose of IBO. Specifically, genes involved in hormonal pathways and synaptogenesis exhibited upregulation, while genes associated with apoptotic processes and endosomal transports showed downregulation. The findings were further corroborated through quantitative polymerase chain reaction (qPCR) analysis. However, the validation of gene expression related to hormonal pathways did not entirely align with the transcriptomic analysis results, possibly due to the brain region from which tissue was collected. Sex differences were observed, with female mice displaying more pronounced alterations in gene expression after IBO treatment. High variability was observed across individual animals. However, this study represents a significant advancement in comprehending IBO's molecular actions. The findings highlight the influence of IBO on gene expression, particularly on hormonal pathways, synaptogenesis, apoptotic processes, and endosomal transports. The identification of sex differences underscores the importance of considering sex as a potential factor influencing IBO's effects. Further research to assess different time points after IBO exposure is warranted.
Collapse
Affiliation(s)
- Judit Biosca-Brull
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain
- Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain
- Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain
| | - Genis Ona
- ICEERS-International Center for Ethnobotanical Education, Research, and Services, Barcelona, Spain
- Universitat Rovira i Virgili, Department of Anthropology, Philosophy and Social Work, Tarragona, Spain
| | - Lineth Alarcón-Franco
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain
- Grupo de Investigación Infetarre, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Maria Teresa Colomina
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain.
- Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain.
- Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain.
| |
Collapse
|
3
|
Kobayashi K, Iwasa K, Azuma-Suzuki R, Kawauchi T, Nabeshima YI. Feto-maternal cholesterol transport regulated by β-Klotho-FGF15 axis is essential for fetal growth. Life Sci Alliance 2023; 6:e202301916. [PMID: 37541847 PMCID: PMC10403640 DOI: 10.26508/lsa.202301916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
β-Klotho (β-KL) is indispensable to regulate lipid, glucose, and energy metabolism in adult animals. β-KL is highly expressed in the yolk sac, but its role in the developmental stages has not been established. We hypothesized that β-KL is required for metabolic regulation in the embryo and aimed to clarify the role of β-KL during development. Here, we show that β-KL regulates feto-maternal cholesterol transport through the yolk sac by mediating FGF 15 signaling, and also that impairment of the β-KL-FGF15 axis causes fetal growth restriction (FGR). Embryos of β- kl knockout (β-kl-/-) mice were morphologically normal but exhibited FGR before placental maturation. The body weight of β-kl-/- mice remained lower after birth. β-KL deletion reduced cholesterol supply from the maternal blood and led to lipid shortage in the embryos. These phenotypes were similar to those of embryos lacking FGF15, indicating that β-KL-FGF15 axis is essential for growth and lipid regulation in the embryonic stages. Our findings suggest that lipid abnormalities in early gestation provoke FGR, leading to reduced body size in later life.
Collapse
Affiliation(s)
- Kanako Kobayashi
- Department of Aging Science and Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Kazuko Iwasa
- Department of Aging Science and Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Rika Azuma-Suzuki
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Takeshi Kawauchi
- Department of Aging Science and Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Adaptive and Maladaptive Responses in Health and Disease, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Yo-Ichi Nabeshima
- Department of Aging Science and Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| |
Collapse
|
4
|
Zhang L, Wu X, Fan X, Ai H. MUM1L1 as a Tumor Suppressor and Potential Biomarker in Ovarian Cancer: Evidence from Bioinformatics Analysis and Basic Experiments. Comb Chem High Throughput Screen 2023; 26:2487-2501. [PMID: 36856181 DOI: 10.2174/1386207326666230301141912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 03/02/2023]
Abstract
BACKGROUND Ovarian cancer (OC) is the most prevalent gynecologic malignancy, with high mortality rates. However, its pathogenesis remains unclear. The current study aimed to explore potential biomarkers and suppressor genes for diagnosing and treating OC. METHODS Biochemical and bioinformatics approaches were used to detect differentially expressed genes (DEGs) in ovarian tissues via integration analysis. Kaplan-Meier plot analysis was performed to assess progression-free survival and overall survival according to DEGs. Then, we constructed a protein-protein interaction (PPI) network based on data from the STRING database to identify the related target genes of DEGs. Finally, DEGs regulating the proliferation, migration, and invasion of SKOV3 cell lines were validated via in vitro experiments. RESULTS Four DEGs (MUM1L1, KLHDC8A, CRYGD, and GREB1) with enriched expression in ovarian tissues were explicitly expressed in the ovary based on an analysis of all human proteins. MUM1L1 had high specificity, and its expression was higher in normal ovarian tissues than in OC tissues. Kaplan-Meier plot analysis showed that a high MUM1L1 expression was associated with longer progression-free survival and overall survival in OC. Based on the PPI analysis results, CBLN4, CBLN1, PTH2R, TMEM255B, and COL23A1 were associated with MUM1L1. In vitro studies revealed that MUM1L1 overexpression decreased the proliferation, migration, and invasion ability of SKOV3 cell lines. Meanwhile, MUM1L1 knockdown had contrasting results. CONCLUSION MUM1L1 is a tumor suppressor gene and is a potential biomarker for diagnosing and treating OC.
Collapse
Affiliation(s)
- Lu Zhang
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Xue Wu
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Xue Fan
- Department of Obstetrics and Gynecology, 3rd Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Hao Ai
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning 121000, China
- Department of Obstetrics and Gynecology, 3rd Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| |
Collapse
|
5
|
Ming Z, Vining B, Bagheri-Fam S, Harley V. SOX9 in organogenesis: shared and unique transcriptional functions. Cell Mol Life Sci 2022; 79:522. [PMID: 36114905 PMCID: PMC9482574 DOI: 10.1007/s00018-022-04543-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/13/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
The transcription factor SOX9 is essential for the development of multiple organs including bone, testis, heart, lung, pancreas, intestine and nervous system. Mutations in the human SOX9 gene led to campomelic dysplasia, a haploinsufficiency disorder with several skeletal malformations frequently accompanied by 46, XY sex reversal. The mechanisms underlying the diverse SOX9 functions during organ development including its post-translational modifications, the availability of binding partners, and tissue-specific accessibility to target gene chromatin. Here we summarize the expression, activities, and downstream target genes of SOX9 in molecular genetic pathways essential for organ development, maintenance, and function. We also provide an insight into understanding the mechanisms that regulate the versatile roles of SOX9 in different organs.
