1
|
Bomba-Warczak EK, Velez KM, Zhou LT, Guillermier C, Edassery S, Steinhauser ML, Savas JN, Duncan FE. Exceptional longevity of mammalian ovarian and oocyte macromolecules throughout the reproductive lifespan. eLife 2024; 13:RP93172. [PMID: 39480006 PMCID: PMC11527430 DOI: 10.7554/elife.93172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
The mechanisms contributing to age-related deterioration of the female reproductive system are complex, however aberrant protein homeostasis is a major contributor. We elucidated exceptionally stable proteins, structures, and macromolecules that persist in mammalian ovaries and gametes across the reproductive lifespan. Ovaries exhibit localized structural and cell-type-specific enrichment of stable macromolecules in both the follicular and extrafollicular environments. Moreover, ovaries and oocytes both harbor a panel of exceptionally long-lived proteins, including cytoskeletal, mitochondrial, and oocyte-derived proteins. The exceptional persistence of these long-lived molecules suggest a critical role in lifelong maintenance and age-dependent deterioration of reproductive tissues.
Collapse
Affiliation(s)
- Ewa K Bomba-Warczak
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Karen M Velez
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Luhan T Zhou
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Christelle Guillermier
- Department of Medicine, Aging Institute, University of Pittsburgh School of MedicinePittsburghUnited States
- Department of Medicine, Division of Genetics, Brigham and Women’s HospitalBostonUnited States
| | - Seby Edassery
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Matthew L Steinhauser
- Department of Medicine, Aging Institute, University of Pittsburgh School of MedicinePittsburghUnited States
- Department of Medicine, Division of Genetics, Brigham and Women’s HospitalBostonUnited States
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| |
Collapse
|
2
|
Cha D, Choi S, Lee Y, Cho J, Lee S. Mitoquinone improves porcine embryo development through modulating oxidative stress and mitochondrial function. Theriogenology 2024; 231:90-100. [PMID: 39427592 DOI: 10.1016/j.theriogenology.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
Oxidative stress caused by excess reactive oxygen species (ROS) is one of the main causes of low efficiency in in vitro production of embryos. These ROS can cause mitochondrial dysfunction and apoptosis, resulting in poor embryo development. Therefore, to prevent mitochondrial damage and apoptosis caused by ROS, we investigated the effects of mitoquinone (MitoQ), a mitochondrial-targeted antioxidant, on the in vitro culture (IVC) of porcine embryos. Various concentrations of MitoQ (0, 0.01, 0.1, or 1 nM) were supplemented during the entire period of IVC. The results showed that supplementation with 0.1 nM MitoQ significantly increased the blastocyst formation rate, with a higher total cell number including trophectoderm cell number and higher transcript expression of lineage-specific transcription factors in blastocysts. In addition, the 0.1 nM MitoQ-treated group showed a significantly lower percentage and number of apoptotic cells in blastocysts with positively regulated transcript expression of apoptosis-related genes. Therefore, 0.1 nM MitoQ was suggested as optimal concentration for porcine IVC and used for further investigations. MitoQ treatment significantly reduced intracellular ROS levels and increased glutathione levels in Day 2 embryos, with upregulated the transcript expression of antioxidant enzymes-related genes. Furthermore, the MitoQ group exhibited a significantly higher mitochondrial quantity, mitochondrial membrane potential, and ATP content in Day 2 embryos, with increased transcript expression of mitochondrial biogenesis-related genes. Taken together, these findings reveal that MitoQ supplementation can enhance the developmental competence of porcine embryos by decreasing oxidative stress and improving mitochondrial function.
Collapse
Affiliation(s)
- Dabin Cha
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seunghyun Choi
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yumin Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jongki Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
3
|
Feng Z, Shi J, Ren J, Luo L, Liu D, Guo Y, Sun B, Liu G, Deng M, Li Y. Mitochondria-Targeted Antioxidant MitoQ Improves In Vitro Maturation and Subsequent Embryonic Development from Culled Cows. Animals (Basel) 2024; 14:2929. [PMID: 39457858 PMCID: PMC11503749 DOI: 10.3390/ani14202929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The purpose of this study was to investigate the effects and mechanisms of MitoQ on the IVM of culled bovine oocytes and subsequent embryonic development. The results revealed that in comparison to the control group (0 µmol/L), the IVM rate (p < 0.05) and subsequent blastocyst rate (p < 0.05) of the low-concentration 1 and 5 µmol/L MitoQ treatment group were increased. The level of ROS (p < 0.05) in the MitoQ treatment group was decreased in comparison to the control group. Additionally, the level of GSH, MMP, ATP, and mt-DNA in the MitoQ treatment group was increased (p < 0.05) in comparison to the control group. The expression level of BAX was decreased (p < 0.05) in the MitoQ treatment group, and the BCL2, DNM1, Mfn2, SOD, and CAT were increased (p < 0.05). In conclusion, MitoQ improved mitochondrial dysfunction, increased mitochondrial activity during IVM, and reduced oxidative stress, resulting in increased IVM rates and subsequent embryonic development from culled cows.
Collapse
Affiliation(s)
- Zhihao Feng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.F.); (D.L.); (Y.G.); (B.S.); (G.L.); (M.D.)
| | - Junsong Shi
- Yunfu Sub-Center of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527300, China; (J.S.); (J.R.); (L.L.)
| | - Jiajie Ren
- Yunfu Sub-Center of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527300, China; (J.S.); (J.R.); (L.L.)
| | - Lvhua Luo
- Yunfu Sub-Center of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527300, China; (J.S.); (J.R.); (L.L.)
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.F.); (D.L.); (Y.G.); (B.S.); (G.L.); (M.D.)
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.F.); (D.L.); (Y.G.); (B.S.); (G.L.); (M.D.)
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.F.); (D.L.); (Y.G.); (B.S.); (G.L.); (M.D.)
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.F.); (D.L.); (Y.G.); (B.S.); (G.L.); (M.D.)
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.F.); (D.L.); (Y.G.); (B.S.); (G.L.); (M.D.)
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Z.F.); (D.L.); (Y.G.); (B.S.); (G.L.); (M.D.)
| |
Collapse
|
4
|
Long S, Zheng Y, Deng X, Guo J, Xu Z, Scharffetter-Kochanek K, Dou Y, Jiang M. Maintaining mitochondrial DNA copy number mitigates ROS-induced oocyte decline and female reproductive aging. Commun Biol 2024; 7:1229. [PMID: 39354016 PMCID: PMC11445474 DOI: 10.1038/s42003-024-06888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024] Open
Abstract
Oocytes play a crucial role in transmitting maternal mitochondrial DNA (mtDNA), essential for the continuation of species. However, the effects of mitochondrial reactive oxygen species (ROS) on mammalian oocyte maturation and mtDNA maintenance remain unclear. We investigated this by conditionally knocking out the Sod2 gene in primordial follicles, elevating mitochondrial matrix ROS levels from early oocyte stages. Our data indicates that reproductive aging in Sod2 conditional knockout females begins at 6 months, with oxidative stress impairing oocyte quality, particularly affecting OXPHOS complex II and mtDNA-encoded mRNA levels. Despite unchanged mtDNA mutation load, mtDNA copy numbers exhibited significant variations. Strikingly, reducing mtDNA copy numbers by reducing mtSSB protein, crucial for mtDNA replication, accelerated reproductive aging onset to three months, underscoring the critical role of mtDNA copy number maintenance under oxidative stress conditions. This research provides new insights into the relationship among mitochondrial ROS, mtDNA, and reproductive aging, offering potential strategies for delaying aging-related fertility decline.
Collapse
Affiliation(s)
- Shiyun Long
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yunchao Zheng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaoling Deng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Fudan University, Shanghai, China
| | - Jing Guo
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Zhe Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Karin Scharffetter-Kochanek
- Klinik für Dermatologie und Allergologie, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Deutschland
| | - Yanmei Dou
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Min Jiang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Federici S, Rossetti R, Moleri S, Munari EV, Frixou M, Bonomi M, Persani L. Primary ovarian insufficiency: update on clinical and genetic findings. Front Endocrinol (Lausanne) 2024; 15:1464803. [PMID: 39391877 PMCID: PMC11466302 DOI: 10.3389/fendo.2024.1464803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
Primary ovarian insufficiency (POI) is a disorder of insufficient ovarian follicle function before the age of 40 years with an estimated prevalence of 3.7% worldwide. Its relevance is emerging due to the increasing number of women desiring conception late or beyond the third decade of their lives. POI clinical presentation is extremely heterogeneous with a possible exordium as primary amenorrhea due to ovarian dysgenesis or with a secondary amenorrhea due to different congenital or acquired abnormalities. POI significantly impacts non only on the fertility prospect of the affected women but also on their general, psychological, sexual quality of life, and, furthermore, on their long-term bone, cardiovascular, and cognitive health. In several cases the underlying cause of POI remains unknown and, thus, these forms are still classified as idiopathic. However, we now know the age of menopause is an inheritable trait and POI has a strong genetic background. This is confirmed by the existence of several candidate genes, experimental and natural models. The most common genetic contributors to POI are the X chromosome-linked defects. Moreover, the variable expressivity of POI defect suggests it can be considered as a multifactorial or oligogenic defect. Here, we present an updated review on clinical findings and on the principal X-linked and autosomal genes involved in syndromic and non-syndromic forms of POI. We also provide current information on the management of the premature hypoestrogenic state as well as on fertility preservation in subjects at risk of POI.
Collapse
Affiliation(s)
- Silvia Federici
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Raffaella Rossetti
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Silvia Moleri
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Elisabetta V. Munari
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Maria Frixou
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Marco Bonomi
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luca Persani
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
6
|
Dorji J, Chamberlain AJ, Reich CM, VanderJagt CJ, Nguyen TV, Daetwyler HD, MacLeod IM. Mitochondrial sequence variants: testing imputation accuracy and their association with dairy cattle milk traits. Genet Sel Evol 2024; 56:62. [PMID: 39266998 PMCID: PMC11391750 DOI: 10.1186/s12711-024-00931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Mitochondrial genomes differ from the nuclear genome and in humans it is known that mitochondrial variants contribute to genetic disorders. Prior to genomics, some livestock studies assessed the role of the mitochondrial genome but these were limited and inconclusive. Modern genome sequencing provides an opportunity to re-evaluate the potential impact of mitochondrial variation on livestock traits. This study first evaluated the empirical accuracy of mitochondrial sequence imputation and then used real and imputed mitochondrial sequence genotypes to study the role of mitochondrial variants on milk production traits of dairy cattle. RESULTS The empirical accuracy of imputation from Single Nucleotide Polymorphism (SNP) panels to mitochondrial sequence genotypes was assessed in 516 test animals of Holstein, Jersey and Red breeds using Beagle software and a sequence reference of 1883 animals. The overall accuracy estimated as the Pearson's correlation squared (R2) between all imputed and real genotypes across all animals was 0.454. The low accuracy was attributed partly to the majority of variants having low minor allele frequency (MAF < 0.005) but also due to variants in the hypervariable D-loop region showing poor imputation accuracy. Beagle software provides an internal estimate of imputation accuracy (DR2), and 10 percent of the total 1927 imputed positions showed DR2 greater than 0.9 (N = 201). There were 151 sites with empirical R2 > 0.9 (of 954 variants segregating in the test animals) and 138 of these overlapped the sites with DR2 > 0.9. This suggests that the DR2 statistic is a reasonable proxy to select sites that are imputed with higher accuracy for downstream analyses. Accordingly, in the second part of the study mitochondrial sequence variants were imputed from real mitochondrial SNP panel genotypes of 9515 Australian Holstein, Jersey and Red dairy cattle. Then, using only sites with DR2 > 0.900 and real genotypes, we undertook a genome-wide association study (GWAS) for milk, fat and protein yields. The GWAS mitochondrial SNP effects were not significant. CONCLUSION The accuracy of imputation of mitochondrial genotypes from the SNP panel to sequence was generally low. The Beagle DR2 statistic enabled selection of sites imputed with higher empirical accuracy. We recommend building larger reference populations with mitochondrial sequence to improve the accuracy of imputing less common variants and ensuring that SNP panels include common variants in the D-loop region.
Collapse
Affiliation(s)
- Jigme Dorji
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.
- Agriculture and Food, CSIRO, St Lucia, QLD, 4067, Australia.
