1
|
Do Gametes Woo? Evidence for Their Nonrandom Union at Fertilization. Genetics 2018; 207:369-387. [PMID: 28978771 DOI: 10.1534/genetics.117.300109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022] Open
Abstract
A fundamental tenet of inheritance in sexually reproducing organisms such as humans and laboratory mice is that gametes combine randomly at fertilization, thereby ensuring a balanced and statistically predictable representation of inherited variants in each generation. This principle is encapsulated in Mendel's First Law. But exceptions are known. With transmission ratio distortion, particular alleles are preferentially transmitted to offspring. Preferential transmission usually occurs in one sex but not both, and is not known to require interactions between gametes at fertilization. A reanalysis of our published work in mice and of data in other published reports revealed instances where any of 12 mutant genes biases fertilization, with either too many or too few heterozygotes and homozygotes, depending on the mutant gene and on dietary conditions. Although such deviations are usually attributed to embryonic lethality of the underrepresented genotypes, the evidence is more consistent with genetically-determined preferences for specific combinations of egg and sperm at fertilization that result in genotype bias without embryo loss. This unexpected discovery of genetically-biased fertilization could yield insights about the molecular and cellular interactions between sperm and egg at fertilization, with implications for our understanding of inheritance, reproduction, population genetics, and medical genetics.
Collapse
|
2
|
Dopamine pathway is highly diverged in primate species that differ markedly in social behavior. Proc Natl Acad Sci U S A 2016; 113:6178-81. [PMID: 27140612 DOI: 10.1073/pnas.1525530113] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the endeavor to associate genetic variation with complex traits, closely related taxa are particularly fruitful for understanding the neurophysiological and genetic underpinnings of species-specific attributes. Similarity to humans has motivated research into nonhuman primate models, yet few studies of wild primates have investigated immediate causal factors of evolutionarily diverged social behaviors. Neurotransmitter differences have been invoked to explain the distinct behavioral suites of two baboon species in Awash, Ethiopia, which differ markedly in social behavior despite evolutionary propinquity. With this natural experiment, we test the hypothesis that genomic regions associated with monoamine neurotransmitters would be highly differentiated, and we identify a dopamine pathway as an outlier, highlighting the system as a potential cause of species-specific social behaviors. Dopamine levels and resultant variation in impulsivity were likely under differential selection in the species due to social system structure differences, with either brash or circumspect social behavior advantageous to secure mating opportunities depending on the social backdrop. Such comparative studies into the causes of the behavioral agendas that create and interact with social systems are of particular interest, and differences in temperament related to boldness and associated with dopamine variation likely played important roles in the evolution of all social, behaviorally complex animals, including baboons and humans.
Collapse
|
3
|
Silva JV, Korrodi-Gregório L, Luers G, Cardoso MJ, Patrício A, Maia N, da Cruz e Silva EF, Fardilha M. Characterisation of several ankyrin repeat protein variant 2, a phosphoprotein phosphatase 1-interacting protein, in testis and spermatozoa. Reprod Fertil Dev 2016; 28:1009-1019. [DOI: 10.1071/rd14303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/16/2014] [Indexed: 12/26/2022] Open
Abstract
Phosphoprotein phosphatase 1 (PPP1) catalytic subunit gamma 2 (PPP1CC2), a PPP1 isoform, is largely restricted to testicular germ cells and spermatozoa. The key to understanding PPP1 regulation in male germ cells lies in the identification and characterisation of its interacting partners. This study was undertaken to determine the expression patterns of the several ankyrin repeat protein variant 2 (SARP2), a PPP1-interacting protein, in testis and spermatozoa. SARP2 was found to be highly expressed in testis and spermatozoa, and its interaction with human spermatozoa endogenous PPP1CC2 was confirmed by immunoprecipitation. Expression analysis by RT-qPCR revealed that SARP2 and PPP1CC2 mRNA levels were significantly higher in the spermatocyte fraction. However, microscopy revealed that SARP2 protein was only present in the nucleus of elongating and mature spermatids and in spermatozoa. In spermatozoa, SARP2 was prominently expressed in the connecting piece and flagellum, as well as, to a lesser extent, in the acrosome. A yeast two-hybrid approach was used to detect SARP2-interacting proteins and a relevant interaction with a novel sperm-associated antigen 9 (SPAG9) variant, a testis and spermatozoa-specific c-Jun N-terminal kinase-binding protein, was validated in human spermatozoa. Given the expression pattern of SARP2 and its association with PPP1CC2 and SPAG9, it may play a role in spermiogenesis and sperm function, namely in sperm motility and the acrosome reaction.