Collapse
Affiliation(s)
- Zhenhua Ming
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Brittany Vining
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Stefan Bagheri-Fam
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - Vincent Harley
- Sex Development Laboratory, Hudson Institute of Medical Research, PO Box 5152, Melbourne, VIC, 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
6
|
Himanshu B, Arangasamy A, Sharanya JN, Soren N, Selvaraju S, Ghosh J, Backialakhmi S, Rani G, Ghosh S, Chouhan V, Kumar H, Bhatta R. Supplementation Effect of Dietary Flax Seed and Coconut Oil on Antioxidant Enzyme Activities, LPO, Seminal plasma protein profiling in adult ram. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
7
|
Alternate Roles of Sox Transcription Factors beyond Transcription Initiation. Int J Mol Sci 2021; 22:ijms22115949. [PMID: 34073089 PMCID: PMC8198692 DOI: 10.3390/ijms22115949] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Sox proteins are known as crucial transcription factors for many developmental processes and for a wide range of common diseases. They were believed to specifically bind and bend DNA with other transcription factors and elicit transcriptional activation or repression activities in the early stage of transcription. However, their functions are not limited to transcription initiation. It has been showed that Sox proteins are involved in the regulation of alternative splicing regulatory networks and translational control. In this review, we discuss the current knowledge on how Sox transcription factors such as Sox2, Sry, Sox6, and Sox9 allow the coordination of co-transcriptional splicing and also the mechanism of SOX4-mediated translational control in the context of RNA polymerase III.
Collapse
|
8
|
Sexual dimorphism in brain transcriptomes of Amami spiny rats (Tokudaia osimensis): a rodent species where males lack the Y chromosome. BMC Genomics 2019; 20:87. [PMID: 30683046 PMCID: PMC6347839 DOI: 10.1186/s12864-019-5426-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Background Brain sexual differentiation is sculpted by precise coordination of steroid hormones during development. Programming of several brain regions in males depends upon aromatase conversion of testosterone to estrogen. However, it is not clear the direct contribution that Y chromosome associated genes, especially sex-determining region Y (Sry), might exert on brain sexual differentiation in therian mammals. Two species of spiny rats: Amami spiny rat (Tokudaia osimensis) and Tokunoshima spiny rat (T. tokunoshimensis) lack a Y chromosome/Sry, and these individuals possess an XO chromosome system in both sexes. Both Tokudaia species are highly endangered. To assess the neural transcriptome profile in male and female Amami spiny rats, RNA was isolated from brain samples of adult male and female spiny rats that had died accidentally and used for RNAseq analyses. Results RNAseq analyses confirmed that several genes and individual transcripts were differentially expressed between males and females. In males, seminal vesicle secretory protein 5 (Svs5) and cytochrome P450 1B1 (Cyp1b1) genes were significantly elevated compared to females, whereas serine (or cysteine) peptidase inhibitor, clade A, member 3 N (Serpina3n) was upregulated in females. Many individual transcripts elevated in males included those encoding for zinc finger proteins, e.g. zinc finger protein X-linked (Zfx). Conclusions This method successfully identified several genes and transcripts that showed expression differences in the brain of adult male and female Amami spiny rat. The functional significance of these findings, especially differential expression of transcripts encoding zinc finger proteins, in this unusual rodent species remains to be determined. Electronic supplementary material The online version of this article (10.1186/s12864-019-5426-6) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Cbln1 and Cbln4 Are Structurally Similar but Differ in GluD2 Binding Interactions. Cell Rep 2018; 20:2328-2340. [PMID: 28877468 DOI: 10.1016/j.celrep.2017.08.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 07/06/2017] [Accepted: 08/07/2017] [Indexed: 11/23/2022] Open
Abstract
Unlike cerebellin 1 (Cbln1), which bridges neurexin (Nrxn) receptors and δ-type glutamate receptors in a trans-synaptic triad, Cbln4 was reported to have no or weak binding for the receptors despite sharing ∼70% sequence identity with Cbln1. Here, we report crystal structures of the homotrimers of the C1q domain of Cbln1 and Cbln4 at 2.2 and 2.3 Å resolution, respectively. Comparison of the structures suggests that the difference between Cbln1 and Cbln4 in GluD2 binding might be because of their sequence and structural divergence in loop CD. Surprisingly, we show that Cbln4 binds to Nrxn1β and forms a stable complex with the laminin, nectin, sex-hormone binding globulin (LNS) domain of Nrxn1β. Furthermore, the negative-stain electron microscopy reconstruction of hexameric full-length Cbln1 at 13 Å resolution and that of the Cbln4/Nrxn1β complex at 19 Å resolution suggest that Nrxn1β binds to the N-terminal region of Cbln4, probably through strand β10 of the S4 insert.