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Coralie M Reich
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Christy J VanderJagt
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Tuan V Nguyen
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Hans D Daetwyler
- Global Genomics and Breeding Design Vegetable R&D, Bayer Crop Science, Bergschenhoek, The Netherlands
| | - Iona M MacLeod
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| |
Collapse
|
7
|
Sciorio R, Tramontano L, Greco PF, Greco E. Morphological assessment of oocyte quality during assisted reproductive technology cycle. JBRA Assist Reprod 2024; 28:511-520. [PMID: 38801314 PMCID: PMC11349268 DOI: 10.5935/1518-0557.20240034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
Following the advancement of medically assisted reproduction (MAR) technology, and the rationale to extend the culture to the blastocyst stage, performing elective single embryo transfer (eSET), gamete quality and assessment have acquired large relevance in ART. Embryo quality is strictly correlated with gametes quality and culture conditions. Oocyte maturity assessment is therefore imperative for fertilization and embryo evolution. Mature oocytes at the metaphase II stage result in a higher fertilization rate compared to immature oocytes. Indeed, oocyte morphology evaluation represents an important and challenging task that may serve as a valuable prognostic tool for future embryo development and implantation potential. Different grading systems have been reported to assess human embryos, however, in many cases, it is still a major challenge to select the single embryo to transfer with the highest implantation potential. Further, eSET has conferred a challenge to embryologists, who must try to enhance embryo culture and selection to provide an adequate success rate, whilst reducing the overall number of embryos transferred. Above the standard morphological assessment, there are several invasive or non-invasive approaches for embryo selection such as preimplantation genetic testing, time-lapse technology, proteomics and metabolomics, as well as oxygen utilization and analysis of oxidative stress in culture medium. This short review is not designed to be a comprehensive review of all possible features that may influence oocyte quality. It does give, however, a brief overview and describes the prognostic value of the morphological characteristics of human oocytes on their developmental capacity following ART treatments.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Fertility Medicine and Gynaecological Endocrinology Unit,
Department Woman-Mother-Child, Lausanne University Hospital, Lausanne,
Switzerland
| | - Luca Tramontano
- Department of Women, Infants and Adolescents, Division of
Obstetrics, Geneva University Hospitals, Boulevard de la Cluse 30, 1211
Genève 14, Switzerland
| | | | - Ermanno Greco
- Villa Mafalda, Centre for Reproductive Medicine, Rome,
Italy
- Department of Obstetrics and Gynecology, UniCamillus,
International Medical University, Rome, Italy
| |
Collapse
|
8
|
Inoue Y, Hayashi M, Shirasuna K, Iwata H. Acetic acid affects porcine oocyte metabolism and improves oocyte developmental ability. Theriogenology 2024; 224:174-182. [PMID: 38781862 DOI: 10.1016/j.theriogenology.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Improvement in vitro maturation culture conditions has been achieved by mimicking in vivo culture environments such as the follicular fluid. Acetic acid is an energy substrate that is abundantly present in the follicular fluid but has not been considered in vitro maturation. This study examined the effects of acetic acid on oocyte quality during nuclear maturation. Cumulus cells and oocyte complexes were collected from the porcine antral follicles of gilt ovaries and matured with 0, 0.1 or 1 mmol/L of acetic acid. After 44 h of in vitro maturation, the energy status, mitochondrial quality and function and embryonic developmental rate following parthenogenetic activation were determined. RNA-sequencing and protein expression analyses were conducted to predict the effects of acetic acid. Supplementation of the in vitro maturation medium with acetic acid (1 mmol/L) improved embryonic development. Oocytes matured with acetic acid had low adenosine triphosphate and lipid contents, mitochondrial membrane potential and reactive oxygen species levels. RNA-sequencing revealed differential expression of genes associated with the adenosine monophosphate-activated protein kinase signalling pathway. Immunostaining revealed that acetic acid increased the levels of phospho-adenosine monophosphate-activated protein kinase, phospho-acetyl-coenzyme A carboxylase, and sirtuin 1 and decreased those of fatty acid synthase and acetyl-coenzyme A synthetase 1. In summary, the use of acetic acid during oocyte maturation improved oocyte developmental ability and metabolism by altering mitochondrial activity and lipid metabolism.
Collapse
Affiliation(s)
- Yuki Inoue
- Department of Animal Science, Tokyo University of Agriculture, 243-0034, Atsugi City, Kanagawa, Japan
| | - Masamune Hayashi
- Department of Animal Science, Tokyo University of Agriculture, 243-0034, Atsugi City, Kanagawa, Japan
| | - Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, 243-0034, Atsugi City, Kanagawa, Japan
| | - Hisataka Iwata
- Department of Animal Science, Tokyo University of Agriculture, 243-0034, Atsugi City, Kanagawa, Japan.
| |
Collapse
|
9
|
Vahedi Raad M, Firouzabadi AM, Tofighi Niaki M, Henkel R, Fesahat F. The impact of mitochondrial impairments on sperm function and male fertility: a systematic review. Reprod Biol Endocrinol 2024; 22:83. [PMID: 39020374 PMCID: PMC11253428 DOI: 10.1186/s12958-024-01252-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Besides adenine triphosphate (ATP) production for sustaining motility, the mitochondria of sperm also host other critical cellular functions during germ cell development and fertilization including calcium homeostasis, generation of reactive oxygen species (ROS), apoptosis, and in some cases steroid hormone biosynthesis. Normal mitochondrial membrane potential with optimal mitochondrial performance is essential for sperm motility, capacitation, acrosome reaction, and DNA integrity. RESULTS Defects in the sperm mitochondrial function can severely harm the fertility potential of males. The role of sperm mitochondria in fertilization and its final fate after fertilization is still controversial. Here, we review the current knowledge on human sperm mitochondria characteristics and their physiological and pathological conditions, paying special attention to improvements in assistant reproductive technology and available treatments to ameliorate male infertility. CONCLUSION Although mitochondrial variants associated with male infertility have potential clinical use, research is limited. Further understanding is needed to determine how these characteristics lead to adverse pregnancy outcomes and affect male fertility potential.
Collapse
Affiliation(s)
- Minoo Vahedi Raad
- Department of Biology & Anatomical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Masoud Firouzabadi
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Physiology, School of Medical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Tofighi Niaki
- Health Reproductive Research Center, Sari Branch, Islamic Azad University, Sari, Iran
| | - Ralf Henkel
- LogixX Pharma, Theale, Berkshire, UK.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa.
| | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
10
|
Bomba-Warczak EK, Velez KM, Zhou LT, Guillermier C, Edassery S, Steinhauser ML, Savas JN, Elizabeth Duncan F. Exceptional longevity of mammalian ovarian and oocyte macromolecules throughout the reproductive lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.18.562852. [PMID: 37905022 PMCID: PMC10614913 DOI: 10.1101/2023.10.18.562852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The mechanisms contributing to age-related deterioration of the female reproductive system are complex, but aberrant protein homeostasis is a major contributor. We elucidated the exceptionally stable proteins, structures, and macromolecules that persist in mammalian ovaries and gametes across the reproductive lifespan. Ovaries exhibit localized structural and cell-type specific enrichment of stable macromolecules in both the follicular and extrafollicular environments. Moreover, both ovaries and oocytes harbor a panel of exceptionally long-lived proteins, including cytoskeletal components, mitochondrial, and oocyte-derived proteins. The exceptional persistence of these long-lived molecules might play a critical role in both lifelong maintenance and age-dependent deterioration of reproductive tissues.
Collapse
|
11
|
Nitsch L, Lareau CA, Ludwig LS. Mitochondrial genetics through the lens of single-cell multi-omics. Nat Genet 2024; 56:1355-1365. [PMID: 38951641 PMCID: PMC11260401 DOI: 10.1038/s41588-024-01794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 05/09/2024] [Indexed: 07/03/2024]
Abstract
Mitochondria carry their own genetic information encoding for a subset of protein-coding genes and translational machinery essential for cellular respiration and metabolism. Despite its small size, the mitochondrial genome, its natural genetic variation and molecular phenotypes have been challenging to study using bulk sequencing approaches, due to its variation in cellular copy number, non-Mendelian modes of inheritance and propensity for mutations. Here we highlight emerging strategies designed to capture mitochondrial genetic variation across individual cells for lineage tracing and studying mitochondrial genetics in primary human cells and clinical specimens. We review recent advances surrounding single-cell mitochondrial genome sequencing and its integration with functional genomic readouts, including leveraging somatic mitochondrial DNA mutations as clonal markers that can resolve cellular population dynamics in complex human tissues. Finally, we discuss how single-cell whole mitochondrial genome sequencing approaches can be utilized to investigate mitochondrial genetics and its contribution to cellular heterogeneity and disease.
Collapse
Affiliation(s)
- Lena Nitsch
- Berlin Institute of Health at Charité Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Caleb A Lareau
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Leif S Ludwig
- Berlin Institute of Health at Charité Universitätsmedizin Berlin, Berlin, Germany.
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany.
| |
Collapse
|
12
|
Khadka P, Young CKJ, Sachidanandam R, Brard L, Young MJ. Our current understanding of the biological impact of endometrial cancer mtDNA genome mutations and their potential use as a biomarker. Front Oncol 2024; 14:1394699. [PMID: 38993645 PMCID: PMC11236604 DOI: 10.3389/fonc.2024.1394699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Endometrial cancer (EC) is a devastating and common disease affecting women's health. The NCI Surveillance, Epidemiology, and End Results Program predicted that there would be >66,000 new cases in the United States and >13,000 deaths from EC in 2023, and EC is the sixth most common cancer among women worldwide. Regulation of mitochondrial metabolism plays a role in tumorigenesis. In proliferating cancer cells, mitochondria provide the necessary building blocks for biosynthesis of amino acids, lipids, nucleotides, and glucose. One mechanism causing altered mitochondrial activity is mitochondrial DNA (mtDNA) mutation. The polyploid human mtDNA genome is a circular double-stranded molecule essential to vertebrate life that harbors genes critical for oxidative phosphorylation plus mitochondrial-derived peptide genes. Cancer cells display aerobic glycolysis, known as the Warburg effect, which arises from the needs of fast-dividing cells and is characterized by increased glucose uptake and conversion of glucose to lactate. Solid tumors often contain at least one mtDNA substitution. Furthermore, it is common for cancer cells to harbor mixtures of wild-type and mutant mtDNA genotypes, known as heteroplasmy. Considering the increase in cancer cell energy demand, the presence of functionally relevant carcinogenesis-inducing or environment-adapting mtDNA mutations in cancer seems plausible. We review 279 EC tumor-specific mtDNA single nucleotide variants from 111 individuals from different studies. Many transition mutations indicative of error-prone DNA polymerase γ replication and C to U deamination events were present. We examine the spectrum of mutations and their heteroplasmy and discuss the potential biological impact of recurrent, non-synonymous, insertion, and deletion mutations. Lastly, we explore current EC treatments, exploiting cancer cell mitochondria for therapy and the prospect of using mtDNA variants as an EC biomarker.
Collapse
Affiliation(s)
- Pabitra Khadka
- Department of Biomedical Sciences, Division of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | - Carolyn K J Young
- Department of Biomedical Sciences, Division of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, United States
| | | | - Laurent Brard
- Obstetrics & Gynecology, Southern Illinois University School of Medicine, Springfield, IL, United States
- Simmons Cancer Institute, Springfield, IL, United States
| | - Matthew J Young
- Department of Biomedical Sciences, Division of Biochemistry & Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, United States
- Simmons Cancer Institute, Springfield, IL, United States
| |
Collapse
|
13
|
Song X, Hong X, Wang Z, Lu F, Song C, Wang X, Zhan X, Yu J, Zhai J, Li J, Xiang X, Xuan X. Association between mitochondrial DNA genotype and sperm motility in humans. Mitochondrial DNA A DNA Mapp Seq Anal 2024:1-8. [PMID: 38913411 DOI: 10.1080/24701394.2024.2361609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
The relationship between genetic alterations in mitochondrial DNA (mtDNA) and progressive motility (PR) and rapid progressive motility (grade A) of ejaculated human spermatozoa remains unclear. In this study, we explored the association between human mtDNA genotype and sperm PR and grade A by analyzing mtDNA copy number, loci, haplogroup, rearrangement, deletions, and duplications and sperm motility parameters. Human sperm mtDNA copy number, loci and haplogroups were not associated with human sperm motility PR or A grade. However, the cumulative frequency of human sperm mtDNA rearrangements (including deletions and duplications) in participants with high PR and grade A ratio was higher than in participants with low PR and grade A ratio. Additional studies are needed to understand the relationship between mtDNA genotypes, including deletions and duplications, and human sperm motility.
