1
|
Tang Y, Sun L, Li S, Luo L, Liu H, Chen Z, Li G. miR-9-5p regulates Sirt1 involved in testicular development and spermatogenesis in mouse. Theriogenology 2024; 230:61-71. [PMID: 39270444 DOI: 10.1016/j.theriogenology.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/16/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Testicular development and spermatogenesis are critical for male reproduction, with histone (de)acetylation playing a key role in chromatin remodeling within germ cells. Sirt1, a key histone deacetylase, is implicated in chromatin remodeling, but its expression pattern and specific role in testicular development and spermatogenesis need further study. This study comprehensively analyzed Sirt1 expression in adult and juvenile mouse testicular tissues and across various male germ cells, utilizing RT-qPCR, Western blot, immunofluorescence, and cell transfection. GO and KEGG enrichment analyses were performed to elucidate the biological functions and pathways associated with Sirt1 and its related genes. Multiple miRNA databases were utilized to predict miRNAs targeting Sirt1, and their expression levels were validated using RT-qPCR. Lentiviral transfection was used to knockdown candidate miRNAs to assess their functional roles. The results revealed a significant downregulation of Sirt1 expression in adult mouse testicular tissues compared to juvenile tissues, with pronounced variation across diverse male germ cells. Sirt1 was highly expressed in spermatogonia and mature sperm, but comparatively lower in spermatocytes and spermatids. GO and KEGG enrichment analyses highlighted Sirt1's role in key biological processes, including chromatin organization, regulation of cell proliferation, and energy homeostasis, as well as its association with signaling pathways like cellular senescence, the FoxO signaling pathway, and the AMPK signaling pathway. Bioinformatic analysis and subsequent RT-qPCR validation identified miR-9-5p as a miRNA targeting Sirt1. The expression of miR-9-5p was significantly higher in adult mouse testicular tissues compared to juvenile tissues, inversely correlating with Sirt1 levels. Moreover, the knockdown of miR-9-5p led to a notable increase in Sirt1 mRNA and protein expression. In conclusion, Sirt1 is a key player in mouse testicular development and spermatogenesis. The discovery that miR-9-5p negatively regulates Sirt1 suggests a critical regulatory axis that may govern these processes, providing novel insights into male fertility and potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yulian Tang
- Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Lishuang Sun
- Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Shu Li
- Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Lvjing Luo
- Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Huiting Liu
- Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Zhengyu Chen
- Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Genliang Li
- Youjiang Medical University for Nationalities, Baise, 533000, China.
| |
Collapse
|
2
|
Liu Y, He X, Wang Y, Zhou H, Zhang Y, Ma J, Wang Z, Yang F, Lu H, Yang Y, Deng Z, Qi X, Gong L, Ren J. Aristolochic acid I induces impairment in spermatogonial stem cell in rodents. Toxicol Res (Camb) 2021; 10:436-445. [PMID: 34141157 DOI: 10.1093/toxres/tfab038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Aristolochic acid I (AAI) is a natural bioactive substance found in plants from the Aristolochiaceae family and impairs spermatogenesis. However, whether AAI-induced spermatogenesis impairment starts at the early stages of spermatogenesis has not yet been determined. Spermatogonial stem cells (SSCs) are undifferentiated spermatogonia that balance self-renewing and differentiating divisions to maintain spermatogenesis throughout adult life and are the only adult stem cells capable of passing genes onto the next generation. The objective of this study was to investigate whether AAI impairs SSCs during the early stages of spermatogenesis. After AAI treatment, we observed looser, smaller and fewer colonies, decreased cell viability, a decreased relative cell proliferation index, and increased apoptosis in SSCs in a concentration- and/or time-dependent manner. Additionally, AAI promoted apoptosis in SSCs, which was accompanied by upregulation of caspase 3, P53 and BAX expression and downregulation of Bcl-2 expression, and suppressed autophagy, which was accompanied by upregulation of P62 expression and downregulation of ATG5 and LC3B expression, in a concentration-dependent manner. Then we found that AAI impaired spermatogenesis in rats, as identified by degeneration of the seminiferous epithelium, and increased apoptosis of testicular cells. Taken together, our findings demonstrate that AAI causes damage to SSCs and implicate apoptosis and autophagy in this process. The impairment of SSCs may contribute to AAI-induced testicular impairment. Our findings provide crucial information for the human application of botanical products containing trace amounts of AAI.