Collapse
|
10
|
Rosenfeld CS. Brain Sexual Differentiation and Requirement of SRY: Why or Why Not? Front Neurosci 2017; 11:632. [PMID: 29200993 PMCID: PMC5696354 DOI: 10.3389/fnins.2017.00632] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/30/2017] [Indexed: 12/22/2022] Open
Abstract
Brain sexual differentiation is orchestrated by precise coordination of sex steroid hormones. In some species, programming of select male brain regions is dependent upon aromatization of testosterone to estrogen. In mammals, these hormones surge during the organizational and activational periods that occur during perinatal development and adulthood, respectively. In various fish and reptiles, incubation temperature during a critical embryonic period results in male or female sexual differentiation, but this can be overridden in males by early exposure to estrogenic chemicals. Testes development in mammals requires a Y chromosome and testis determining gene SRY (in humans)/Sry (all other therian mammals), although there are notable exceptions. Two species of spiny rats: Amami spiny rat (Tokudaia osimensis) and Tokunoshima spiny rat (Tokudaia tokunoshimensis) and two species of mole voles (Ellobius lutescens and Ellobius tancrei), lack a Y chromosome/Sry and possess an XO chromosome system in both sexes. Such rodent species, prototherians (monotremes, who also lack Sry), and fish and reptile species that demonstrate temperature sex determination (TSD) seemingly call into question the requirement of Sry for brain sexual differentiation. This review will consider brain regions expressing SRY/Sry in humans and rodents, respectively, and potential roles of SRY/Sry in the brain will be discussed. The evidence from various taxa disputing the requirement of Sry for brain sexual differentiation in mammals (therians and prototherians) and certain fish and reptilian species will be examined. A comparative approach to address this question may elucidate other genes, pathways, and epigenetic modifications stimulating brain sexual differentiation in vertebrate species, including humans.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Biomedical Sciences, University of Missouri, Columbia, MO, United States.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, United States.,Genetics Area Program, University of Missouri, Columbia, MO, United States
| |
Collapse
|
11
|
Abstract
Current knowledge on gonadal development and sex determination is the product of many decades of research involving a variety of scientific methods from different biological disciplines such as histology, genetics, biochemistry, and molecular biology. The earliest embryological investigations, followed by the invention of microscopy and staining methods, were based on histological examinations. The most robust development of histological staining techniques occurred in the second half of the nineteenth century and resulted in structural descriptions of gonadogenesis. These first studies on gonadal development were conducted on domesticated animals; however, currently the mouse is the most extensively studied species. The next key point in the study of gonadogenesis was the advancement of methods allowing for the in vitro culture of fetal gonads. For instance, this led to the description of the origin of cell lines forming the gonads. Protein detection using antibodies and immunolabeling methods and the use of reporter genes were also invaluable for developmental studies, enabling the visualization of the formation of gonadal structure. Recently, genetic and molecular biology techniques, especially gene expression analysis, have revolutionized studies on gonadogenesis and have provided insight into the molecular mechanisms that govern this process. The successive invention of new methods is reflected in the progress of research on gonadal development.
Collapse
Affiliation(s)
- Rafal P Piprek
- Department of Comparative Anatomy, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.
| |
Collapse
|
12
|
Skinner MK, Bhandari RK, Haque MM, Nilsson EE. Environmentally Induced Epigenetic Transgenerational Inheritance of Altered SRY Genomic Binding During Gonadal Sex Determination. ENVIRONMENTAL EPIGENETICS 2015; 1:dvv004. [PMID: 27175298 PMCID: PMC4862609 DOI: 10.1093/eep/dvv004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/14/2015] [Accepted: 07/16/2015] [Indexed: 06/05/2023]
Abstract
A critical transcription factor required for mammalian male sex determination is SRY (sex determining region on the Y chromosome). The expression of SRY in precursor Sertoli cells is one of the initial events in testis development. The current study was designed to determine the impact of environmentally induced epigenetic transgenerational inheritance on SRY binding during gonadal sex determination in the male. The agricultural fungicide vinclozolin and vehicle control (DMSO) exposed gestating females (F0 generation) during gonadal sex determination promoted the transgenerational inheritance of differential DNA methylation in sperm of the F3 generation (great grand-offspring). The fetal gonads in F3 generation males were used to identify potential alterations in SRY binding sites in the developing Sertoli cells. Chromatin immunoprecipitation with an SRY antibody followed by genome-wide promoter tiling array (ChIP-Chip) was used to identify alterations in SRY binding. A total of 81 adjacent oligonucleotide sites and 173 single oligo SRY binding sites were identified to be altered transgenerationally in the Sertoli cell vinclozolin lineage F3 generation males. Observations demonstrate the majority of the previously identified normal SRY binding sites were not altered and the altered SRY binding sites were novel and new additional sites. The chromosomal locations, gene associations and potentially modified cellular pathways were investigated. In summary, environmentally induced epigenetic transgenerational inheritance of germline epimutations appears to alter the cellular differentiation and development of the precursor Sertoli cell SRY binding during gonadal sex determination that influence the developmental origins of adult onset testis disease.
Collapse
Affiliation(s)
- Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Ramji K. Bhandari
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - M. Muksitul Haque
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Eric E. Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| |
Collapse
|
13
|
Ayers KL, Lambeth LS, Davidson NM, Sinclair AH, Oshlack A, Smith CA. Identification of candidate gonadal sex differentiation genes in the chicken embryo using RNA-seq. BMC Genomics 2015; 16:704. [PMID: 26377738 PMCID: PMC4574023 DOI: 10.1186/s12864-015-1886-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite some advances in recent years, the genetic control of gonadal sex differentiation during embryogenesis is still not completely understood. To identify new candidate genes involved in ovary and testis development, RNA-seq was used to define the transcriptome of embryonic chicken gonads at the onset of sexual differentiation (day 6.0/stage 29). RESULTS RNA-seq revealed more than 1000 genes that were transcribed in a sex-biased manner at this early stage of gonadal differentiation. Comparison with undifferentiated gonads revealed that sex biased expression was derived primarily from autosomal rather than sex-linked genes. Gene ontology and pathway analysis indicated that many of these genes encoded proteins involved in extracellular matrix function and cytoskeletal remodelling, as well as tubulogenesis. Several of these genes are novel candidate regulators of gonadal sex differentiation, based on sex-biased expression profiles that are altered following experimental sex reversal. We further characterised three female-biased (ovarian) genes; calpain-5 (CAPN5), G-protein coupled receptor 56 (GPR56), and FGFR3 (fibroblast growth factor receptor 3). Protein expression of these candidates in the developing ovaries suggests that they play an important role in this tissue. CONCLUSIONS This study provides insight into the earliest steps of vertebrate gonad sex differentiation, and identifies novel candidate genes for ovarian and testicular development.