Collapse
Affiliation(s)
- Xueyou Song
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoning Hong
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zilong Wang
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Fuding Lu
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Changze Song
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xinkun Wang
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoyong Zhan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiaying Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiawen Zhai
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiang Li
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China
| | - Xi Xiang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xujun Xuan
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
14
|
Khaghani F, Hemmati M, Ebrahimi M, Salmaninejad A. Emerging Multi-omic Approaches to the Molecular Diagnosis of Mitochondrial Disease and Available Strategies for Treatment and Prevention. Curr Genomics 2024; 25:358-379. [PMID: 39323625 PMCID: PMC11420563 DOI: 10.2174/0113892029308327240612110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 09/27/2024] Open
Abstract
Mitochondria are semi-autonomous organelles present in several copies within most cells in the human body that are controlled by the precise collaboration of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) encoding mitochondrial proteins. They play important roles in numerous metabolic pathways, such as the synthesis of adenosine triphosphate (ATP), the predominant energy substrate of the cell generated through oxidative phosphorylation (OXPHOS), intracellular calcium homeostasis, metabolite biosynthesis, aging, cell cycles, and so forth. Previous studies revealed that dysfunction of these multi-functional organelles, which may arise due to mutations in either the nuclear or mitochondrial genome, leads to a diverse group of clinically and genetically heterogeneous disorders. These diseases include neurodegenerative and metabolic disorders as well as cardiac and skeletal myopathies in both adults and newborns. The plethora of phenotypes and defects displayed leads to challenges in the diagnosis and treatment of mitochondrial diseases. In this regard, the related literature proposed several diagnostic options, such as high throughput mitochondrial genomics and omics technologies, as well as numerous therapeutic options, such as pharmacological approaches, manipulating the mitochondrial genome, increasing the mitochondria content of the affected cells, and recently mitochondrial diseases transmission prevention. Therefore, the present article attempted to review the latest advances and challenges in diagnostic and therapeutic options for mitochondrial diseases.
Collapse
Affiliation(s)
- Faeze Khaghani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboobeh Hemmati
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Ebrahimi
- Department of Animal Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Arash Salmaninejad
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
15
|
Chuang TH, Chou HH, Kuan CS, Liu SC, Kao CW, Wu YH, Lai HH, Hsieh CL, Liang YT, Chen CY, Chen SU. Dependency of mitochondrial quantity on blastocyst timeline obscures its actual effect to pregnancy outcomes. Front Endocrinol (Lausanne) 2024; 15:1415865. [PMID: 38894739 PMCID: PMC11182983 DOI: 10.3389/fendo.2024.1415865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
Objectives To explore the correlation between mitochondrial quantity and the blastocyst development timeline as well as their respective contributions to early pregnancy. Methods A retrospective study was conducted using a dataset comprising 2,633 embryos that underwent preimplantation genetic testing for aneuploidy (PGT-A) between January 2016 and December 2023. The study was divided into three subsets to address distinct aspects: the representativeness of a single trophectoderm (TE) biopsy for mitochondrial quantity (n=43), the correlation between morphokinetic features and mitochondrial quantity (n=307), and the association analysis among mitochondrial quantity, blastocyst timeline factor, and reproductive outcomes (n=2,283). Distribution assessment of mitochondrial quantity across an individual blastocyst involved the identification within multiple biopsies and spent culture media. Timeline evaluation included correlating mitochondrial quantity with time-lapse datasets. Finally, multivariate logistic regression models, incorporating potential effectors alongside mitochondrial quantity, were employed to analyze their respective contributions to early pregnancy endpoints. Results Of distribution assessment, mitochondrial quantity exhibited an even distribution across the entire trophectoderm (Spearman's ρ=0.82), while no detectable mtDNAs in the corresponding spent culture media. Then the timeline correlation study revealed significant association between mitochondrial quantity and blastocyst features of both the day of expanded blastocyst formation (95% Confidence intervals, CIs: 0.27~4.89, p=0.03) and the timing of expanded blastocyst formation (tEB) (95% CIs: -0.24~-0.01, p=0.04) in the regression model, indicating a strong dependency between mitochondrial quantity and the blastocyst development timeline. For the contribution to early pregnancy, multivariate logistic regression models showed that the day of expanded blastocyst formation contributed to four endpoints persistently: positive for HCG (odd ratio, OR: 0.71, p=0.006), gestational sac (OR: 0.78, p=0.04), fetal heartbeat (OR: 0.71, p=0.004), and progression to 14 weeks (OR: 0.69, p=0.002). Contrastingly, no notable correlation was observed between the mitochondrial quantity and these endpoints. Conclusions Strong interaction was observed between mitochondrial quantity and the blastocyst timeline, particularly the timing of expanded blastocyst formation. It suggests that the primary determinant influencing pregnancy outcomes lies in the time-dependent parameter of blastocyst rather than in the specific mitochondrial quantity.
Collapse
Affiliation(s)
- Tzu-Hsuan Chuang
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University and College of Medicine, Taipei, Taiwan
| | - Hsin-Hua Chou
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Chin-Sheng Kuan
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Shu-Cheng Liu
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Chia-Wei Kao
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Yi-Hsin Wu
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Hsing-Hua Lai
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Chia-Lin Hsieh
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Yi-Ting Liang
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Chien-Yu Chen
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Shee-Uan Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
16
|
Neueder A, Kojer K, Gu Z, Wang Y, Hering T, Tabrizi S, Taanman JW, Orth M. Huntington's disease affects mitochondrial network dynamics predisposing to pathogenic mitochondrial DNA mutations. Brain 2024; 147:2009-2022. [PMID: 38195181 PMCID: PMC11512592 DOI: 10.1093/brain/awae007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/27/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Huntington's disease (HD) predominantly affects the brain, causing a mixed movement disorder, cognitive decline and behavioural abnormalities. It also causes a peripheral phenotype involving skeletal muscle. Mitochondrial dysfunction has been reported in tissues of HD models, including skeletal muscle, and lymphoblast and fibroblast cultures from patients with HD. Mutant huntingtin protein (mutHTT) expression can impair mitochondrial quality control and accelerate mitochondrial ageing. Here, we obtained fresh human skeletal muscle, a post-mitotic tissue expressing the mutated HTT allele at physiological levels since birth, and primary cell lines from HTT CAG repeat expansion mutation carriers and matched healthy volunteers to examine whether such a mitochondrial phenotype exists in human HD. Using ultra-deep mitochondrial DNA (mtDNA) sequencing, we showed an accumulation of mtDNA mutations affecting oxidative phosphorylation. Tissue proteomics indicated impairments in mtDNA maintenance with increased mitochondrial biogenesis of less efficient oxidative phosphorylation (lower complex I and IV activity). In full-length mutHTT expressing primary human cell lines, fission-inducing mitochondrial stress resulted in normal mitophagy. In contrast, expression of high levels of N-terminal mutHTT fragments promoted mitochondrial fission and resulted in slower, less dynamic mitophagy. Expression of high levels of mutHTT fragments due to somatic nuclear HTT CAG instability can thus affect mitochondrial network dynamics and mitophagy, leading to pathogenic mtDNA mutations. We show that life-long expression of mutant HTT causes a mitochondrial phenotype indicative of mtDNA instability in fresh post-mitotic human skeletal muscle. Thus, genomic instability may not be limited to nuclear DNA, where it results in somatic expansion of the HTT CAG repeat length in particularly vulnerable cells such as striatal neurons. In addition to efforts targeting the causative mutation, promoting mitochondrial health may be a complementary strategy in treating diseases with DNA instability such as HD.
Collapse
Affiliation(s)
| | - Kerstin Kojer
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Yiqin Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Tanja Hering
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Sarah Tabrizi
- UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Dementia Research Institute at UCL, London WC1N 3BG, UK
| | - Jan-Willem Taanman
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London NW3 2PF, UK
| | - Michael Orth
- Department of Neurology, Ulm University, 89081 Ulm, Germany
- Swiss Huntington Centre, Siloah AG, 3073 Gümligen, Switzerland
- University Hospital of Old Age Psychiatry and Psychotherapy, Bern University, CH-3000 Bern 60, Switzerland
| |
Collapse
|
17
|
Yildirim RM, Seli E. The role of mitochondrial dynamics in oocyte and early embryo development. Semin Cell Dev Biol 2024; 159-160:52-61. [PMID: 38330625 DOI: 10.1016/j.semcdb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Mitochondrial dysfunction is widely implicated in various human diseases, through mechanisms that go beyond mitochondria's well-established role in energy generation. These dynamic organelles exert vital control over numerous cellular processes, including calcium regulation, phospholipid synthesis, innate immunity, and apoptosis. While mitochondria's importance is acknowledged in all cell types, research has revealed the exceptionally dynamic nature of the mitochondrial network in oocytes and embryos, finely tuned to meet unique needs during gamete and pre-implantation embryo development. Within oocytes, both the quantity and morphology of mitochondria can significantly change during maturation and post-fertilization. These changes are orchestrated by fusion and fission processes (collectively known as mitochondrial dynamics), crucial for energy production, content exchange, and quality control as mitochondria adjust to the shifting energy demands of oocytes and embryos. The roles of proteins that regulate mitochondrial dynamics in reproductive processes have been primarily elucidated through targeted deletion studies in animal models. Notably, impaired mitochondrial dynamics have been linked to female reproductive health, affecting oocyte quality, fertilization, and embryo development. Dysfunctional mitochondria can lead to fertility problems and can have an impact on the success of pregnancy, particularly in older reproductive age women.
Collapse
Affiliation(s)
- Raziye Melike Yildirim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
18
|
Moraes CT. Tools for editing the mammalian mitochondrial genome. Hum Mol Genet 2024; 33:R92-R99. [PMID: 38779768 DOI: 10.1093/hmg/ddae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 05/25/2024] Open
Abstract
The manipulation of animal mitochondrial genomes has long been a challenge due to the lack of an effective transformation method. With the discovery of specific gene editing enzymes, designed to target pathogenic mitochondrial DNA mutations (often heteroplasmic), the selective removal or modification of mutant variants has become a reality. Because mitochondria cannot efficiently import RNAs, CRISPR has not been the first choice for editing mitochondrial genes. However, the last few years witnessed an explosion in novel and optimized non-CRISPR approaches to promote double-strand breaks or base-edit of mtDNA in vivo. Engineered forms of specific nucleases and cytidine/adenine deaminases form the basis for these techniques. I will review the newest developments that constitute the current toolbox for animal mtDNA gene editing in vivo, bringing these approaches not only to the exploration of mitochondrial function, but also closer to clinical use.
Collapse
Affiliation(s)
- Carlos T Moraes
- Miller School of Medicine, University of Miami, 1600 NW 10th Ave, room 7044, Miami, FL 33136, United States
| |
Collapse
|
19
|
Kobayashi H, Shigetomi H, Matsubara S, Yoshimoto C, Imanaka S. Role of the mitophagy-apoptosis axis in the pathogenesis of polycystic ovarian syndrome. J Obstet Gynaecol Res 2024; 50:775-792. [PMID: 38417972 DOI: 10.1111/jog.15916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/15/2024] [Indexed: 03/01/2024]
Abstract
AIM Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by menstrual irregularities, androgen excess, and polycystic ovarian morphology, but its pathogenesis remains largely unknown. This review focuses on how androgen excess influences the molecular basis of energy metabolism, mitochondrial function, and mitophagy in granulosa cells and oocytes, summarizes our current understanding of the pathogenesis of PCOS, and discuss perspectives on future research directions. METHODS A search of PubMed and Google Scholar databases were used to identify relevant studies for this narrative literature review. RESULTS Female offspring born of pregnant animals exposed to androgens recapitulates the PCOS phenotype. Abnormal mitochondrial morphology, altered expression of genes related to glycolysis, mitochondrial biogenesis, fission/fusion dynamics, and mitophagy have been identified in PCOS patients and androgenic animal models. Androgen excess causes uncoupling of the electron transport chain and depletion of the cellular adenosine 5'-triphosphate pool, indicating further impairment of mitochondrial function. A shift toward mitochondrial fission restores mitochondrial quality control mechanisms. However, prolonged mitochondrial fission disrupts autophagy/mitophagy induction due to loss of compensatory reserve for mitochondrial biogenesis. Disruption of compensatory mechanisms that mediate the quality control switch from mitophagy to apoptosis may cause a disease phenotype. Furthermore, genetic predisposition, altered expression of genes related to glycolysis and oxidative phosphorylation, or a combination of these factors may also contribute to the development of PCOS. CONCLUSION In conclusion, fetuses exposed to a hyperandrogenemic intrauterine environment may cause the PCOS phenotype possibly through disruption of the compensatory regulation of the mitophagy-apoptosis axis.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, Nara, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Medicine, Kei Oushin Clinic, Nishinomiya, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, Nara, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
20
|
Dai Y, Xu X, Huo X, Schuitemaker JHN, Faas MM. Cell type-dependent response to benzo(a)pyrene exposure of human placental cell lines under normoxic, hypoxic, and pro-inflammatory conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116287. [PMID: 38579532 DOI: 10.1016/j.ecoenv.2024.116287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Benzo(a)pyrene (BaP) can be detected in the human placenta. However, little is known about the effects of BaP exposure on different placental cells under various conditions. In this study, we aimed to investigate the effects of BaP on mitochondrial function, pyrin domain-containing protein 3 (NLRP3) inflammasome, and apoptosis in three human trophoblast cell lines under normoxia, hypoxia, and inflammatory conditions. JEG-3, BeWo, and HTR-8/SVneo cell lines were exposed to BaP under normoxia, hypoxia, or inflammatory conditions for 24 h. After treatment, we evaluated cell viability, apoptosis, aryl hydrocarbon receptor (AhR) protein and cytochrome P450 (CYP) gene expression, mitochondrial function, including mitochondrial DNA copy number (mtDNAcn), mitochondrial membrane potential (ΔΨm), intracellular adenosine triphosphate (iATP), and extracellular ATP (eATP), nitric oxide (NO), NLPR3 inflammasome proteins, and interleukin (IL)-1β. We found that BaP upregulated the expression of AhR or CYP genes to varying degrees in all three cell lines. Exposure to BaP alone increased ΔΨm in all cell lines but decreased NO in BeWo and HTR-8/SVneo, iATP in HTR-8/SVneo, and cell viability in JEG-3, without affecting apoptosis. Under hypoxic conditions, BaP did not increase the expression of AhR and CYP genes in JEG-3 cells but increased CYP gene expression in two others. Pro-inflammatory conditions did not affect the response of the 3 cell lines to BaP with respect to the expression of CYP genes and changes in the mitochondrial function and NLRP3 inflammasome proteins. In addition, in HTR-8/SVneo cells, BaP increased IL-1β secretion in the presence of hypoxia and poly(I:C). In conclusion, our results showed that BaP affected mitochondrial function in trophoblast cell lines by increasing ΔΨm. This increased ΔΨm may have rescued the trophoblast cells from activation of the NLRP3 inflammasome and apoptosis after BaP treatment. We also observed that different human trophoblast cell lines had cell type-dependent responses to BaP exposure under normoxia, hypoxia, or pro-inflammatory conditions.