Collapse
|
4
|
Naresh S, Atreja SK. Detection, Localization and Tyrosine Phosphorylation Status of Ser/Thr Protein Phosphatase1γ in Freshly Ejaculated, In Vitro Capacitated and Cryopreserved Buffalo Spermatozoa. Reprod Domest Anim 2015; 50:901-9. [PMID: 26478561 DOI: 10.1111/rda.12598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/29/2015] [Indexed: 12/25/2022]
Abstract
Several recent studies have indicated the important roles of Ser/Thr protein phosphatase1γ (PP1γ) in regulating the motility and capacitation of mammalian spermatozoa. Here, we report the presence and distribution of PP1γ protein in freshly ejaculated, in vitro capacitated and cryopreserved buffalo spermatozoa. The presence of PP1γ and its distribution were assessed by Western blotting and indirect immunofluorescence techniques, whereas the isoforms of PP1γ and their tyrosine phosphorylation status were identified by using 2D electrophoresis. The number of isoforms and the status of tyrosine phosphorylation of PP1γ were increased in capacitated spermatozoa when compared with freshly ejaculated spermatozoa. Differential pattern of expression and tyrosine phosphorylation of PP1γ were observed in cryopreserved spermatozoa, wherein some isoforms were degraded and some were tyrosine phosphorylated. In addition, immunofluorescence technique revealed that PP1γ was localized to principle, mid-piece, post-acrosomal and equatorial regions of buffalo spermatozoa. Differential distribution of tyrosine-phosphorylated proteins were observed in fresh, capacitated and cryopreserved spermatozoa. The tyrosine phosphorylation of several proteins (20, 37, 38, 52, 60, 79 and 100 kDa) were increased when sperm cells were incubated with PP1γ inhibitor, okadaic acid. Together, our results suggest that buffalo spermatozoa express different isoforms of PP1γ protein. The protein expression and tyrosine phosphorylation of PP1γ were increased during capacitation. Furthermore, the differential pattern of expression and tyrosine phosphorylation of PP1γ were observed in cryopreserved spermatozoa. In addition, the inhibition of PP1γ protein increases protein tyrosine phosphorylation in capacitation.
Collapse
Affiliation(s)
- S Naresh
- Reproductive Biochemistry Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - S K Atreja
- Reproductive Biochemistry Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
5
|
Bhattacharjee R, Goswami S, Dudiki T, Popkie AP, Phiel CJ, Kline D, Vijayaraghavan S. Targeted disruption of glycogen synthase kinase 3A (GSK3A) in mice affects sperm motility resulting in male infertility. Biol Reprod 2015; 92:65. [PMID: 25568307 DOI: 10.1095/biolreprod.114.124495] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The signaling enzyme glycogen synthase kinase 3 (GSK3) exists as two isoforms-GSK3A and GSK3B. Protein phosphorylation by GSK3 has important signaling roles in several cells. In our past work, we found that both isoforms of GSK3 are present in mouse sperm and that catalytic GSK3 activity correlates with motility of sperm from several species. Here, we examined the role of Gsk3a in male fertility using a targeted gene knockout (KO) approach. The mutant mice are viable, but have a male infertility phenotype, while female fertility is unaffected. Testis weights of Gsk3a(-/-) mice are normal and sperm are produced in normal numbers. Although spermatogenesis is apparently unimpaired, sperm motility parameters in vitro are impaired. In addition, the flagellar waveform appears abnormal, characterized by low amplitude of flagellar beat. Sperm ATP levels were lower in Gsk3a(-/-) mice compared to wild-type animals. Protein phosphatase PP1 gamma2 protein levels were unaltered, but its catalytic activity was elevated in KO sperm. Remarkably, tyrosine phosphorylation of hexokinase and capacitation-associated changes in tyrosine phosphorylation of proteins are absent or significantly lower in Gsk3a(-/-) sperm. The GSK3B isoform was present and unaltered in testis and sperm of Gsk3a(-/-) mice, showing the inability of GSK3B to substitute for GSK3A in this context. Our studies show that sperm GSK3A is essential for male fertility. In addition, the GSK3A isoform, with its highly conserved glycine-rich N terminus in mammals, may have an isoform-specific role in its requirement for normal sperm motility and fertility.