Collapse
Affiliation(s)
- Katie L Ayers
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, 3052, Parkville, VIC, Australia. .,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.
| | - Luke S Lambeth
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, 3052, Parkville, VIC, Australia.
| | - Nadia M Davidson
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, 3052, Parkville, VIC, Australia.
| | - Andrew H Sinclair
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, 3052, Parkville, VIC, Australia. .,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.
| | - Alicia Oshlack
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, 3052, Parkville, VIC, Australia.
| | - Craig A Smith
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
14
|
Nicol B, Yao HHC. Gonadal Identity in the Absence of Pro-Testis Factor SOX9 and Pro-Ovary Factor Beta-Catenin in Mice. Biol Reprod 2015; 93:35. [PMID: 26108792 DOI: 10.1095/biolreprod.115.131276] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/10/2015] [Indexed: 11/01/2022] Open
Abstract
Sex-reversal cases in humans and genetic models in mice have revealed that the fate of the bipotential gonad hinges upon the balance between pro-testis SOX9 and pro-ovary beta-catenin pathways. Our central query was: if SOX9 and beta-catenin define the gonad's identity, then what do the gonads become when both factors are absent? To answer this question, we developed mouse models that lack either Sox9, beta-catenin, or both in the somatic cells of the fetal gonads and examined the morphological outcomes and transcriptome profiles. In the absence of Sox9 and beta-catenin, both XX and XY gonads progressively lean toward the testis fate, indicating that expression of certain pro-testis genes requires the repression of the beta-catenin pathway, rather than a direct activation by SOX9. We also observed that XY double knockout gonads were more masculinized than their XX counterpart. To identify the genes responsible for the initial events of masculinization and to determine how the genetic context (XX vs. XY) affects this process, we compared the transcriptomes of Sox9/beta-catenin mutant gonads and found that early molecular changes underlying the XY-specific masculinization involve the expression of Sry and 21 SRY direct target genes, such as Sox8 and Cyp26b1. These results imply that when both Sox9 and beta-catenin are absent, Sry is capable of activating other pro-testis genes and drive testis differentiation. Our findings not only provide insight into the mechanism of sex determination, but also identify candidate genes that are potentially involved in disorders of sex development.
Collapse
Affiliation(s)
- Barbara Nicol
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Humphrey H-C Yao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
15
|
Abstract
Sex-specific gonadal development starts with formation of the bipotential gonad, which then differentiates into either a mature testis or an ovary. This process is dependent on activation of either the testis-specific or the ovary-specific pathway while the opposite pathway is continuously repressed. A network of transcription factors tightly regulates initiation and maintenance of these distinct pathways; disruption of these networks can lead to disorders of sex development in humans and male-to-female or female-to-male sex reversal in mice. Sry is the Y-linked master switch that is both required and sufficient to drive the testis-determining pathway. Another key component of the testis pathway is Sox9, which acts immediately downstream of Sry. In contrast to the testis pathway, no single sex-determining factor has been identified in the ovary pathway; however, multiple genes, such as Foxl2, Rspo1, Ctnnb1, and Wnt4, seem to work synergistically and in parallel to ensure proper ovary development. Our understanding of the regulatory networks that underpin testis and ovary development has grown substantially over the past two decades.
Collapse
Affiliation(s)
- Stefanie Eggers
- Murdoch Childrens Research Institute, Department of Paediatrics, The University of Melbourne, The Royal Children's Hospital, 50 Flemington Road, Melbourne, VIC 3052, Australia
| | - Thomas Ohnesorg
- Murdoch Childrens Research Institute, Department of Paediatrics, The University of Melbourne, The Royal Children's Hospital, 50 Flemington Road, Melbourne, VIC 3052, Australia
| | - Andrew Sinclair
- Murdoch Childrens Research Institute, Department of Paediatrics, The University of Melbourne, The Royal Children's Hospital, 50 Flemington Road, Melbourne, VIC 3052, Australia
| |
Collapse
|
16
|
Regulation of male sex determination: genital ridge formation and Sry activation in mice. Cell Mol Life Sci 2014; 71:4781-802. [PMID: 25139092 PMCID: PMC4233110 DOI: 10.1007/s00018-014-1703-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 11/27/2022]
Abstract
Sex determination is essential for the sexual reproduction to generate the next generation by the formation of functional male or female gametes. In mammals, primary sex determination is commenced by the presence or absence of the Y chromosome, which controls the fate of the gonadal primordium. The somatic precursor of gonads, the genital ridge is formed at the mid-gestation stage and gives rise to one of two organs, a testis or an ovary. The fate of the genital ridge, which is governed by the differentiation of somatic cells into Sertoli cells in the testes or granulosa cells in the ovaries, further determines the sex of an individual and their germ cells. Mutation studies in human patients with disorders of sex development and mouse models have revealed factors that are involved in mammalian sex determination. In most of mammals, a single genetic trigger, the Y-linked gene Sry (sex determination region on Y chromosome), regulates testicular differentiation. Despite identification of Sry in 1990, precise mechanisms underlying the sex determination of bipotential genital ridges are still largely unknown. Here, we review the recent progress that has provided new insights into the mechanisms underlying genital ridge formation as well as the regulation of Sry expression and its functions in male sex determination of mice.
Collapse
|
17
|
Li Y, Zheng M, Lau YFC. The sex-determining factors SRY and SOX9 regulate similar target genes and promote testis cord formation during testicular differentiation. Cell Rep 2014; 8:723-33. [PMID: 25088423 DOI: 10.1016/j.celrep.2014.06.055] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/12/2014] [Accepted: 06/25/2014] [Indexed: 01/07/2023] Open
Abstract
Male sex determination is mediated sequentially by sex-determining region Y (SRY) and related SRY-box 9 (SOX9) transcription factors. To understand the gene regulatory hierarchy for SRY and SOX9, a series of chromatin immunoprecipitation and whole-genome promoter tiling microarray (ChIP-Chip) experiments were conducted with mouse gonadal cells at the time of sex determination. SRY and SOX9 bind to the promoters of many common targets involved in testis differentiation and regulate their expression in Sertoli cells. SRY binds to various ovarian differentiation genes and represses their activation through WNT/β-catenin signaling. Sertoli cell-Sertoli cell junction signaling, important for testis cord formation, is the top canonical pathway among the SRY and SOX9 targets. Hence, SRY determines Sertoli cell fate by repressing ovarian and activating testicular differentiation genes, promotes early Sertoli cells to form testis cord, and then passes on its functions to SOX9, which regulates common targets and activates its own gene regulatory program, beyond SRY actions, in sex determination.