Collapse
Affiliation(s)
- Yifeng Dai
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands; Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 515041, Shantou, Guangdong, China.
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 515041, Shantou, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, Guangdong, China
| | - Joost H N Schuitemaker
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands; Research & Development, IQProducts, 9727 DL, Groningen, the Netherlands
| | - Marijke M Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands; Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
21
|
Chen F, Luo AF, Li MG, Zheng LX, Gu H, Zhou CF, Zeng W, Molenaar A, Ren HY, Bi YZ. 3-Methyl-4-nitrophenol Exposure Deteriorates Oocyte Maturation by Inducing Spindle Instability and Mitochondrial Dysfunction. Int J Mol Sci 2024; 25:3572. [PMID: 38612384 PMCID: PMC11011565 DOI: 10.3390/ijms25073572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
3-methyl-4-nitrophenol (PNMC), a well-known constituent of diesel exhaust particles and degradation products of insecticide fenitrothion, is a widely distributed environmental contaminant. PNMC is toxic to the female reproductive system; however, how it affects meiosis progression in oocytes is unknown. In this study, in vitro maturation of mouse oocytes was applied to investigate the deleterious effects of PNMC. We found that exposure to PNMC significantly compromised oocyte maturation. PNMC disturbed the spindle stability; specifically, it decreased the spindle density and increased the spindle length. The weakened spindle pole location of microtubule-severing enzyme Fignl1 may result in a defective spindle apparatus in PNMC-exposed oocytes. PNMC exposure induced significant mitochondrial dysfunction, including mitochondria distribution, ATP production, mitochondrial membrane potential, and ROS accumulation. The mRNA levels of the mitochondria-related genes were also significantly impaired. Finally, the above-mentioned alterations triggered early apoptosis in the oocytes. In conclusion, PNMC exposure affected oocyte maturation and quality through the regulation of spindle stability and mitochondrial function.
Collapse
Affiliation(s)
- Fan Chen
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (A.-F.L.); (M.-G.L.); (L.-X.Z.); (H.G.); (C.-F.Z.); (A.M.)
| | - An-Feng Luo
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (A.-F.L.); (M.-G.L.); (L.-X.Z.); (H.G.); (C.-F.Z.); (A.M.)
| | - Ming-Guo Li
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (A.-F.L.); (M.-G.L.); (L.-X.Z.); (H.G.); (C.-F.Z.); (A.M.)
| | - Li-Xiang Zheng
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (A.-F.L.); (M.-G.L.); (L.-X.Z.); (H.G.); (C.-F.Z.); (A.M.)
| | - Hao Gu
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (A.-F.L.); (M.-G.L.); (L.-X.Z.); (H.G.); (C.-F.Z.); (A.M.)
| | - Chang-Fan Zhou
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (A.-F.L.); (M.-G.L.); (L.-X.Z.); (H.G.); (C.-F.Z.); (A.M.)
| | - Wei Zeng
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (A.-F.L.); (M.-G.L.); (L.-X.Z.); (H.G.); (C.-F.Z.); (A.M.)
| | - Adrian Molenaar
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (A.-F.L.); (M.-G.L.); (L.-X.Z.); (H.G.); (C.-F.Z.); (A.M.)
- Rumen Microbiology and Animal Nutrition and Physiology AgResearch, Grasslands Campus, Fitzherbert Research Centre, Palmerston North 4410, New Zealand
| | - Hong-Yan Ren
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (A.-F.L.); (M.-G.L.); (L.-X.Z.); (H.G.); (C.-F.Z.); (A.M.)
| | - Yan-Zhen Bi
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (A.-F.L.); (M.-G.L.); (L.-X.Z.); (H.G.); (C.-F.Z.); (A.M.)
| |
Collapse
|
22
|
Edmands S. Mother's Curse effects on lifespan and aging. FRONTIERS IN AGING 2024; 5:1361396. [PMID: 38523670 PMCID: PMC10957651 DOI: 10.3389/fragi.2024.1361396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024]
Abstract
The Mother's Curse hypothesis posits that mothers curse their sons with harmful mitochondria, because maternal mitochondrial inheritance makes selection blind to mitochondrial mutations that harm only males. As a result, mitochondrial function may be evolutionarily optimized for females. This is an attractive explanation for ubiquitous sex differences in lifespan and aging, given the prevalence of maternal mitochondrial inheritance and the established relationship between mitochondria and aging. This review outlines patterns expected under the hypothesis, and traits most likely to be affected, chiefly those that are sexually dimorphic and energy intensive. A survey of the literature shows that evidence for Mother's Curse is limited to a few taxonomic groups, with the strongest support coming from experimental crosses in Drosophila. Much of the evidence comes from studies of fertility, which is expected to be particularly vulnerable to male-harming mitochondrial mutations, but studies of lifespan and aging also show evidence of Mother's Curse effects. Despite some very compelling studies supporting the hypothesis, the evidence is quite patchy overall, with contradictory results even found for the same traits in the same taxa. Reasons for this scarcity of evidence are discussed, including nuclear compensation, factors opposing male-specific mutation load, effects of interspecific hybridization, context dependency and demographic effects. Mother's Curse effects may indeed contribute to sex differences, but the complexity of other contributing factors make Mother's Curse a poor general predictor of sex-specific lifespan and aging.
Collapse
Affiliation(s)
- Suzanne Edmands
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
23
|
Song J, Xiao L, Zhang Z, Wang Y, Kouis P, Rasmussen LJ, Dai F. Effects of reactive oxygen species and mitochondrial dysfunction on reproductive aging. Front Cell Dev Biol 2024; 12:1347286. [PMID: 38465288 PMCID: PMC10920300 DOI: 10.3389/fcell.2024.1347286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Mitochondria, the versatile organelles crucial for cellular and organismal viability, play a pivotal role in meeting the energy requirements of cells through the respiratory chain located in the inner mitochondrial membrane, concomitant with the generation of reactive oxygen species (ROS). A wealth of evidence derived from contemporary investigations on reproductive longevity strongly indicates that the aberrant elevation of ROS level constitutes a fundamental factor in hastening the aging process of reproductive systems which are responsible for transmission of DNA to future generations. Constant changes in redox status, with a pro-oxidant shift mainly through the mitochondrial generation of ROS, are linked to the modulation of physiological and pathological pathways in gametes and reproductive tissues. Furthermore, the quantity and quality of mitochondria essential to capacitation and fertilization are increasingly associated with reproductive aging. The article aims to provide current understanding of the contributions of ROS derived from mitochondrial respiration to the process of reproductive aging. Moreover, understanding the impact of mitochondrial dysfunction on both female and male fertility is conducive to finding therapeutic strategies to slow, prevent or reverse the process of gamete aging, and thereby increase reproductive longevity.
Collapse
Affiliation(s)
- Jiangbo Song
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Li Xiao
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Zhehao Zhang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Yujin Wang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Panayiotis Kouis
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
24
|
Llavanera M, Mateo-Otero Y, Viñolas-Vergés E, Bonet S, Yeste M. Sperm function, mitochondrial activity and in vivo fertility are associated to their mitochondrial DNA content in pigs. J Anim Sci Biotechnol 2024; 15:10. [PMID: 38297401 PMCID: PMC10832242 DOI: 10.1186/s40104-023-00988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Despite their low abundance in sperm, mitochondria have diverse functions in this cell type, including energy production, signalling and calcium regulation. In humans, sperm mitochondrial DNA content (mtDNAc) has been reported to be negatively linked to sperm function and fertility. Yet, the association between mtDNAc and sperm function in livestock remains unexplored. For this reason, this study aimed to shed some light on the link between mtDNAc and sperm function and fertilising potential in pigs. A qPCR method for mtDNAc quantification was optimised for pig sperm, and the association of this parameter with sperm motility, kinematics, mitochondrial activity, and fertility was subsequently interrogated. RESULTS First, the qPCR method was found to be sensitive and efficient for mtDNAc quantification in pig sperm. By using this technique, mtDNAc was observed to be associated to sperm motility, mitochondrial activity and in vivo, but not in vitro, fertility outcomes. Specifically, sperm with low mtDNAc were seen to exhibit greater motility but decreased mitochondrial activity and intracellular reactive oxygen species. Interestingly, samples with lower mtDNAc showed higher conception and farrowing rates, but similar in vitro fertilisation rates and embryo development, when compared to those with greater mtDNAc. CONCLUSIONS These findings enrich our comprehension of the association of mtDNAc with sperm biology, and lay the foundation for future research into employing this parameter as a molecular predictor for sperm function and fertility in livestock.
Collapse
Affiliation(s)
- Marc Llavanera
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain.
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain.
| | - Yentel Mateo-Otero
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
| | - Estel Viñolas-Vergés
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
| | - Sergi Bonet
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
| | - Marc Yeste
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, ES-17003, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, ES-17003, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, ES-08010, Spain
| |
Collapse
|
25
|
Hou Y, Hu J, Li J, Li H, Lu Y, Liu X. MFN2 regulates progesterone biosynthesis and proliferation of granulosa cells during follicle selection in hens. J Cell Physiol 2024; 239:51-66. [PMID: 37921053 DOI: 10.1002/jcp.31143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Follicle selection in hens refers to a biological process that only one small yellow follicle (SYF) is selected daily or near-daily for following hierarchical development (from F5/F6 to F1) until ovulation. MFN2 is a kind of GTPases located on the mitochondrial outer membrane, which plays a crucial role in mitochondrial fusion. This study aimed to elucidate the role of MFN2 in proliferation and progesterone biosynthesis of granulosa cells (GCs) during follicle selection in hens. The results showed that GCs began to produce progesterone (P4) after follicle selection, accompanied with changes from multi-layer with flat cells to single layer with cubic cells. MFN2 was detected in GCs of follicles from SYF to F1. After follicle selection, the expression level of MFN2 in GCs upregulated significantly, accompanied with increases in P4 biosynthesis, ATP production, mitochondrial DNA (mtDNA) copy numbers of granulosa cells. FSH (80 ng/mL) facilitated the effects of P4 biosynthesis and secretion, ATP production, mtDNA copy numbers, cell proliferation and the MFN2 transcription of granulosa cells from F5 (F5G) in vitro. However, FSH treatment did not promote P4 secretion in granulosa cells from SYF (SYFG) in vitro. Meanwhile, we observed that change fold of MFN2 transcription, ATP production, mtDNA copy numbers and cell proliferation rate in F5G after treatment with FSH were greater than those in SYFG. Furthermore, expression levels of MFN2 protein and messenger RNA in F5G were significantly higher than those in SYFG after treatment with FSH. P4 biosynthesis, ATP production, mtDNA copy numbers as well as cell proliferation reduced significantly in F5G with MFN2 knockdown. Oppositely, P4 biosynthesis, ATP production, mtDNA copy numbers and cell proliferation increased significantly in SYFG after the overexpression of MFN2. Our results suggest that the upregulation of MFN2 may be involved in the initiation of P4 biosynthesis, and promotion of GCs proliferation during follicle selection.