Collapse
Affiliation(s)
- Yongzhen Liu
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China.,Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Xiang He
- Laboratory of Immunology and Virology, Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Yuli Wang
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Houzu Zhou
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Yuan Zhang
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Jianyun Ma
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Zhaochu Wang
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Fangfang Yang
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Henglei Lu
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China.,Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Yifu Yang
- Laboratory of Immunology and Virology, Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Zhongping Deng
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Xinming Qi
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Likun Gong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China.,Zhongshan Institute for Drug Discovery, Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Building A, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Guangdong 528400, China
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| |
Collapse
|
3
|
Raimondo S, Gentile T, Gentile M, Morelli A, Donnarumma F, Cuomo F, De Filippo S, Montano L. p53 Protein Evaluation on Spermatozoa DNA in Fertile and Infertile Males. J Hum Reprod Sci 2019; 12:114-121. [PMID: 31293325 PMCID: PMC6594126 DOI: 10.4103/jhrs.jhrs_170_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Introduction and Objectives: Protein p53 role in the spermatogenesis is demonstrated, it guarantees both the appropriate quality and quantity of mature spermatozoa. In this observational study we evaluate the eventual correlation between “corrected” p53 concentration on human spermatozoa DNA and male fertility potential. Materials and Methods: Our work is based on an observational study made of 169 male in a period between March 2012 and February 2017. The entire study group is composed by 208 male partners aged between 26-38 years with ejaculate volume from 0.6 to 5.8 mL and heterogeneous seminal valuation: 86/208 (41,3%) normospermic; 19/208 (9,1%) mild oligospermic; 51/208 (24,5%) moderate oligospermic to; 52/208 (25,1%) with severe oligospermic. The “control” group A includes 39 male partners considered “fertile”, because we did the p53 “corrected” test on their spermatozoa after 28 ± 3,5 days from the positives of their partners pregnancy test (betaHCG> 400 m U/m L). The group B, subdivided in B1, B2 and B3, includes 169 male partners for a observational period of 60 months. This partners don't report previous conceptions, they aren't smokers, don't make use neither of alcohol nor drugs and don't present pathologic varicocele studied with ecoColorDoppler. They are all married or stable cohabitants from a period of 27-39 months and report to have frequent sex without protection with their partners. Determination of p53 procedure: To separate the spermatozoa from seminal fluid we utilized the Differex™ kit System and the DNA IQ™ kit (Promega). For the p53 test we used the direct DuoSet IC kit and quantitative (R&D System). The p53 values were corrected in respect to the spermatozoa concentration expressed in ng/millions of spermatozoa. Results: Group A (39 male) presents “correct” p53 values that vary from 0.35 to 3.20 ng/millions of spermatozoa and group B presents values that vary from 0.68 to 14.53. From group B (48 male) in the observational period we have recorded 21 pregnancies with initial “correct” p53 values that vary from a minimum of 0.84 to a maximum of 3.29. In the subgroup B1 we obtained 8 pregnancies from male partners with a “correct” p53 concentration included between 0.84 to 1.34. In the subgroup B2 we obtained 13 pregnancies from male partners with a “correct” p53 concentration included between 1.66 and 3.29. In the subgroup B3 (121 male) there weren't neither pregnancies nor miscarriages and “correct” p53 values were included between 3.58 and 14.53. Conclusion: The results show that the member of the group A with values of 'corrected' p53 between 0.35 and 3.20 were considered “Fertile”, although in the observational period 3 miscarriages happened for 3 partners. 36 partners on 39 (92,3%) had a p53 concentration inferior to 1.65, this value were considered as the extreme to identify this group. The member of the group B1 had “corrected” p53 concentration that were included in the group. In the group B2 were observe 13 pregnancies, so its member were considered “potentially fertile” In the group B3 (121 male) weren't observe neither pregnancies nor miscarriages, so its member were considered “potentially infertile”. If further studies confirm these data, we will consider the p53 test ELISA inspected in “correct” p53 as a new and accurate marker of the potential of male fertility.