Collapse
Affiliation(s)
- Yunmin Li
- Laboratory of Cell and Developmental Genetics, Department of Medicine, VA Medical Center, University of California, San Francisco, San Francisco, CA 94121, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ming Zheng
- Department of Anesthesia, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Yun-Fai Chris Lau
- Laboratory of Cell and Developmental Genetics, Department of Medicine, VA Medical Center, University of California, San Francisco, San Francisco, CA 94121, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
18
|
Guerrero-Bosagna C, Skinner MK. Environmental epigenetics and effects on male fertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 791:67-81. [PMID: 23955673 PMCID: PMC8248443 DOI: 10.1007/978-1-4614-7783-9_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Environmental exposures to factors such as toxicants or nutrition can have impacts on testis biology and male fertility. The ability of these factors to influence epigenetic mechanisms in early life exposures or from ancestral exposures will be reviewed. A growing number of examples suggest environmental epigenetics will be a critical factor to consider in male reproduction.
Collapse
Affiliation(s)
- Carlos Guerrero-Bosagna
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | | |
Collapse
|
19
|
The Potential Role of SRY in Epigenetic Gene Regulation During Brain Sexual Differentiation in Mammals. EPIGENETIC SHAPING OF SOCIOSEXUAL INTERACTIONS - FROM PLANTS TO HUMANS 2014; 86:135-65. [DOI: 10.1016/b978-0-12-800222-3.00007-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Kakhki SA, Shahhoseini M, Salekdeh GH. Comparative SRY incorporation on the regulatory regions of pluripotency/differentiation genes in human embryonic carcinoma cells after retinoic acid induction. Mol Cell Biochem 2013; 376:145-50. [PMID: 23361361 DOI: 10.1007/s11010-013-1562-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 01/18/2013] [Indexed: 01/07/2023]
Abstract
Members of the SOX (SRY box) family proteins play critical roles in multiple aspects of development. SRY, as a founder member of SOX family, has been long believed to be involved in the development of sexual gonads by triggering signaling cascades which lead to the formation of testis or ovary from bipotential gonads. However, less is known about other potential regulatory roles of SRY in the development and differentiation. In order to gain further insight into the possible roles of SRY during development, we looked into possible SRY-regulated genes and their levels of expression in a human embryonic carcinoma cell line, named NTera2, before and after induction of differentiation. For this respect, SRY incorporation on the regulatory regions of two groups of genes including OCT4, NANOG, and SOX2 as pluripotency marker genes, and NESTIN and PAX6 as differentiation marker genes were evaluated quantitatively. Chromatin immunoprecipitation using SRY antibody was performed on chromatin extract of a human embryonic carcinoma cell line, NT2/NTERA-2, before and after onset of differentiation. The results showed that incorporation of SRY in both groups of genes was increased after induction of differentiation. Besides, lower expression of OCT4, SOX2, and NANOG and higher expression of PAX6 and NESTIN genes in differentiated cells suggest that SRY may act as a transcription repressor for pluripotency-associated genes and as a transcription activator for differentiation-related genes.
Collapse
Affiliation(s)
- Sara Ashrafi Kakhki
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | |
Collapse
|
21
|
Chalmel F, Lardenois A, Georg I, Barrionuevo F, Demougin P, Jégou B, Scherer G, Primig M. Genome-wide identification of Sox8-, and Sox9-dependent genes during early post-natal testis development in the mouse. Andrology 2013; 1:281-92. [PMID: 23315995 DOI: 10.1111/j.2047-2927.2012.00049.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/14/2012] [Accepted: 11/20/2012] [Indexed: 01/15/2023]
Abstract
The SOX8 and SOX9 transcription factors are involved in, among others, sex differentiation, male gonad development and adult maintenance of spermatogenesis. Sox8(-/-) mice lacking Sox9 in Sertoli cells fail to form testis cords and cannot establish spermatogenesis. Although genetic and histological data show an important role for these transcription factors in regulating spermatogenesis, it is not clear which genes depend upon them at a genome-wide level. To identify transcripts that respond to the absence of Sox8 in all cells and Sox9 in Sertoli cells we measured mRNA concentrations in testicular samples from mice at 0, 6 and 18 days post-partum. In total, 621 and 629 transcripts were found at decreased or increased levels, respectively, at different time points in the mutant as compared to the control samples. These mRNAs were categorized as preferentially expressed in Sertoli cells or germ cells using data obtained with male and female gonad samples and enriched testicular cell populations. Five candidate genes were validated at the protein level. Furthermore, we identified putative direct SOX8 and SOX9 target genes by integrating predicted SOX-binding sites present in potential regulatory regions upstream of the transcription start site. Finally, we used protein network data to gain insight into the effects on regulatory interactions that occur when Sox8 and Sox9 are absent in developing Sertoli cells. The integration of testicular samples with enriched Sertoli cells, germ cells and female gonads enabled us to broadly distinguish transcripts directly affected in Sertoli cells from others that respond to secondary events in testicular cell types. Thus, combined RNA profiling signals, motif predictions and network data identified putative SOX8/SOX9 target genes in Sertoli cells and yielded insight into regulatory interactions that depend upon these transcription factors. In addition, our results will facilitate the interpretation of genome-wide in vivo SOX8 and SOX9 DNA binding data.
Collapse
Affiliation(s)
- F Chalmel
- Inserm, U1085-Irset, University of Rennes 1, Rennes, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Bhandari RK, Haque MM, Skinner MK. Global genome analysis of the downstream binding targets of testis determining factor SRY and SOX9. PLoS One 2012; 7:e43380. [PMID: 22984422 PMCID: PMC3440412 DOI: 10.1371/journal.pone.0043380] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 07/23/2012] [Indexed: 12/04/2022] Open
Abstract
A major event in mammalian male sex determination is the induction of the testis determining factor Sry and its downstream gene Sox9. The current study provides one of the first genome wide analyses of the downstream gene binding targets for SRY and SOX9 to help elucidate the molecular control of Sertoli cell differentiation and testis development. A modified ChIP-Chip analysis using a comparative hybridization was used to identify 71 direct downstream binding targets for SRY and 109 binding targets for SOX9. Interestingly, only 5 gene targets overlapped between SRY and SOX9. In addition to the direct response element binding gene targets, a large number of atypical binding gene targets were identified for both SRY and SOX9. Bioinformatic analysis of the downstream binding targets identified gene networks and cellular pathways potentially involved in the induction of Sertoli cell differentiation and testis development. The specific DNA sequence binding site motifs for both SRY and SOX9 were identified. Observations provide insights into the molecular control of male gonadal sex determination.