Collapse
Affiliation(s)
- Yuanyuan Hou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jianing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xingting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
26
|
Kurzella J, Miskel D, Rings F, Tholen E, Tesfaye D, Schellander K, Salilew-Wondim D, Held-Hoelker E, Große-Brinkhaus C, Hoelker M. The mitochondrial respiration signature of the bovine blastocyst reflects both environmental conditions of development as well as embryo quality. Sci Rep 2023; 13:19408. [PMID: 37938581 PMCID: PMC10632430 DOI: 10.1038/s41598-023-45691-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
The major limitation of the widespread use of IVP derived embryos is their consistent deficiencies in vitality when compared with their ex vivo derived counterparts. Although embryo metabolism is considered a useful metric of embryo quality, research connecting mitochondrial function with the developmental capacity of embryos is still lacking. Therefore, the aim of the present study was to analyse bovine embryo respiration signatures in relation to developmental capacity. This was achieved by taking advantage of two generally accepted metrics for developmental capacity: (I) environmental conditions during development (vivo vs. vitro) and (II) developmental kinetics (day 7 vs. day 8 blastocysts). Our study showed that the developmental environment affected total embryo oxygen consumption while different morphokinetics illustrating the embryo qualities correlate with maximal mitochondrial respiration, mitochondrial spare capacity, ATP-linked respiration as well as efficiency of ATP generation. This respiration fingerprint for high embryo quality is reflected by relatively lower lipid contents and relatively higher ROS contents. In summary, the results of the present study extend the existing knowledge on the relationship between bovine embryo quality and the signature of mitochondrial respiration by considering contrasting developmental environments as well as different embryo morphokinetics.
Collapse
Affiliation(s)
- Jessica Kurzella
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Dennis Miskel
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Franca Rings
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Ernst Tholen
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Dawit Tesfaye
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, 3105 Rampart Rd, Fort Collins, CO, 80521, USA
| | - Karl Schellander
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Dessie Salilew-Wondim
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
- Department of Animal Science, Biotechnology and Reproduction of Farm Animals, Georg-August-University Goettingen, Burckhardtweg 2, 37077, Göttingen, Germany
| | - Eva Held-Hoelker
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Christine Große-Brinkhaus
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Michael Hoelker
- Department of Animal Science, Biotechnology and Reproduction of Farm Animals, Georg-August-University Goettingen, Burckhardtweg 2, 37077, Göttingen, Germany.
| |
Collapse
|
27
|
Sciorio R, Cariati F, Fleming S, Alviggi C. Exploring the Impact of Controlled Ovarian Stimulation and Non-Invasive Oocyte Assessment in ART Treatments. Life (Basel) 2023; 13:1989. [PMID: 37895371 PMCID: PMC10608727 DOI: 10.3390/life13101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Invasive and noninvasive features are normally applied to select developmentally competent oocytes and embryos that can increase the take-home baby rates in assisted reproductive technology. The noninvasive approach mainly applied to determine oocyte and embryo competence has been, since the early days of IVF, the morphological evaluation of the mature cumulus-oocyte complex at the time of pickup, first polar body, zona pellucida thickness, perivitelline space and cytoplasm appearance. Morphological evaluation of oocyte quality is one of the options used to predict successful fertilization, early embryo development, uterine implantation and the capacity of an embryo to generate a healthy pregnancy to term. Thus, this paper aims to provide an analytical revision of the current literature relating to the correlation between ovarian stimulation procedures and oocyte/embryo quality. In detail, several aspects of oocyte quality such as morphological features, oocyte competence and its surrounding environment will be discussed. In addition, the main noninvasive features as well as novel approaches to biomechanical parameters of oocytes that might be correlated with the competence of embryos to produce a healthy pregnancy and live birth will be illustrated.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Fertility Medicine and Gynaecological Endocrinology Unit, Department Woman-Mother-Child, Lausanne University Hospital, CHUV, 1011 Lausanne, Switzerland
| | - Federica Cariati
- Department of Public Health, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy;
| | - Steven Fleming
- Discipline of Anatomy & Histology, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia;
| | - Carlo Alviggi
- Fertility Unit, Maternal-Child Department, AOU Policlinico Federico II, 80131 Naples, Italy;
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
- Endocrinology and Experimental Oncology Institute (IEOS), National Research Council, 80131 Naples, Italy
| |
Collapse
|
28
|
Hafez HA, Mahmoud SA, Alhmoud JF, Khafaga RH, Kamel MA, Shaker SA. The Intergeneration Long-Lasting Consequences of Pre-Conceptional Exposure to Sofosbuvir on the Ovarian Tissues of F1 Offspring: Experimental Study on Rats. Int J Mol Sci 2023; 24:13675. [PMID: 37761983 PMCID: PMC10531293 DOI: 10.3390/ijms241813675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Sofosbuvir (SOF), a nucleos(t)ide polymerase inhibitor, has been used during the past decade for mass treatment of viral hepatitis C in endemic countries like Egypt, increasing the exposure of women at childbearing age to SOF. This study investigated the long-lasting consequences of the pre-conceptional exposure of young female rats to SOF on the ovarian tissues of F1 offspring and explored the possible molecular mechanisms of these intergenerational effects at various levels. The study was conducted on young female rats that were divided into control group and SOF-exposed group at a dose of 4 mg/kg/day for three months. After that, pregnancy was induced in both groups by mating with healthy male rats. After delivery, the female neonates were followed for 4 months, and the ovarian tissues were collected to assess the studied parameters. Pre-conceptional exposure to SOF affected the ovarian functions of F1 offspring through modulation of estrogen receptors, ovarian Kiss1 and its receptor, increased lipid peroxidation marker, DNA oxidation marker, and redox-sensitive nuclear factor kappa B, and decreased nuclear erythroid-2-related factor 2, mitochondrial function, and biogenesis. SOF affected the ovarian function of the F1 offspring by inducing oxidative stress and inflammation, leading to the modulation of mitochondrial functions and biogenesis.
Collapse
Affiliation(s)
- Hala A. Hafez
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt; (S.A.M.); (M.A.K.); (S.A.S.)
| | - Shimaa A. Mahmoud
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt; (S.A.M.); (M.A.K.); (S.A.S.)
| | - Jehad F. Alhmoud
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Rana H.M. Khafaga
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt; (S.A.M.); (M.A.K.); (S.A.S.)
| | - Maher A. Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt; (S.A.M.); (M.A.K.); (S.A.S.)
| | - Sara A. Shaker
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt; (S.A.M.); (M.A.K.); (S.A.S.)
| |
Collapse
|
29
|
Liu R, Mu X, Gao R, Geng Y, Zhang Y, Chen X, Yin X, Wang H, Li F, He J. Maternal exposure to cetylpyridinium chloride impairs oogenesis by causing mitochondria disorder in neonates. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104239. [PMID: 37541639 DOI: 10.1016/j.etap.2023.104239] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Cetylpyridinium Chloride (CPC) is a common disinfectant with potential mitochondrial toxicity. However, the effects of CPC on female reproduction remains unclear. In the present study, pregnant mice were exposed to environmentally relevant doses of CPC for 3 days, the effects were evaluated in the female offspring. Maternal exposure to CPC caused loss of oocytes in neonatal ovaries. TEM analysis of neonatal ovaries showed CPC caused aberrant mitochondrial morphology including vacuolated and disorganized structure, reduced functional cristae. In addition, CPC decreased mitochondrial membrane potential in neonatal oocytes. Seahorse analysis showed that CPC hampered mitochondrial reserve, manifested as reduced spare respiratory capacity. Furthermore, CPC damaged mitochondrial function and impaired developmental competence of MII oocytes, suggesting a persisting impact into adulthood. In summary, this is the first known demonstration that maternal exposure to CPC caused mitochondrial disorders in neonatal ovaries and had long-term effects on fertility of the female offspring.
Collapse
Affiliation(s)
- Ronglu Liu
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Rufei Gao
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China; School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yan Zhang
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xin Yin
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Fangfang Li
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Junlin He
- School of Public Health, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
30
|
Lightowlers MW, Mananjara DEA, Rakotoarinoro M, Rakotoarison VC, Raliniaina M, Rasamoelina-Andriamanivo H, Gauci CG, Jabbar A, Mwape KE, Donadeu M, Ramiandrasoa NS, Nely JA. Comparison of Kato-Katz, PCR and coproantigen for the diagnosis of Taenia solium taeniasis. Parasitology 2023; 150:894-900. [PMID: 37621007 PMCID: PMC10577650 DOI: 10.1017/s0031182023000690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/26/2023]
Abstract
Four methods were compared for the diagnosis of human taeniasis caused by Taenia solium. Fecal samples from persons living in a T. solium endemic region of Madagascar were examined for taeniid eggs by the Kato–Katz method. Subsequently, samples positive (n = 16) and negative (n = 200) for T. solium eggs were examined by (i) amplification of the fragment of small subunit of the mitochondrial ribosomal RNA (rrnS) gene using conventional polymerase chain reaction (PCR) and (ii) a nested PCR of a fragment of the T. solium Tso31 gene. Additionally, 12 egg-positive and all egg-negative samples were tested for coproantigen detection. A further 9 egg-positive fecal samples were examined using both PCRs. Of the 12 egg-positive samples tested by PCRs and coproantigen methods, 9 (75%) were positive by rrnS PCR, 3 (25%) using Tso31-nested PCR and 9 (75%) by coproantigen testing. None of the 200 egg-negative fecal samples was positive in either rrnS or Tso31-nested PCR. Twenty of the 25 egg-positive samples (80%) were positive in rrnS PCR, and DNA sequencing of PCR amplicons was obtained from 18 samples, all confirmed to be T. solium. Twelve of the 25 egg-positive samples (48%) were positive in the Tso31-nested PCR, all of which were also positive by rrnS PCR. It is suggested that species-specific diagnosis of T. solium taeniasis may be achieved by either coprological examination to detect eggs or coproantigen testing, followed by rrnS PCR and DNA sequencing to confirm the tapeworm species in egg-positive or coproantigen-positive samples.
Collapse
Affiliation(s)
- Marshall W. Lightowlers
- Department of Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, Victoria 3030, Australia
| | | | | | - Valisoa C. Rakotoarison
- National Center for Applied Research on Rural Development (FOFIFA), Antananarivo 101, Madagascar
| | - Modestine Raliniaina
- National Center for Applied Research on Rural Development (FOFIFA), Antananarivo 101, Madagascar
| | | | - Charles G. Gauci
- Department of Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, Victoria 3030, Australia
| | - Abdul Jabbar
- Department of Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, Victoria 3030, Australia
| | - Kabemba E. Mwape
- Department of Clinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Meritxell Donadeu
- Department of Biosciences, Melbourne Veterinary School, University of Melbourne, Werribee, Victoria 3030, Australia
- Initiative for Neglected Animal Diseases (INAND), Pretoria, South Africa
| | | | | |
Collapse
|
31
|
Shao Z, Han Y, Zhou D. Optimized bisulfite sequencing analysis reveals the lack of 5-methylcytosine in mammalian mitochondrial DNA. BMC Genomics 2023; 24:439. [PMID: 37542258 PMCID: PMC10403921 DOI: 10.1186/s12864-023-09541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND DNA methylation is one of the best characterized epigenetic modifications in the mammalian nuclear genome and is known to play a significant role in various biological processes. Nonetheless, the presence of 5-methylcytosine (5mC) in mitochondrial DNA remains controversial, as data ranging from the lack of 5mC to very extensive 5mC have been reported. RESULTS By conducting comprehensive bioinformatic analyses of both published and our own data, we reveal that previous observations of extensive and strand-biased mtDNA-5mC are likely artifacts due to a combination of factors including inefficient bisulfite conversion, extremely low sequencing reads in the L strand, and interference from nuclear mitochondrial DNA sequences (NUMTs). To reduce false positive mtDNA-5mC signals, we establish an optimized procedure for library preparation and data analysis of bisulfite sequencing. Leveraging our modified workflow, we demonstrate an even distribution of 5mC signals across the mtDNA and an average methylation level ranging from 0.19% to 0.67% in both cell lines and primary cells, which is indistinguishable from the background noise. CONCLUSIONS We have developed a framework for analyzing mtDNA-5mC through bisulfite sequencing, which enables us to present multiple lines of evidence for the lack of extensive 5mC in mammalian mtDNA. We assert that the data available to date do not support the reported presence of mtDNA-5mC.