Collapse
Affiliation(s)
| | - Tommaso Gentile
- Laboratory Research "Gentile s.a.s." 80054 Gragnano, Naples, Italy
| | | | - Alessia Morelli
- Laboratory Research "Gentile s.a.s." 80054 Gragnano, Naples, Italy
| | | | - Felice Cuomo
- Laboratory Research "Gentile s.a.s." 80054 Gragnano, Naples, Italy
| | | | - Luigi Montano
- Andrology Unit, "Saint Francis of Assisi" Hospital, 84121 Salerno, Italy
| |
Collapse
|
4
|
High fidelity CRISPR/Cas9 increases precise monoallelic and biallelic editing events in primordial germ cells. Sci Rep 2018; 8:15126. [PMID: 30310080 PMCID: PMC6181960 DOI: 10.1038/s41598-018-33244-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022] Open
Abstract
Primordial germ cells (PGCs), the embryonic precursors of the sperm and egg, are used for the introduction of genetic modifications into avian genome. Introduction of small defined sequences using genome editing has not been demonstrated in bird species. Here, we compared oligonucleotide-mediated HDR using wild type SpCas9 (SpCas9-WT) and high fidelity SpCas9-HF1 in PGCs and show that many loci in chicken PGCs can be precise edited using donors containing CRISPR/Cas9-blocking mutations positioned in the protospacer adjacent motif (PAM). However, targeting was more efficient using SpCas9-HF1 when mutations were introduced only into the gRNA target sequence. We subsequently employed an eGFP-to-BFP conversion assay, to directly compare HDR mediated by SpCas9-WT and SpCas9-HF1 and discovered that SpCas9-HF1 increases HDR while reducing INDEL formation. Furthermore, SpCas9-HF1 increases the frequency of single allele editing in comparison to SpCas9-WT. We used SpCas9-HF1 to demonstrate the introduction of monoallelic and biallelic point mutations into the FGF20 gene and generate clonal populations of edited PGCs with defined homozygous and heterozygous genotypes. Our results demonstrate the use of oligonucleotide donors and high fidelity CRISPR/Cas9 variants to perform precise genome editing with high efficiency in PGCs.
Collapse
|
5
|
Marjault HB, Allemand I. Consequences of irradiation on adult spermatogenesis: Between infertility and hereditary risk. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:340-348. [DOI: 10.1016/j.mrrev.2016.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022]
|
6
|
The Role of Protamine 2 Gene Expression and Caspase 9 Activity in Male Infertility. J Urol 2015; 195:796-800. [PMID: 26392304 DOI: 10.1016/j.juro.2015.08.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2015] [Indexed: 01/13/2023]
Abstract
PURPOSE Approximately 15% of couples are affected by infertility with the man responsible in almost half of the cases. PRMs (protamines) confer a higher order of DNA packaging in sperm than that in somatic cells. Because of the critical roles of PRMs in spermatid differentiation, aberrations in PRM expression or changes in protein structure could be causes of certain types of idiopathic human male infertility. The aim of this study was to give insight into the role of PRM2 gene expression and caspase 9 activity in the pathogenesis of male infertility. MATERIALS AND METHODS The current study included 70 men with idiopathic infertility and 64 fertile men who attended the andrology outpatient clinic at Mansoura University Hospital. Semen sample analyses were done according to WHO recommendations. The acrosome reaction of spermatozoa recovered from each sample was assessed. Samples were separated using discontinuous gradient separation. From each semen sample mature sperm were separated from immature sperm. The resulting samples were divided into 2 parts, including one to determine caspase 9 activity and the other for RNA extraction and reverse transcriptase-polymerase chain reaction of PRM2 gene expression. The polymerase chain reaction product was electrophoresed on 2% agarose gel. RESULTS PRM2 gene expression was significantly decreased in immature sperm extracted from the fertile and infertile groups. Caspase 9 activity was significantly increased in immature sperm extracted from both groups. CONCLUSIONS Low levels of PRM2 may be associated with morphological abnormalities, initiation of the apoptotic pathway and decreasing sperm motility. PRM2 may be an important marker to better understand the key regulatory pathway of spermatogenesis and it may act as a crucial part of fertilization.
Collapse
|
7
|
Sanchez JR, Reddick TL, Perez M, Centonze VE, Mitra S, Izumi T, McMahan CA, Walter CA. Increased human AP endonuclease 1 level confers protection against the paternal age effect in mice. Mutat Res 2015; 779:124-33. [PMID: 26201249 PMCID: PMC4554949 DOI: 10.1016/j.mrfmmm.2015.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 11/27/2022]
Abstract
Increased paternal age is associated with a greater risk of producing children with genetic disorders originating from de novo germline mutations. Mice mimic the human condition by displaying an age-associated increase in spontaneous mutant frequency in spermatogenic cells. The observed increase in mutant frequency appears to be associated with a decrease in the DNA repair protein, AP endonuclease 1 (APEX1) and Apex1 heterozygous mice display an accelerated paternal age effect as young adults. In this study, we directly tested if APEX1 over-expression in cell lines and transgenic mice could prevent increases in mutagenesis. Cell lines with ectopic expression of APEX1 had increased APEX1 activity and lower spontaneous and induced mutations in the lacI reporter gene relative to the control. Spermatogenic cells obtained from mice transgenic for human APEX1 displayed increased APEX1 activity, were protected from the age-dependent increase in spontaneous germline mutagenesis, and exhibited increased apoptosis in the spermatogonial cell population. These results directly indicate that increases in APEX1 level confer protection against the murine paternal age effect, thus highlighting the role of APEX1 in preserving reproductive health with increasing age and in protection against genotoxin-induced mutagenesis in somatic cells.