Collapse
Affiliation(s)
- Ramji K. Bhandari
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Md. M. Haque
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
24
|
Testis development requires the repression of Wnt4 by Fgf signaling. Dev Biol 2012; 370:24-32. [PMID: 22705479 DOI: 10.1016/j.ydbio.2012.06.009] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 11/20/2022]
Abstract
The bipotential gonad expresses genes associated with both the male and female pathways. Adoption of the male testicular fate is associated with the repression of many female genes including Wnt4. However, the importance of repression of Wnt4 to the establishment of male development was not previously determined. Deletion of either Fgf9 or Fgfr2 in an XY gonad resulted in up-regulation of Wnt4 and male-to-female sex reversal. We investigated whether the deletion if Wnt4 could rescue sex reversal in Fgf9 and Fgfr2 mutants. XY Fgf9/Wnt4 and Fgfr2/Wnt4 double mutants developed testes with male somatic and germ cells present, suggesting that the primary role of Fgf signaling is the repression of female-promoting genes. Thus, the decision to adopt the male fate is based not only on whether male genes, such as Sox9, are expressed, but also on the active repression of female genes, such as Wnt4. Because loss of Wnt4 results in the up-regulation of Fgf9, we also tested the possibility that derepression of Fgf9 was responsible for the aspects of male development observed in XX Wnt4 mutants. However, we found that the relationship between these two signaling factors is not symmetric: loss of Fgf9 in XX Wnt4(-/-) gonads does not rescue their partial female-to-male sex-reversal.
Collapse
|
25
|
Abstract
Disorders of sex development (DSD) are congenital conditions in which the development of chromosomal, gonadal, or anatomical sex is atypical. Many of the genes required for gonad development have been identified by analysis of DSD patients. However, the use of knockout and transgenic mouse strains have contributed enormously to the study of gonad gene function and interactions within the development network. Although the genetic basis of mammalian sex determination and differentiation has advanced considerably in recent years, a majority of 46,XY gonadal dysgenesis patients still cannot be provided with an accurate diagnosis. Some of these unexplained DSD cases may be due to mutations in novel DSD genes or genomic rearrangements affecting regulatory regions that lead to atypical gene expression. Here, we review our current knowledge of mammalian sex determination drawing on insights from human DSD patients and mouse models.
Collapse
Affiliation(s)
- Stefanie Eggers
- Murdoch Children’s Research Institute, Royal Children’s Hospital and Department of Paediatrics, The University of Melbourne, Melbourne, VIC Australia
| | - Andrew Sinclair
- Murdoch Children’s Research Institute, Royal Children’s Hospital and Department of Paediatrics, The University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
26
|
Xu Z, Gao X, He Y, Ju J, Zhang M, Liu R, Wu Y, Ma C, Ma C, Lin Z, Huang X, Zhao Q. Synergistic effect of SRY and its direct target, WDR5, on Sox9 expression. PLoS One 2012; 7:e34327. [PMID: 22523547 PMCID: PMC3327683 DOI: 10.1371/journal.pone.0034327] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 02/25/2012] [Indexed: 11/18/2022] Open
Abstract
SRY is a sex-determining gene that encodes a transcription factor, which triggers male development in most mammals. The molecular mechanism of SRY action in testis determination is, however, poorly understood. In this study, we demonstrate that WDR5, which encodes a WD-40 repeat protein, is a direct target of SRY. EMSA experiments and ChIP assays showed that SRY could bind to the WDR5 gene promoter directly. Overexpression of SRY in LNCaP cells significantly increased WDR5 expression concurrent with histone H3K4 methylation on the WDR5 promoter. To specifically address whether SRY contributes to WDR5 regulation, we introduced a 4-hydroxy-tamoxifen-inducible SRY allele into LNCaP cells. Conditional SRY expression triggered enrichment of SRY on the WDR5 promoter resulting in induction of WDR5 transcription. We found that WDR5 was self regulating through a positive feedback loop. WDR5 and SRY interacted and were colocalized in cells. In addition, the interaction of WDR5 with SRY resulted in activation of Sox9 while repressing the expression of β-catenin. These results suggest that, in conjunction with SRY, WDR5 plays an important role in sex determination.