Collapse
Affiliation(s)
- Zhenyu Shao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yang Han
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University & Chinese Academy of Medical Sciences (RU069), Shanghai, 200032, China
| | - Dan Zhou
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University & Chinese Academy of Medical Sciences (RU069), Shanghai, 201399, China.
| |
Collapse
|
32
|
Elías-López AL, Vázquez-Mena O, Sferruzzi-Perri AN. Mitochondrial dysfunction in the offspring of obese mothers and it's transmission through damaged oocyte mitochondria: Integration of mechanisms. Biochim Biophys Acta Mol Basis Dis 2023:166802. [PMID: 37414229 DOI: 10.1016/j.bbadis.2023.166802] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/23/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
In vivo and in vitro studies demonstrate that mitochondria in the oocyte, are susceptible to damage by suboptimal pre/pregnancy conditions, such as obesity. These suboptimal conditions have been shown to induce mitochondrial dysfunction (MD) in multiple tissues of the offspring, suggesting that mitochondria of oocytes that pass from mother to offspring, can carry information that can programme mitochondrial and metabolic dysfunction of the next generation. They also suggest that transmission of MD could increase the risk of obesity and other metabolic diseases in the population inter- and trans-generationally. In this review, we examined whether MD observed in offspring tissues of high energetic demand, is the result of the transmission of damaged mitochondria from obese mothers' oocytes to the offspring. The contribution of genome-independent mechanisms (namely mitophagy) in this transmission were also explored. Finally, potential interventions aimed at improving oocyte/embryo health were investigated, to see if they may provide an opportunity to halter the generational effects of MD.
Collapse
Affiliation(s)
- A L Elías-López
- Dirección de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico.
| | | | - A N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, UK.
| |
Collapse
|
33
|
Mayeur A, Benaloun E, Benguigui J, Duperier C, Hesters L, Chatzovoulou K, Monnot S, Grynberg M, Steffann J, Frydman N, Sonigo C. Preimplantation genetic testing for mitochondrial DNA mutation: ovarian response to stimulation, outcomes and follow-up. Reprod Biomed Online 2023; 47:61-69. [PMID: 37202317 DOI: 10.1016/j.rbmo.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/18/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
RESEARCH QUESTION How do carriers of pathogenic mitochondrial DNA (mtDNA) respond to ovarian stimulation? DESIGN A single-centre, retrospective study conducted between January 2006 and July 2021 in France. Ovarian reserve markers and ovarian stimulation cycle outcomes were compared for couples undergoing preimplantation genetic testing (PGT) for maternally inherited mtDNA disease (n = 18) (mtDNA-PGT group) with a matched-control group of patients undergoing PGT for male indications (n = 96). The PGT outcomes for the mtDNA-PGT group and the follow-up of these patients in case of unsuccessful PGT was also reported. RESULTS For carriers of pathogenic mtDNA, parameters of ovarian response to FSH and ovarian stimulation cycle outcomes were not different from those of matched-control ovarian stimulation cycles. The carriers of pathogenic mtDNA needed a longer ovarian stimulation and higher dose of gonadotrophins. Three patients (16.7%) obtained a live birth after the PGT process, and eight patients (44.4%) achieved parenthood through alternative methods: oocyte donation (n = 4), natural conception with prenatal diagnosis (n = 2) and adoption (n = 2). CONCLUSION To the best of our knowledge, this is the first study of women carrying a mtDNA variant who have undergone a PGT for monogenic (single gene defects) procedure. It is one of the possible options to obtain a healthy baby without observing an impairment in ovarian response to stimulation.
Collapse
Affiliation(s)
- Anne Mayeur
- Service de Biologie de la Reproduction- CECOS, Hôpital Antoine Béclère, AP-HP, Université Paris Saclay, cedex, F-92140 Clamart, France.; Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France..
| | - Emmanuelle Benaloun
- Service de Biologie de la Reproduction- CECOS, Hôpital Antoine Béclère, AP-HP, Université Paris Saclay, cedex, F-92140 Clamart, France
| | - Jonas Benguigui
- Service de Médecine de la reproduction et Préservation de la Fertilité, Assistance Publique Hôpitaux de Paris, Hôpital Antoine Béclère, Clamart 92140, France
| | - Constance Duperier
- Service de Médecine de la reproduction et Préservation de la Fertilité, Assistance Publique Hôpitaux de Paris, Hôpital Antoine Béclère, Clamart 92140, France
| | - Laetitia Hesters
- Service de Biologie de la Reproduction- CECOS, Hôpital Antoine Béclère, AP-HP, Université Paris Saclay, cedex, F-92140 Clamart, France
| | | | - Sophie Monnot
- Université de Paris, Imagine INSERM UMR1163 et Service de Médecine Génomique des Maladies rares, Groupe Hospitalier Necker-Enfants Malades, AP-HP, Paris, France
| | - Michael Grynberg
- Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France.; Service de Médecine de la reproduction et Préservation de la Fertilité, Assistance Publique Hôpitaux de Paris, Hôpital Antoine Béclère, Clamart 92140, France
| | - Julie Steffann
- Université de Paris, Institut Imagine, INSERM UMR1163, Paris, France.; Université de Paris, Imagine INSERM UMR1163 et Service de Médecine Génomique des Maladies rares, Groupe Hospitalier Necker-Enfants Malades, AP-HP, Paris, France
| | - Nelly Frydman
- Service de Biologie de la Reproduction- CECOS, Hôpital Antoine Béclère, AP-HP, Université Paris Saclay, cedex, F-92140 Clamart, France.; Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Charlotte Sonigo
- Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France.; Service de Médecine de la reproduction et Préservation de la Fertilité, Assistance Publique Hôpitaux de Paris, Hôpital Antoine Béclère, Clamart 92140, France.; Inserm U1185, Faculté de médecine Paris Sud, France
| |
Collapse
|
34
|
Widyanugraha MA, Widjiati W, Hendarto H. Effect of Endometriosis on Cumulus ATP, Number of Mitochondria and Oocyte Maturity in Cumulus Oocyte Complex in Mice. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2023; 45:e393-e400. [PMID: 37595596 PMCID: PMC10438966 DOI: 10.1055/s-0043-1772186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/27/2023] [Indexed: 08/20/2023] Open
Abstract
OBJECTIVE Endometriosis causes a decrease in oocyte quality. However, this mechanism is not fully understood. The present study aimed to analyze the effect of endometriosis on cumulus cell adenosine triphosphate ATP level, the number of mitochondria, and the oocyte maturity level. METHODS A true experimental study with a post-test only control group design on experimental animals. Thirty-two mice were divided into control and endometriosis groups. Cumulus oocyte complex (COC) was obtained from all groups. Adenosine triphosphate level on cumulus cells was examined using the Elisa technique, the number of mitochondria was evaluated with a confocal laser scanning microscope and the oocyte maturity level was evaluated with an inverted microscope. RESULTS The ATP level of cumulus cells and the number of mitochondria in the endometriosis group increased significantly (p < 0.05; p < 0.05) while the oocyte maturity level was significantly lower (p < 0.05). There was a significant relationship between ATP level of cumulus cells and the number of mitochondrial oocyte (p < 0.01). There was no significant relationship between cumulus cell ATP level and the number of mitochondrial oocytes with oocyte maturity level (p > 0.01; p > 0.01). The ROC curve showed that the number of mitochondrial oocytes (AUC = 0.672) tended to be more accurate than cumulus cell ATP level (AUC = 0.656) in determining the oocyte maturity level. CONCLUSION In endometriosis model mice, the ATP level of cumulus cells and the number of mitochondrial oocytes increased while the oocyte maturity level decreased. There was a correlation between the increase in ATP level of cumulus cells and an increase in the number of mitochondrial oocytes.
Collapse
Affiliation(s)
| | - Widjiati Widjiati
- Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Hendy Hendarto
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
35
|
Munasinghe M, Ågren JA. When and why are mitochondria paternally inherited? Curr Opin Genet Dev 2023; 80:102053. [PMID: 37245242 DOI: 10.1016/j.gde.2023.102053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/30/2023]
Abstract
In contrast with nuclear genes that are passed on through both parents, mitochondrial genes are maternally inherited in most species, most of the time. The genetic conflict stemming from this transmission asymmetry is well-documented, and there is an abundance of population-genetic theory associated with it. While occasional or aberrant paternal inheritance occurs, there are only a few cases where exclusive paternal inheritance of mitochondrial genomes is the evolved state. Why this is remains poorly understood. By examining commonalities between species with exclusive paternal inheritance, we discuss what they may tell us about the evolutionary forces influencing mitochondrial inheritance patterns. We end by discussing recent technological advances that make exploring the causes and consequences of paternal inheritance feasible.
Collapse
Affiliation(s)
- Manisha Munasinghe
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA. https://twitter.com/@ManishaMuna
| | - J Arvid Ågren
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden; Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
36
|
Capriati M, Hao C, D'Cruz SC, Monfort C, Chevrier C, Warembourg C, Smagulova F. Genome-wide analysis of sex-specific differences in the mother-child PELAGIE cohort exposed to organophosphate metabolites. Sci Rep 2023; 13:8003. [PMID: 37198424 DOI: 10.1038/s41598-023-35113-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/12/2023] [Indexed: 05/19/2023] Open
Abstract
In recent decades, the detrimental effects of environmental contaminants on human health have become a serious public concern. Organophosphate (OP) pesticides are widely used in agriculture, and the negative impacts of OP and its metabolites on human health have been demonstrated. We hypothesized that exposure to OPs during pregnancy could impose damaging effects on the fetus by affecting various processes. We analyzed sex-specific epigenetic responses in the placenta samples obtained from the mother-child PELAGIE cohort. We assayed the telomere length and mitochondrial copy numbers using genomic DNA. We analyzed H3K4me3 by using chromatin immunoprecipitation followed by qPCR (ChIP‒qPCR) and high-throughput sequencing (ChIP-seq). The human study was confirmed with mouse placenta tissue analysis. Our study revealed a higher susceptibility of male placentas to OP exposure. Specifically, we observed telomere length shortening and an increase in γH2AX levels, a DNA damage marker. We detected lower histone H3K9me3 occupancy at telomeres in diethylphosphate (DE)-exposed male placentas than in nonexposed placentas. We found an increase in H3K4me3 occupancy at the promoters of thyroid hormone receptor alpha (THRA), 8-oxoguanine DNA glycosylase (OGG1) and insulin-like growth factor (IGF2) in DE-exposed female placentas. H3K4me3 occupancy at PPARG was increased in both male and female placentas exposed to dimethylphosphate (DM). The genome-wide sequencing of selected samples revealed sex-specific differences induced by DE exposure. Specifically, we found alterations in H3K4me3 in genes related to the immune system in female placenta samples. In DE-exposed male placentas, a decrease in H3K4me3 occupancy at development-related, collagen and angiogenesis-related genes was observed. Finally, we observed a high number of NANOG and PRDM6 binding sites in regions with altered histone occupancy, suggesting that the effects were possibly mediated via these factors. Our data suggest that in utero exposure to organophosphate metabolites affects normal placental development and could potentially impact late childhood.
Collapse
Affiliation(s)
- Martina Capriati
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Chunxiang Hao
- School of Medicine, Linyi University, Linyi, 276000, China
| | - Shereen Cynthia D'Cruz
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Christine Monfort
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Cecile Chevrier
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Charline Warembourg
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Fatima Smagulova
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France.
| |
Collapse
|
37
|
Zhang W, Wu F. Effects of adverse fertility-related factors on mitochondrial DNA in the oocyte: a comprehensive review. Reprod Biol Endocrinol 2023; 21:27. [PMID: 36932444 PMCID: PMC10021953 DOI: 10.1186/s12958-023-01078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
The decline of oocyte quality has profound impacts on fertilization, implantation, embryonic development, and the genetic quality of future generations. One factor that is often ignored but is involved in the decline of oocyte quality is mitochondrial DNA (mtDNA) abnormalities. Abnormalities in mtDNA affect the energy production of mitochondria, the dynamic balance of the mitochondrial network, and the pathogenesis of mtDNA diseases in offspring. In this review, we have detailed the characteristics of mtDNA in oocytes and the maternal inheritance of mtDNA. Next, we summarized the mtDNA abnormalities in oocytes derived from aging, diabetes, obesity, and assisted reproductive technology (ART) in an attempt to further elucidate the possible mechanisms underlying the decline in oocyte health. Because multiple infertility factors are often involved when an individual is infertile, a comprehensive understanding of the individual effects of each infertility-related factor on mtDNA is necessary. Herein, we consider the influence of infertility-related factors on the mtDNA of the oocyte as a collective perspective for the first time, providing a supplementary angle and reference for multi-directional improvement strategies of oocyte quality in the future. In addition, we highlight the importance of studying ART-derived mitochondrial abnormalities during every ART procedure.