Collapse
Affiliation(s)
| | - Suranjana Goswami
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Tejasvi Dudiki
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Anthony P Popkie
- Laboratory of Cancer Epigenomics, Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan
| | - Christopher J Phiel
- Department of Integrative Biology, University of Colorado Denver, Denver, Colorado
| | - Douglas Kline
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | | |
Collapse
|
6
|
Protein phosphatases decrease their activity during capacitation: a new requirement for this event. PLoS One 2013; 8:e81286. [PMID: 24312544 PMCID: PMC3846847 DOI: 10.1371/journal.pone.0081286] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 10/21/2013] [Indexed: 11/19/2022] Open
Abstract
There are few reports on the role of protein phosphatases during capacitation. Here, we report on the role of PP2B, PP1, and PP2A during human sperm capacitation. Motile sperm were resuspended in non-capacitating medium (NCM, Tyrode's medium, albumin- and bicarbonate-free) or in reconstituted medium (RCM, NCM plus 2.6% albumin/25 mM bicarbonate). The presence of the phosphatases was evaluated by western blotting and the subcellular localization by indirect immunofluorescence. The function of these phosphatases was analyzed by incubating the sperm with specific inhibitors: okadaic acid, I2, endothall, and deltamethrin. Different aliquots were incubated in the following media: 1) NCM; 2) NCM plus inhibitors; 3) RCM; and 4) RCM plus inhibitors. The percent capacitated sperm and phosphatase activities were evaluated using the chlortetracycline assay and a phosphatase assay kit, respectively. The results confirm the presence of PP2B and PP1 in human sperm. We also report the presence of PP2A, specifically, the catalytic subunit and the regulatory subunits PR65 and B. PP2B and PP2A were present in the tail, neck, and postacrosomal region, and PP1 was present in the postacrosomal region, neck, middle, and principal piece of human sperm. Treatment with phosphatase inhibitors rapidly (≤1 min) increased the percent of sperm depicting the pattern B, reaching a maximum of ∼40% that was maintained throughout incubation; after 3 h, the percent of capacitated sperm was similar to that of the control. The enzymatic activity of the phosphatases decreased during capacitation without changes in their expression. The pattern of phosphorylation on threonine residues showed a sharp increase upon treatment with the inhibitors. In conclusion, human sperm express PP1, PP2B, and PP2A, and the activity of these phosphatases decreases during capacitation. This decline in phosphatase activities and the subsequent increase in threonine phosphorylation may be an important requirement for the success of sperm capacitation.
Collapse
|
7
|
MacLeod G, Shang P, Booth GT, Mastropaolo LA, Manafpoursakha N, Vogl AW, Varmuza S. PPP1CC2 can form a kinase/phosphatase complex with the testis-specific proteins TSSK1 and TSKS in the mouse testis. Reproduction 2013; 147:1-12. [PMID: 24088291 DOI: 10.1530/rep-13-0224] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mouse protein phosphatase gene Ppp1cc is essential for male fertility, with mutants displaying a failure in spermatogenesis including a widespread loss of post-meiotic germ cells and abnormalities in the mitochondrial sheath. This phenotype is hypothesized to be responsible for the loss of the testis-specific isoform PPP1CC2. To identify PPP1CC2-interacting proteins with a function in spermatogenesis, we carried out GST pull-down assays in mouse testis lysates. Amongst the identified candidate interactors was the testis-specific protein kinase TSSK1, which is also essential for male fertility. Subsequent interaction experiments confirmed the capability of PPP1CC2 to form a complex with TSSK1 mediated by the direct interaction of each with the kinase substrate protein TSKS. Interaction between PPP1CC2 and TSKS is mediated through an RVxF docking motif on the TSKS surface. Phosphoproteomic analysis of the mouse testis identified a novel serine phosphorylation site within the TSKS RVxF motif that appears to negatively regulate binding to PPP1CC2. Immunohistochemical analysis of TSSK1 and TSKS in the Ppp1cc mutant testis showed reduced accumulation to distinct cytoplasmic foci and other abnormalities in their distribution consistent with the loss of germ cells and seminiferous tubule disorganization observed in the Ppp1cc mutant phenotype. A comparison of Ppp1cc and Tssk1/2 knockout phenotypes via electron microscopy revealed similar abnormalities in the morphology of the mitochondrial sheath. These data demonstrate a novel kinase/phosphatase complex in the testis that could play a critical role in the completion of spermatogenesis.