Collapse
Affiliation(s)
- Zhen Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Molecular Immunology and Cancer Research Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xinxing Gao
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Yinghong He
- The State Key Laboratory of Pharmaceutical Biotechnology, Molecular Immunology and Cancer Research Center, School of Life Sciences, Nanjing University, Nanjing, China
- School of Basic Medicine, Dali University, Yunnan, China
| | - Junyi Ju
- The State Key Laboratory of Pharmaceutical Biotechnology, Molecular Immunology and Cancer Research Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Miaomiao Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Molecular Immunology and Cancer Research Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ronghua Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Molecular Immunology and Cancer Research Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yupeng Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, Molecular Immunology and Cancer Research Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chunyan Ma
- The State Key Laboratory of Pharmaceutical Biotechnology, Molecular Immunology and Cancer Research Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Chi Ma
- The State Key Laboratory of Pharmaceutical Biotechnology, Molecular Immunology and Cancer Research Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhaoyu Lin
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Xingxu Huang
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Molecular Immunology and Cancer Research Center, School of Life Sciences, Nanjing University, Nanjing, China
- * E-mail:
| |
Collapse
|
27
|
Jameson SA, Natarajan A, Cool J, DeFalco T, Maatouk DM, Mork L, Munger SC, Capel B. Temporal transcriptional profiling of somatic and germ cells reveals biased lineage priming of sexual fate in the fetal mouse gonad. PLoS Genet 2012; 8:e1002575. [PMID: 22438826 PMCID: PMC3305395 DOI: 10.1371/journal.pgen.1002575] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/17/2012] [Indexed: 11/18/2022] Open
Abstract
The divergence of distinct cell populations from multipotent progenitors is poorly understood, particularly in vivo. The gonad is an ideal place to study this process, because it originates as a bipotential primordium where multiple distinct lineages acquire sex-specific fates as the organ differentiates as a testis or an ovary. To gain a more detailed understanding of the process of gonadal differentiation at the level of the individual cell populations, we conducted microarrays on sorted cells from XX and XY mouse gonads at three time points spanning the period when the gonadal cells transition from sexually undifferentiated progenitors to their respective sex-specific fates. We analyzed supporting cells, interstitial/stromal cells, germ cells, and endothelial cells. This work identified genes specifically depleted and enriched in each lineage as it underwent sex-specific differentiation. We determined that the sexually undifferentiated germ cell and supporting cell progenitors showed lineage priming. We found that germ cell progenitors were primed with a bias toward the male fate. In contrast, supporting cells were primed with a female bias, indicative of the robust repression program involved in the commitment to XY supporting cell fate. This study provides a molecular explanation reconciling the female default and balanced models of sex determination and represents a rich resource for the field. More importantly, it yields new insights into the mechanisms by which different cell types in a single organ adopt their respective fates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
28
|
Katoh-Fukui Y, Miyabayashi K, Komatsu T, Owaki A, Baba T, Shima Y, Kidokoro T, Kanai Y, Schedl A, Wilhelm D, Koopman P, Okuno Y, Morohashi KI. Cbx2, a polycomb group gene, is required for Sry gene expression in mice. Endocrinology 2012; 153:913-24. [PMID: 22186409 DOI: 10.1210/en.2011-1055] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mice lacking the function of the polycomb group protein CBX2 (chromobox homolog 2; also known as M33) show defects in gonadal, adrenal, and splenic development. In particular, XY knockout (KO) mice develop ovaries but not testes, and the gonads are hypoplastic in both sexes. However, how CBX2 regulates development of these tissues remains largely unknown. In the present study, we used microarray, RT-PCR, and immunohistochemical analyses to show that the expression of Sry, Sox9, Lhx9, Ad4BP/SF-1, Dax-1, Gata4, Arx, and Dmrt1, genes encoding transcription factors essential for gonadal development, is affected in Cbx2 KO gonads. Male-to-female sex reversal in Cbx2 KO mice was rescued by crossing them with transgenic mice displaying forced expression of Sry or Sox9. However, testes remained hypoplastic in these mice, indicating that the size and the sex of the gonad are determined by different sets of genes. Our study implicates Cbx2 in testis differentiation through regulating Sry gene expression.
Collapse
Affiliation(s)
- Yuko Katoh-Fukui
- Department of Aging Intervention, National Institute for Longevity Sciences, Obu 474-8511, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pennekamp P, Feldner S, Seesing FJ, Psathaki OE, Schöler HR, Wieacker P, Dworniczak B. Bcar3 is expressed in sertoli cells and germ cells of the developing testis in mice. Sex Dev 2011; 5:197-204. [PMID: 21654156 DOI: 10.1159/000328820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2011] [Indexed: 12/16/2022] Open
Abstract
We identified Bcar3 in the course of a screen for developmentally regulated genes at early developmental stages in mouse embryos. In this study, we explored the spatio-temporal expression pattern of Bcar3 during the critical time period of sex determination using in situ hybridization, real-time RT-PCR, and immunohistochemistry. We found that Bcar3 is expressed in XY gonads during early stages of gonad development and that BCAR3 localizes to Sertoli cells and germs cells. In addition, we identified a new alternative Bcar3 transcript in which exons 4-7 are deleted. This deletion could result in the generation of a truncated BCAR3 protein lacking functional domains including the SH2 domain. The data presented here suggest that Bcar3 could play a role in gonad development.
Collapse
Affiliation(s)
- P Pennekamp
- Institut für Humangenetik, Universitätsklinikum Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Bhandari RK, Sadler-Riggleman I, Clement TM, Skinner MK. Basic helix-loop-helix transcription factor TCF21 is a downstream target of the male sex determining gene SRY. PLoS One 2011; 6:e19935. [PMID: 21637323 PMCID: PMC3101584 DOI: 10.1371/journal.pone.0019935] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 04/22/2011] [Indexed: 11/18/2022] Open
Abstract
The cascade of molecular events involved in mammalian sex determination has been
shown to involve the SRY gene, but specific downstream events have eluded
researchers for decades. The current study identifies one of the first direct
downstream targets of the male sex determining factor SRY as the
basic-helix-loop-helix (bHLH) transcription factor TCF21. SRY was found to bind
to the Tcf21 promoter and activate gene expression. Mutagenesis
of SRY/SOX9 response elements in the Tcf21 promoter eliminated
the actions of SRY. SRY was found to directly associate with the
Tcf21 promoter SRY/SOX9 response elements in
vivo during fetal rat testis development. TCF21 was found to
promote an in vitro sex reversal of embryonic ovarian cells to
induce precursor Sertoli cell differentiation. TCF21 and SRY had similar effects
on the in vitro sex reversal gonadal cell transcriptomes.
Therefore, SRY acts directly on the Tcf21 promoter to in part
initiate a cascade of events associated with Sertoli cell differentiation and
embryonic testis development.
Collapse
Affiliation(s)
- Ramji K. Bhandari
- Center for Reproductive Biology, School of Biological Sciences,
Washington State University, Pullman, Washington, United States of
America
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences,
Washington State University, Pullman, Washington, United States of
America
| | - Tracy M. Clement
- Center for Reproductive Biology, School of Biological Sciences,
Washington State University, Pullman, Washington, United States of
America
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences,
Washington State University, Pullman, Washington, United States of
America
- * E-mail:
| |
Collapse
|
31
|
Clement TM, Bhandari RK, Sadler-Riggleman I, Skinner MK. SRY directly regulates the neurotrophin 3 promoter during male sex determination and testis development in rats. Biol Reprod 2011; 85:277-84. [PMID: 21508350 DOI: 10.1095/biolreprod.110.090282] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Neurotrophin 3 (Ntf3) is expressed in Sertoli cells and acts as a chemo-attractant for cell migration from the mesonephros into the developing testis, a process critical to the early morphological events of testis cord formation. The male sex-determining gene Sry initiates the process of testicular development. Sox9 is a key regulator of male sex determination and is directly regulated by SRY. Information on other downstream target genes of SRY is limited. The current study demonstrates an interaction of SRY with the Ntf3 promoter both in vitro and in vivo. The Ntf3 promoter in both rat and mouse contains at least one putative SRY binding site in the -0.6 kb promoter region. In a luciferase reporter assay system, both SRY and SOX9 stimulated the Ntf3 promoter in vitro through an interaction with this SRY-binding motif. In an immunoprecipitation-based pull-down assay, recombinant SRY protein bound the Ntf3 promoter fragment containing an intact SRY binding site, whereas the same protein did not interact with the fragment containing a mutated SRY motif. Specific antibodies against SRY were used in a chromatin immunoprecipitation (ChIP) assay of embryonic testis and were found to precipitate the Ntf3 promoter region. The SRY ChIP assay confirmed the direct interaction between SRY and the Ntf3 promoter in vivo during male sex determination. Observations suggest that SRY physically interacts with the Ntf3 promoter during male sex determination to coordinate cell migration in the testis to form testis cords.