Collapse
Affiliation(s)
- Wenying Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Fuju Wu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
38
|
Tolle I, Tiranti V, Prigione A. Modeling mitochondrial DNA diseases: from base editing to pluripotent stem-cell-derived organoids. EMBO Rep 2023; 24:e55678. [PMID: 36876467 PMCID: PMC10074100 DOI: 10.15252/embr.202255678] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/12/2023] [Accepted: 02/15/2023] [Indexed: 03/07/2023] Open
Abstract
Mitochondrial DNA (mtDNA) diseases are multi-systemic disorders caused by mutations affecting a fraction or the entirety of mtDNA copies. Currently, there are no approved therapies for the majority of mtDNA diseases. Challenges associated with engineering mtDNA have in fact hindered the study of mtDNA defects. Despite these difficulties, it has been possible to develop valuable cellular and animal models of mtDNA diseases. Here, we describe recent advances in base editing of mtDNA and the generation of three-dimensional organoids from patient-derived human-induced pluripotent stem cells (iPSCs). Together with already available modeling tools, the combination of these novel technologies could allow determining the impact of specific mtDNA mutations in distinct human cell types and might help uncover how mtDNA mutation load segregates during tissue organization. iPSC-derived organoids could also represent a platform for the identification of treatment strategies and for probing the in vitro effectiveness of mtDNA gene therapies. These studies have the potential to increase our mechanistic understanding of mtDNA diseases and may open the way to highly needed and personalized therapeutic interventions.
Collapse
Affiliation(s)
- Isabella Tolle
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
39
|
Sharma Y, Galvão AM. Maternal obesity and ovarian failure: is leptin the culprit? Anim Reprod 2023; 19:e20230007. [PMID: 36855701 PMCID: PMC9968511 DOI: 10.1590/1984-3143-ar2023-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/24/2023] [Indexed: 02/22/2023] Open
Abstract
At the time of its discovery and characterization in 1994, leptin was mostly considered a metabolic hormone able to regulate body weight and energy homeostasis. However, in recent years, a great deal of literature has revealed leptin's pleiotropic nature, through its involvement in numerous physiological contexts including the regulation of the female reproductive tract and ovarian function. Obesity has been largely associated with infertility, and leptin signalling is known to be dysregulated in the ovaries of obese females. Hence, the disruption of ovarian leptin signalling was shown to contribute to the pathophysiology of ovarian failure in obese females, affecting transcriptional programmes in the gamete and somatic cells. This review attempts to uncover the underlying mechanisms contributing to female infertility associated with obesity, as well as to shed light on the role of leptin in the metabolic dysregulation within the follicle, the effects on the oocyte epigenome, and the potential long-term consequence to embryo programming.
Collapse
Affiliation(s)
- Yashaswi Sharma
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland
| | - António Miguel Galvão
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland,Babraham Institute, Epigenetics Programme, Cambridge, United Kingdom UK,Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom UK,Corresponding author: ;
| |
Collapse
|
40
|
Zhang L, Ma J, Shen Z, Wang B, Jiang Q, Ma F, Ju Y, Duan G, Zhang Q, Su X. Low copy numbers for mitochondrial DNA moderates the strength of nuclear-cytoplasmic incompatibility in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:739-754. [PMID: 36308719 DOI: 10.1111/jipb.13400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Plant cells contain only small amounts of mitochondrial DNA (mtDNA), with the genomic information shared among multiple mitochondria. The biological relevance and molecular mechanism underlying this hallmark of plant cells has been unclear. Here, we report that Arabidopsis thaliana plants exhibited significantly reduced growth and mitochondrial dysfunction when the mtDNA copy number was increased to the degree that each mitochondrion possessed DNA. The amounts of mitochondrion-encoded transcripts increased several fold in the presence of elevated mtDNA levels. However, the efficiency of RNA editing decreased with this excess of mitochondrion-encoded transcripts, resulting in impaired assembly of mitochondrial complexes containing mtDNA-encoded subunits, such as respiratory complexes I and IV. These observations indicate the occurrence of nuclear-mitochondrial incompatibility in the cells with increased amounts of mtDNA and provide an initial answer to the fundamental question of why plant cells have much lower mtDNA levels than animal cells. We propose that keeping mtDNA levels low moderates nuclear-mitochondrial incompatibility and that this may be a crucial factor driving plant cells to restrict the copy numbers of mtDNA.
Collapse
Affiliation(s)
- Liguang Zhang
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Jin Ma
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhaorui Shen
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Bo Wang
- State Key Laboratory of Protein and Plant Gene Research and Biomedical Pioneering Innovation Center (BIOPIC), College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qingling Jiang
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Fei Ma
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yan Ju
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Guangxing Duan
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Quan Zhang
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaodong Su
- State Key Laboratory of Protein and Plant Gene Research and Biomedical Pioneering Innovation Center (BIOPIC), College of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
41
|
Mitochondrial DNA Deficiency and Supplementation in Sus scrofa Oocytes Influence Transcriptome Profiles in Oocytes and Blastocysts. Int J Mol Sci 2023; 24:ijms24043783. [PMID: 36835193 PMCID: PMC9963854 DOI: 10.3390/ijms24043783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Mitochondrial DNA (mtDNA) deficiency correlates with poor oocyte quality and fertilisation failure. However, the supplementation of mtDNA deficient oocytes with extra copies of mtDNA improves fertilisation rates and embryo development. The molecular mechanisms associated with oocyte developmental incompetence, and the effects of mtDNA supplementation on embryo development are largely unknown. We investigated the association between the developmental competence of Sus scrofa oocytes, assessed with Brilliant Cresyl Blue, and transcriptome profiles. We also analysed the effects of mtDNA supplementation on the developmental transition from the oocyte to the blastocyst by longitudinal transcriptome analysis. mtDNA deficient oocytes revealed downregulation of genes associated with RNA metabolism and oxidative phosphorylation, including 56 small nucleolar RNA genes and 13 mtDNA protein coding genes. We also identified the downregulation of a large subset of genes for meiotic and mitotic cell cycle process, suggesting that developmental competence affects the completion of meiosis II and first embryonic cell division. The supplementation of oocytes with mtDNA in combination with fertilisation improves the maintenance of the expression of several key developmental genes and the patterns of parental allele-specific imprinting gene expression in blastocysts. These results suggest associations between mtDNA deficiency and meiotic cell cycle and the developmental effects of mtDNA supplementation on Sus scrofa blastocysts.
Collapse
|
42
|
Fusion of Wild-Type Mesoangioblasts with Myotubes of mtDNA Mutation Carriers Leads to a Proportional Reduction in mtDNA Mutation Load. Int J Mol Sci 2023; 24:ijms24032679. [PMID: 36769001 PMCID: PMC9917062 DOI: 10.3390/ijms24032679] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
In 25% of patients with mitochondrial myopathies, pathogenic mitochondrial DNA (mtDNA) mutation are the cause. For heteroplasmic mtDNA mutations, symptoms manifest when the mutation load exceeds a tissue-specific threshold. Therefore, lowering the mutation load is expected to ameliorate disease manifestations. This can be achieved by fusing wild-type mesoangioblasts with mtDNA mutant myotubes. We have tested this in vitro for female carriers of the m.3271T>C or m.3291T>C mutation (mutation load >90%) using wild-type male mesoangioblasts. Individual fused myotubes were collected by a newly-developed laser capture microdissection (LCM) protocol, visualized by immunostaining using an anti-myosin antibody. Fusion rates were determined based on male-female nuclei ratios by fluorescently labelling the Y-chromosome. Using combined 'wet' and 'air dried' LCM imaging improved fluorescence imaging quality and cell yield. Wild-type mesoangioblasts fused in different ratios with myotubes containing either the m.3271T>C or the m.3291T>C mutation. This resulted in the reduction of the mtDNA mutation load proportional to the number of fused wild-type mesoangioblasts for both mtDNA mutations. The proportional reduction in mtDNA mutation load in vitro after fusion is promising in the context of muscle stem cell therapy for mtDNA mutation carriers in vivo, in which we propose the same strategy using autologous wild-type mesoangioblasts.
Collapse
|
43
|
McIlfatrick S, O’Leary S, Okada T, Penn A, Nguyen VHT, McKenny L, Huang SY, Andreas E, Finnie J, Kirkwood R, St. John JC. Does supplementation of oocytes with additional mtDNA influence developmental outcome? iScience 2023; 26:105956. [PMID: 36711242 PMCID: PMC9876745 DOI: 10.1016/j.isci.2023.105956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/07/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Introducing extra mitochondrial DNA (mtDNA) into oocytes at fertilization can rescue poor quality oocytes. However, supplementation alters DNA methylation and gene expression profiles of preimplantation embryos. To determine if these alterations impacted offspring, we introduced mtDNA from failed-to-mature sister (autologous) or third party (heterologous) oocytes into mature oocytes and transferred zygotes into surrogates. Founders exhibited significantly greater daily weight gain (heterologous) and growth rates (heterologous and autologous) to controls. In weaners, cholesterol, bilirubin (heterologous and autologous), anion gap, and lymphocyte count (autologous) were elevated. In mature pigs, potassium (heterologous) and bicarbonate (autologous) were altered. mtDNA and imprinted gene analyses did not reveal aberrant profiles. Neither group exhibited gross anatomical, morphological, or histopathological differences that would lead to clinically significant lesions. Female founders were fertile and their offspring exhibited modified weight and height gain, biochemical, and hematological profiles. mtDNA supplementation induced minor differences that did not affect health and well-being.
Collapse
Affiliation(s)
- Stephen McIlfatrick
- Mitochondrial Genetics Group, School of Biomedicine, Faculty of Health and Medical Sciences, and Robinson Research Institute, The University of Adelaide, Adelaide Health and Medical Sciences Building, Adelaide, SA 5000, Australia
| | - Sean O’Leary
- Mitochondrial Genetics Group, School of Biomedicine, Faculty of Health and Medical Sciences, and Robinson Research Institute, The University of Adelaide, Adelaide Health and Medical Sciences Building, Adelaide, SA 5000, Australia
| | - Takashi Okada
- Mitochondrial Genetics Group, School of Biomedicine, Faculty of Health and Medical Sciences, and Robinson Research Institute, The University of Adelaide, Adelaide Health and Medical Sciences Building, Adelaide, SA 5000, Australia
| | - Alexander Penn
- Mitochondrial Genetics Group, School of Biomedicine, Faculty of Health and Medical Sciences, and Robinson Research Institute, The University of Adelaide, Adelaide Health and Medical Sciences Building, Adelaide, SA 5000, Australia
| | - Vy Hoang Thao Nguyen
- Mitochondrial Genetics Group, School of Biomedicine, Faculty of Health and Medical Sciences, and Robinson Research Institute, The University of Adelaide, Adelaide Health and Medical Sciences Building, Adelaide, SA 5000, Australia
| | - Lisa McKenny
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Shang-Yu Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital-Linkou Medical Center, Taoyuan, Taiwan,Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Eryk Andreas
- Mitochondrial Genetics Group, School of Biomedicine, Faculty of Health and Medical Sciences, and Robinson Research Institute, The University of Adelaide, Adelaide Health and Medical Sciences Building, Adelaide, SA 5000, Australia
| | - John Finnie
- University Veterinarian & AWO, Office of the Deputy Vice-Chancellor (Research), The University of Adelaide, Adelaide Health and Medical Sciences Building, Adelaide, SA 5000, Australia
| | - Roy Kirkwood
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| | - Justin C. St. John
- Mitochondrial Genetics Group, School of Biomedicine, Faculty of Health and Medical Sciences, and Robinson Research Institute, The University of Adelaide, Adelaide Health and Medical Sciences Building, Adelaide, SA 5000, Australia,Corresponding author
| |
Collapse
|
44
|
Chuang TH, Chen CY, Kuan CS, Lai HH, Hsieh CL, Lee MJ, Liang YT, Chang YJ, Chen CY, Chen SU. Reduced mitochondrial DNA content correlate with poor clinical outcomes in cryotransfers with day 6 single euploid embryos. Front Endocrinol (Lausanne) 2023; 13:1066530. [PMID: 36686452 PMCID: PMC9846089 DOI: 10.3389/fendo.2022.1066530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
Objective To investigate whether the mitochondrial DNA (mtDNA) content of a single biopsy at trophoblast correlates with the developmental potential and reproductive outcomes of blastocyst. Methods A retrospective analysis applied the dataset of 1,675 embryos with preimplantation genetic testing for aneuploidy (PGT-A) from 1,305 individuals, and 1,383 embryos involved cryotransfers of single euploid embryo between January 2015 and December 2019. The studied cohort was divided for algorithm establishment on the NGS platform (n=40), correlation of biological features (n=1,635), and correlation of reproductive outcomes (n=1,340). Of the algorithm derived from the NGS platform, the reliability and repeatability were validated via qPCR assay and inter-run controls, respectively. Of the correlation across biological features, stratification analyses were applied to evaluate the effect from a single contributor. Eventually, the correlation between the mtDNA ratios and reproductive outcomes was adjusted according to the significant effector(s). Results The mtDNA ratios showed statistically different between embryos with different days of blastocyst formation ([Day 5]: 1.06 vs. [Day 6]: 0.66, p=0.021), and between embryos with different expansion stages ([Expansion 5]: 1.05 vs. [Expansion 6]: 0.49, p=0.012). None or weakly correlated with the maternal age, morphology, ploidy, and gender. Analyzed by the different days of blastocyst formation with fixed expansion score as 5 in the euploid single embryo transfers (eSET), the day 6 eSET showed significantly lower reduced mtDNA ratio (n=139) in failure groups of fetal heartbeat (p=0.004), ongoing pregnancy (p=0.007), and live birth (p=0.01); however, no correlation between mtDNA ratios and pregnancy outcomes was observed in the day 5 eSET (n=1,201). Conclusions The study first demonstrated that mtDNA ratio was dependent on the days of blastocyst formation while expansion stage was fixed. Lower mtDNA ratios were observed in the day 6 eSET with adverse outcomes. The present stratification analyses reveal that the timeline of embryo is an important covariate to the mtDNA content.