Collapse
Affiliation(s)
- Graham MacLeod
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | | | | | | | | | | | | |
Collapse
|
8
|
Eißmann M, Schwamb B, Melzer IM, Moser J, Siele D, Köhl U, Rieker RJ, Wachter DL, Agaimy A, Herpel E, Baumgarten P, Mittelbronn M, Rakel S, Kögel D, Böhm S, Gutschner T, Diederichs S, Zörnig M. A functional yeast survival screen of tumor-derived cDNA libraries designed to identify anti-apoptotic mammalian oncogenes. PLoS One 2013; 8:e64873. [PMID: 23717670 PMCID: PMC3661464 DOI: 10.1371/journal.pone.0064873] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 04/19/2013] [Indexed: 11/29/2022] Open
Abstract
Yeast cells can be killed upon expression of pro-apoptotic mammalian proteins. We have established a functional yeast survival screen that was used to isolate novel human anti-apoptotic genes overexpressed in treatment-resistant tumors. The screening of three different cDNA libraries prepared from metastatic melanoma, glioblastomas and leukemic blasts allowed for the identification of many yeast cell death-repressing cDNAs, including 28% of genes that are already known to inhibit apoptosis, 35% of genes upregulated in at least one tumor entity and 16% of genes described as both anti-apoptotic in function and upregulated in tumors. These results confirm the great potential of this screening tool to identify novel anti-apoptotic and tumor-relevant molecules. Three of the isolated candidate genes were further analyzed regarding their anti-apoptotic function in cell culture and their potential as a therapeutic target for molecular therapy. PAICS, an enzyme required for de novo purine biosynthesis, the long non-coding RNA MALAT1 and the MAST2 kinase are overexpressed in certain tumor entities and capable of suppressing apoptosis in human cells. Using a subcutaneous xenograft mouse model, we also demonstrated that glioblastoma tumor growth requires MAST2 expression. An additional advantage of the yeast survival screen is its universal applicability. By using various inducible pro-apoptotic killer proteins and screening the appropriate cDNA library prepared from normal or pathologic tissue of interest, the survival screen can be used to identify apoptosis inhibitors in many different systems.
Collapse
Affiliation(s)
- Moritz Eißmann
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Bettina Schwamb
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Inga Maria Melzer
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Julia Moser
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Dagmar Siele
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Ulrike Köhl
- Institute of Cellular Therapeutics, IFB-Tx, Hannover Medical School, Hannover, Germany
| | | | | | - Abbas Agaimy
- Institute for Pathology, University Hospital Erlangen, Erlangen, Germany
| | - Esther Herpel
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Peter Baumgarten
- Institute of Neurology (Edinger Institute), Frankfurt/Main, Germany
| | | | - Stefanie Rakel
- Experimental Neurosurgery, Center for Neurology and Neurosurgery, Goethe University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Donat Kögel
- Experimental Neurosurgery, Center for Neurology and Neurosurgery, Goethe University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Stefanie Böhm
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
| | - Tony Gutschner
- Helmholtz-University-Group Molecular RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sven Diederichs
- Helmholtz-University-Group Molecular RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Zörnig
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
9
|
Sinha N, Pilder S, Vijayaraghavan S. Significant expression levels of transgenic PPP1CC2 in testis and sperm are required to overcome the male infertility phenotype of Ppp1cc null mice. PLoS One 2012; 7:e47623. [PMID: 23082183 PMCID: PMC3474748 DOI: 10.1371/journal.pone.0047623] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 09/14/2012] [Indexed: 11/19/2022] Open
Abstract
PPP1CC2, one of four isoforms of the ser/thr protein phosphatase PP1, is a mammalian-specific splice variant of the Ppp1cc gene, and the only isoform whose expression is confined almost completely to spermatogenic cells. Additionally, PPP1CC2 is the sole isoform found in mammalian spermatozoa. Although PPP1CC1, the other Ppp1cc product, is expressed in many tissues including testis, the only phenotype resulting from deletion of Ppp1cc gene is male infertility. To determine which of the products of Ppp1cc is essential for male fertility, we created two PPP1CC2 transgenes, eTg-G2 and pTg-G2, where Ppp1cc2 expression was driven by the putative endogenous promoter of Ppp1cc or by the testis specific human Pgk2 promoter, respectively. Our results demonstrate that the 2.6-kb genomic region directly upstream of the Ppp1cc structural gene can drive expression of Ppp1cc2, and recapitulate the wild-type tissue specificity of PPP1CC2 in transgenic mice. More importantly, we show that expression of PPP1CC2 alone, via either promoter, is able not only to restore normal spermatogenesis, but the fertility of Ppp1cc null mice as well, provided that transgenic PPP1CC2 expression in testis reaches at least a lower threshold level equivalent to approximately 50% of its expression by a Ppp1cc +/- male. We conclude that the endogenous Ppp1cc promoter normally functions in the testis to maintain a sufficient level of PPP1CC2 expression for normal spermatogenesis to occur, and that production of spermatozoa capable of fertilization in vivo can take place in the complete absence of PPP1CC1 expression.