Collapse
Affiliation(s)
- Tracy M Clement
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | | | | | | |
Collapse
|
32
|
The genetics of sex differences in brain and behavior. Front Neuroendocrinol 2011; 32:227-46. [PMID: 20951723 PMCID: PMC3030621 DOI: 10.1016/j.yfrne.2010.10.001] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 11/22/2022]
Abstract
Biological differences between men and women contribute to many sex-specific illnesses and disorders. Historically, it was argued that such differences were largely, if not exclusively, due to gonadal hormone secretions. However, emerging research has shown that some differences are mediated by mechanisms other than the action of these hormone secretions and in particular by products of genes located on the X and Y chromosomes, which we refer to as direct genetic effects. This paper reviews the evidence for direct genetic effects in behavioral and brain sex differences. We highlight the 'four core genotypes' model and sex differences in the midbrain dopaminergic system, specifically focusing on the role of Sry. We also discuss novel research being done on unique populations including people attracted to the same sex and people with a cross-gender identity. As science continues to advance our understanding of biological sex differences, a new field is emerging that is aimed at better addressing the needs of both sexes: gender-based biology and medicine. Ultimately, the study of the biological basis for sex differences will improve healthcare for both men and women.
Collapse
|
33
|
Abstract
SRY, the mammalian Y-chromosomal testis-determining gene, induces male sex determination. Recent studies in mice reveal that the major role of SRY is to achieve sufficient expression of the related gene Sox9, in order to induce Sertoli cell differentiation, which in turn drives testis formation. Here, we discuss the cascade of events triggered by SRY and the mechanisms that reinforce the differentiation of the testes in males while actively inhibiting ovarian development.
Collapse
Affiliation(s)
- Kenichi Kashimada
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
34
|
Wijchers PJ, Yandim C, Panousopoulou E, Ahmad M, Harker N, Saveliev A, Burgoyne PS, Festenstein R. Sexual Dimorphism in Mammalian Autosomal Gene Regulation Is Determined Not Only by Sry but by Sex Chromosome Complement As Well. Dev Cell 2010; 19:477-84. [DOI: 10.1016/j.devcel.2010.08.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 03/18/2010] [Accepted: 07/16/2010] [Indexed: 10/19/2022]
|
35
|
Hiramatsu R, Harikae K, Tsunekawa N, Kurohmaru M, Matsuo I, Kanai Y. FGF signaling directs a center-to-pole expansion of tubulogenesis in mouse testis differentiation. Development 2010; 137:303-12. [DOI: 10.1242/dev.040519] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mouse embryogenesis, Sry is transiently activated in a center-to-pole wavelike manner along the anteroposterior (AP) axis of developing XY gonads. However, the mechanism and significance of the center-to-pole expansion of testis initiation pathways downstream of Sry expression remain unclear. Here we demonstrate that FGF9 can act as a diffusible conductor for a poleward expansion of tubulogenic programs at early phases of testis differentiation. In XY genital ridge cultures of anterior, middle and posterior segments at 11.0-11.25 days post-coitum, male-specific activation of Sry and its target gene, Sox9, was still observed in both anterior and posterior pole segments despite their isolation from the central domain. However, high-level Sox9 expression was not maintained, resulting in the failure of testis cord organization in most pole segments. A reconstruction experiment using ROSA:lacZ middle segments showed rescue of the tubulogenic defect in the poles without any appreciable contribution of lacZ-positive gonadal parenchyma cells. A partition culture assay also showed a possible contribution of soluble/diffusible factors secreted from the gonadal center domain to proper tubulogenesis in the poles. Among various signaling factors, Fgf9 expression was significantly lower in both anterior and posterior pole segments than in the central domain. The supportive role of the central domain could be substituted by exogenous FGF9 supply, whereas reduction of Wnt4 activity did not rescue the tubulogenesis defect in the pole segments. These observations imply that center-to-pole FGF9 diffusion directs a poleward expansion of testiculogenic programs along the AP axis of developing XY gonads.
Collapse
Affiliation(s)
- Ryuji Hiramatsu
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
- Department of Molecular Embryology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka Prefectural Hospital Organization, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Kyoko Harikae
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Naoki Tsunekawa
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masamichi Kurohmaru
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Isao Matsuo
- Department of Molecular Embryology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka Prefectural Hospital Organization, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
36
|
Wainwright EN, Wilhelm D. The game plan: cellular and molecular mechanisms of mammalian testis development. Curr Top Dev Biol 2010; 90:231-62. [PMID: 20691851 DOI: 10.1016/s0070-2153(10)90006-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In mammals, biological differences between males and females, which influence many aspects of their physical, social, and psychological environments, are solely determined genetically. In the presence of a Y chromosome, the gonadal primordium will differentiate into a testis, whereas in the absence of the Y chromosome an ovary will develop. Testis and ovary subsequently direct the differentiation of all secondary sex characteristics down the male and female pathway, respectively. The male-determining factor on the Y chromosome, SRY, was identified some 20 years ago. Since then, significant progress has been made toward understanding the molecular and cellular pathways that result in the formation of a testis. Here, we review what is known about testis differentiation in mice and humans, with reference to other species where appropriate.
Collapse
Affiliation(s)
- Elanor N Wainwright
- Division of Molecular Genetics and Development, Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|