Collapse
Affiliation(s)
- Tzu-Hsuan Chuang
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University and College of Medicine, Taipei, Taiwan
| | - Chih-Yen Chen
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Chin-Sheng Kuan
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Hsing-Hua Lai
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Chia-Lin Hsieh
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Meng-Ju Lee
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Yi-Ting Liang
- Stork Fertility Center, Stork Ladies Clinic, Hsinchu, Taiwan
| | - Yu-Jen Chang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Chien-Yu Chen
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Shee-Uan Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
45
|
Burgstaller JP, Chiaratti MR. Mitochondrial Inheritance Following Nuclear Transfer: From Cloned Animals to Patients with Mitochondrial Disease. Methods Mol Biol 2023; 2647:83-104. [PMID: 37041330 DOI: 10.1007/978-1-0716-3064-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Mitochondria are indispensable power plants of eukaryotic cells that also act as a major biochemical hub. As such, mitochondrial dysfunction, which can originate from mutations in the mitochondrial genome (mtDNA), may impair organism fitness and lead to severe diseases in humans. MtDNA is a multi-copy, highly polymorphic genome that is uniparentally transmitted through the maternal line. Several mechanisms act in the germline to counteract heteroplasmy (i.e., coexistence of two or more mtDNA variants) and prevent expansion of mtDNA mutations. However, reproductive biotechnologies such as cloning by nuclear transfer can disrupt mtDNA inheritance, resulting in new genetic combinations that may be unstable and have physiological consequences. Here, we review the current understanding of mitochondrial inheritance, with emphasis on its pattern in animals and human embryos generated by nuclear transfer.
Collapse
Affiliation(s)
- Jörg P Burgstaller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Marcos R Chiaratti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil.
| |
Collapse
|
46
|
Zhou D, Sun MH, Jiang WJ, Li XH, Lee SH, Heo G, Choi J, Kim KS, Cui XS. Knock-down of YME1L1 induces mitochondrial dysfunction during early porcine embryonic development. Front Cell Dev Biol 2023; 11:1147095. [PMID: 37123411 PMCID: PMC10133515 DOI: 10.3389/fcell.2023.1147095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
YME1L1, a mitochondrial metalloproteinase, is an Adenosine triphosphate (ATP)-dependent metalloproteinase and locates in the mitochondrial inner membrane. The protease domain of YME1L1 is oriented towards the mitochondrial intermembrane space, which modulates the mitochondrial GTPase optic atrophy type 1 (OPA1) processing. However, during embryonic development, there is no report yet about the role of YME1L1 on mitochondrial biogenesis and function in pigs. In the current study, the mRNA level of YME1L1 was knocked down by double strand RNA microinjection to the 1-cell stage embryos. The expression patterns of YME1L1 and its related proteins were performed by immunofluorescence and western blotting. To access the biological function of YME1L1, we first counted the preimplantation development rate, diameter, and total cell number of blastocyst on day-7. First, the localization of endogenous YME1L1 was found in the punctate structures of the mitochondria, and the expression level of YME1L1 is highly expressed from the 4-cell stage. Following significant knock-down of YME1L1, blastocyst rate and quality were decreased, and mitochondrial fragmentation was induced. YME1L1 knockdown induced excessive ROS production, lower mitochondrial membrane potential, and lower ATP levels. The OPA1 cleavage induced by YME1L1 knockdown was prevented by double knock-down of YME1L1 and OMA1. Moreover, cytochrome c, a pro-apoptotic signal, was released from the mitochondria after the knock-down of YME1L1. Taken together, these results indicate that YME1L1 is essential for regulating mitochondrial fission, function, and apoptosis during porcine embryo preimplantation development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kwan-Suk Kim
- *Correspondence: Xiang-Shun Cui, ; Kwan-Suk Kim,
| | | |
Collapse
|
47
|
Sun B, Hou J, Ye YX, Chen HG, Duan P, Chen YJ, Xiong CL, Wang YX, Pan A. Sperm mitochondrial DNA copy number in relation to semen quality: A cross-sectional study of 1164 potential sperm donors. BJOG 2022; 129:2098-2106. [PMID: 35274799 DOI: 10.1111/1471-0528.17139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/20/2022] [Accepted: 02/12/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the association between mitochondrial DNA copy number (mtDNAcn) and semen quality. DESIGN A cross-sectional study. SETTING Hubei Province Human Sperm Bank of China (from April 2017 to July 2018). POPULATION A total of 1164 healthy male sperm donors with 5739 specimens. MAIN OUTCOME MEASURES Real-time quantitative polymerase chain reaction (RT-PCR) was used to measure sperm mtDNAcn. We also determined semen volume, concentration and motility parameters (progressive motility, nonprogressive motility and immotility). METHODS Mixed-effect models and general linear models were uses. RESULTS After adjusting for relevant confounding factors, mixed-effect models revealed diminished sperm motility (progressive and total), concentration, and total count across the quartiles of mtDNAcn (all P < 0.05). Compared with men in the lowest quartile, men in the highest quartile of mtDNAcn had lower progressive sperm motility, total motility, concentration and total count of -8.9% (95% CI -12.7% to -5.0%), -8.0% (95% CI -11.6% to -4.4%), -42.8% (95% CI -47.7% to -37.4%), and - 44.3% (95% CI -50.1% to -37.7%), respectively. These inverse dose-response relationships were further confirmed in the cubic spline models, where mtDNAcn was modelled as a continuous variable. CONCLUSIONS We found that mtDNAcn was inversely associated with semen quality in a dose-dependent manner. Our results provide novel clues that sperm mtDNAcn may serve as a useful predictor of human semen characteristics. TWEETABLE ABSTRACT Sperm mitochondrial DNA copy number was markedly associated with diminished sperm motility (progressive and total), concentration and total count.
Collapse
Affiliation(s)
- Bin Sun
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yi-Xiang Ye
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Heng-Gui Chen
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Clinical Research and Translation Centre, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Peng Duan
- Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Ying-Jun Chen
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cheng-Liang Xiong
- Centre for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Province Human Sperm Bank, Wuhan, Hubei, China
| | - Yi-Xin Wang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
48
|
Tan TCY, Dunning KR. Non-invasive assessment of oocyte developmental competence. Reprod Fertil Dev 2022; 35:39-50. [PMID: 36592982 DOI: 10.1071/rd22217] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oocyte quality is a key factor influencing IVF success. The oocyte and surrounding cumulus cells, known collectively as the cumulus oocyte complex (COC), communicate bi-directionally and regulate each other's metabolic function to support oocyte growth and maturation. Many studies have attempted to associate metabolic markers with oocyte quality, including metabolites in follicular fluid or 'spent medium' following maturation, gene expression of cumulus cells and measuring oxygen consumption in medium surrounding COCs. However, these methods fail to provide spatial metabolic information on the separate oocyte and cumulus cell compartments. Optical imaging of the autofluorescent cofactors - reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] and flavin adenine dinucleotide (FAD) - has been put forward as an approach to generate spatially resolved measurements of metabolism within individual cells of the COC. The optical redox ratio (FAD/[NAD(P)H+FAD]), calculated from these cofactors, can act as an indicator of overall metabolic activity in the oocyte and cumulus cell compartments. Confocal microscopy, fluorescence lifetime imaging microscopy (FLIM) and hyperspectral microscopy may be used for this purpose. This review provides an overview of current optical imaging techniques that capture the inner biochemistry within cells of the COC and discusses the potential for such imaging to assess oocyte developmental competence.
Collapse
Affiliation(s)
- Tiffany C Y Tan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Kylie R Dunning
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
49
|
Esencan E, Beroukhim G, Seifer DB. Age-related changes in Folliculogenesis and potential modifiers to improve fertility outcomes - A narrative review. Reprod Biol Endocrinol 2022; 20:156. [PMID: 36397149 PMCID: PMC9670479 DOI: 10.1186/s12958-022-01033-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022] Open
Abstract
Reproductive aging is characterized by a decline in oocyte quantity and quality, which is directly associated with a decline in reproductive potential, as well as poorer reproductive success and obstetrical outcomes. As women delay childbearing, understanding the mechanisms of ovarian aging and follicular depletion have become increasingly more relevant. Age-related meiotic errors in oocytes are well established. In addition, it is also important to understand how intraovarian regulators change with aging and how certain treatments can mitigate the impact of aging. Individual studies have demonstrated that reproductive pathways involving antimullerian hormone (AMH), vascular endothelial growth factor (VEGF), neurotropins, insulin-like growth factor 1 (IGF1), and mitochondrial function are pivotal for healthy oocyte and cumulus cell development and are altered with increasing age. We provide a comprehensive review of these individual studies and explain how these factors change in oocytes, cumulus cells, and follicular fluid. We also summarize how modifiers of folliculogenesis, such as vitamin D, coenzyme Q, and dehydroepiandrosterone (DHEA) may be used to potentially overcome age-related changes and enhance fertility outcomes of aged follicles, as evidenced by human and rodent studies.
Collapse
Affiliation(s)
- Ecem Esencan
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA.
| | - Gabriela Beroukhim
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - David B Seifer
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| |
Collapse
|
50
|
Kline BL, Jaillard S, Bell KM, Bakhshalizadeh S, Robevska G, van den Bergen J, Dulon J, Ayers KL, Christodoulou J, Tchan MC, Touraine P, Sinclair AH, Tucker EJ. Integral Role of the Mitochondrial Ribosome in Supporting Ovarian Function: MRPS7 Variants in Syndromic Premature Ovarian Insufficiency. Genes (Basel) 2022; 13:2113. [PMID: 36421788 PMCID: PMC9690861 DOI: 10.3390/genes13112113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 10/03/2023] Open
Abstract
The mitochondrial ribosome is critical to mitochondrial protein synthesis. Defects in both the large and small subunits of the mitochondrial ribosome can cause human disease, including, but not limited to, cardiomyopathy, hypoglycaemia, neurological dysfunction, sensorineural hearing loss and premature ovarian insufficiency (POI). POI is a common cause of infertility, characterised by elevated follicle-stimulating hormone and amenorrhea in women under the age of 40. Here we describe a patient with POI, sensorineural hearing loss and Hashimoto's disease. The co-occurrence of POI with sensorineural hearing loss indicates Perrault syndrome. Whole exome sequencing identified two compound heterozygous variants in mitochondrial ribosomal protein 7 (MRPS7), c.373A>T/p.(Lys125*) and c.536G>A/p.(Arg179His). Both novel variants are predicted to be pathogenic via in-silico algorithms. Variants in MRPS7 have been described only once in the literature and were identified in sisters, one of whom presented with congenital sensorineural hearing loss and POI, consistent with our patient phenotype. The other affected sister had a more severe disease course and died in early adolescence due to liver and renal failure before the reproductive phenotype was known. This second independent report validates that variants in MRPS7 are a cause of syndromic POI/Perrault syndrome. We present this case and review the current evidence supporting the integral role of the mitochondrial ribosome in supporting ovarian function.
Collapse
Affiliation(s)
- Brianna L. Kline
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Sylvie Jaillard
- IRSET (Institut de Recherche en Santé, Environnement et Travail), INSERM/EHESP/Univ Rennes/CHU Rennes–UMR_S 1085, F-35000 Rennes, France
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033 Rennes, France
| | - Katrina M. Bell
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Shabnam Bakhshalizadeh
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Gorjana Robevska
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Jocelyn van den Bergen
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Jérôme Dulon
- Department of Endocrinology and Reproductive Medicine, AP-HP, Sorbonne University Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et du Développement, Centre des Pathologies Gynécologiques Rares, 75231 Paris, France
| | - Katie L. Ayers
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - John Christodoulou
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Michel C. Tchan
- Department of Genetic Medicine, Westmead Hospital, Sydney, NSW 2145, Australia
| | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, AP-HP, Sorbonne University Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et du Développement, Centre des Pathologies Gynécologiques Rares, 75231 Paris, France
| | - Andrew H. Sinclair
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Elena J. Tucker
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|