Collapse
Affiliation(s)
- Nilam Sinha
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
- * E-mail: (NS); (SV)
| | - Stephen Pilder
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Srinivasan Vijayaraghavan
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
- * E-mail: (NS); (SV)
| |
Collapse
|
10
|
Kinases, phosphatases and proteases during sperm capacitation. Cell Tissue Res 2012; 349:765-82. [DOI: 10.1007/s00441-012-1370-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 02/07/2012] [Indexed: 12/17/2022]
|
11
|
Sperm development and motility are regulated by PP1 phosphatases in Caenorhabditis elegans. Genetics 2011; 190:143-57. [PMID: 22042574 DOI: 10.1534/genetics.111.135376] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sperm from different species have evolved distinctive motility structures, including tubulin-based flagella in mammals and major sperm protein (MSP)-based pseudopods in nematodes. Despite such divergence, we show that sperm-specific PP1 phosphatases, which are required for male fertility in mouse, function in multiple processes in the development and motility of Caenorhabditis elegans amoeboid sperm. We used live-imaging analysis to show the PP1 phosphatases GSP-3 and GSP-4 (GSP-3/4) are required to partition chromosomes during sperm meiosis. Postmeiosis, tracking fluorescently labeled sperm revealed that both male and hermaphrodite sperm lacking GSP-3/4 are immotile. Genetic and in vitro activation assays show lack of GSP-3/4 causes defects in pseudopod development and the rate of pseudopodial treadmilling. Further, GSP-3/4 are required for the localization dynamics of MSP. GSP-3/4 shift localization in concert with MSP from fibrous bodies that sequester MSP at the base of the pseudopod, where directed MSP disassembly facilitates pseudopod contraction. Consistent with a role for GSP-3/4 as a spatial regulator of MSP disassembly, MSP is mislocalized in sperm lacking GSP-3/4. Although a requirement for PP1 phosphatases in nematode and mammalian sperm suggests evolutionary conservation, we show PP1s have independently evolved sperm-specific paralogs in separate lineages. Thus PP1 phosphatases are highly adaptable and employed across a broad range of sexually reproducing species to regulate male fertility.
Collapse
|
12
|
Puri P, Acker-Palmer A, Stahler R, Chen Y, Kline D, Vijayaraghavan S. Identification of testis 14-3-3 binding proteins by tandem affinity purification. SPERMATOGENESIS 2011; 1:354-365. [PMID: 22332119 DOI: 10.4161/spmg.1.4.18902] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 11/28/2011] [Accepted: 11/28/2011] [Indexed: 01/23/2023]
Abstract
The 14-3-3 family of proteins interacts with various cellular phosphoproteins and regulates multiple cell signaling cascades. Identification of 14-3-3 interactors is important to define 14-3-3 functions in various biological pathways. The binding partners of protein 14-3-3 in testis are not known. The main goal of this study was to identify the 14-3-3 interactome in testis to determine the 14-3-3 regulated cellular processes in testis. We used transgenic mice expressing tandem affinity tagged 14-3-3ζ (TAP-14-3-3ζ) driven by the ubiquitin promoter to isolate 14-3-3 binding proteins. The 14-3-3 complexes in testis were isolated using a two-step tandem affinity purification (TAP) followed by identification with liquid chromatography/tandem mass spectrometry (LC-MS/MS). A total of 135 proteins were found to be associated with 14-3-3 in vivo in testis. Comparison of the testis 14-3-3 proteome with known 14-3-3 binding proteins showed that 71 of the proteins identified in this study are novel 14-3-3 interactors. Eight of these novel 14-3-3 interacting proteins are predominantly expressed in testis. The 14-3-3 interactors predominant in testis are: protein phosphatase1γ2 (PP1γ2), spermatogenesis associated 18 (SPATA18), phosphoglycerate kinase-2 (PGK2), testis specific gene A-2 (TSGA-2), dead box polypeptide 4 (DDX4), piwi homolog 1, protein kinase NYD-SP25 and EAN57. The fact that some of these proteins are indispensable for spermatogenesis suggests that their binding to 14-3-3 may be important for their function in germ cell division and maturation. These findings are discussed in context of the putative functions of 14-3-3 in spermatogenesis.
Collapse
Affiliation(s)
- Pawan Puri
- Department of Biological Sciences; Kent State University; Kent, OH
| | | | | | | | | | | |
Collapse
|