Collapse
Affiliation(s)
- Jamila R Sanchez
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA
| | - Traci L Reddick
- Duke Cancer Institute, Duke University, 20 Duke Medicine Circle, Durham, NC 27710, USA
| | - Marissa Perez
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA
| | - Victoria E Centonze
- Cell & Tissue Imaging Center, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, USA
| | - Tadahide Izumi
- Graduate Center for Toxicology, 1095 V.A. Drive, Lexington, KY 40536, USA
| | - C Alex McMahan
- Department of Pathology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA
| | - Christi A Walter
- South Texas Veteran's Health Care System, 7400 Merton Minter Blvd., San Antonio, TX 78229, USA; Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA; Cancer Therapy & Research Center, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA; Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA.
| |
Collapse
|
8
|
Upregulation and nuclear translocation of testicular ghrelin protects differentiating spermatogonia from ionizing radiation injury. Cell Death Dis 2014; 5:e1248. [PMID: 24853426 PMCID: PMC4047875 DOI: 10.1038/cddis.2014.223] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/13/2014] [Accepted: 04/18/2014] [Indexed: 11/13/2022]
Abstract
Proper control of apoptotic signaling is important for maintenance of testicular homeostasis after ionizing radiation (IR). Herein, we challenged the hypothesis that ghrelin, a pleiotropic modulator, is potentially involved in IR-induced germ cell injury. Lower body exposure to 2 Gy of IR induced a notable increase of ghrelin expression in the nuclear of differentiating spermatogonia at defined stages, with an impairment in the Leydig cells (LCs)-expressing ghrelin. Unexpectedly, inhibition of the ghrelin pathway by intraperitoneal injection of a specific GHS-R1α antagonist enhanced spermatogonia elimination by apoptosis during the early recovery following IR, and thereafter resulted in impaired male fertility, suggesting that the anti-apoptotic effects of evoked ghrelin, although transient along testicular IR injury, have a profound influence on the post-injury recovery. In addition, inhibition of ghrelin signaling resulted in a significant increase in the intratesticular testosterone (T) level at the end of 21 days after IR, which should stimulate the spermatogenic recovery from surviving spermatogonia to a certain extent during the late stage. We further demonstrated that the upregulation and nuclear trafficking of ghrelin, elaborately regulated by IR-elicited antioxidant system in spermatogonia, may act through a p53-dependent mechanism. The elicitation of ghrelin expression by IR stress, the regulation of ghrelin expression by IR-induced oxidative stress and the interaction between p53 and ghrelin signaling during IR injury were confirmed in cultured spermatogonia. Hence, our results represent the first evidence in support of a radioprotective role of ghrelin in the differentiating spermatogonia. The acutely, delicate regulation of local-produced ghrelin appears to be a fine-tune mechanism modulating the balance between testicular homeostasis and early IR injury.
Collapse
|
9
|
Ramalho-Santos J, Amaral S. Mitochondria and mammalian reproduction. Mol Cell Endocrinol 2013; 379:74-84. [PMID: 23769709 DOI: 10.1016/j.mce.2013.06.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/22/2013] [Accepted: 06/06/2013] [Indexed: 12/22/2022]
Abstract
Mitochondria are cellular organelles with crucial roles in ATP synthesis, metabolic integration, reactive oxygen species (ROS) synthesis and management, the regulation of apoptosis (namely via the intrinsic pathway), among many others. Additionally, mitochondria in different organs or cell types may have distinct properties that can decisively influence functional analysis. In terms of the importance of mitochondria in mammalian reproduction, and although there are species-specific differences, these aspects involve both energetic considerations for gametogenesis and fertilization, control of apoptosis to ensure the proper production of viable gametes, and ROS signaling, as well as other emerging aspects. Crucially, mitochondria are the starting point for steroid hormone biosynthesis, given that the conversion of cholesterol to pregnenolone (a common precursor for all steroid hormones) takes place via the activity of the cytochrome P450 side-chain cleavage enzyme (P450scc) on the inner mitochondrial membrane. Furthermore, mitochondrial activity in reproduction has to be considered in accordance with the very distinct strategies for gamete production in the male and female. These include distinct gonad morpho-physiologies, different types of steroids that are more prevalent (testosterone, estrogens, progesterone), and, importantly, the very particular timings of gametogenesis. While spermatogenesis is complete and continuous since puberty, producing a seemingly inexhaustible pool of gametes in a fixed environment; oogenesis involves the episodic production of very few gametes in an environment that changes cyclically. These aspects have always to be taken into account when considering the roles of any common element in mammalian reproduction.
Collapse
Affiliation(s)
- João Ramalho-Santos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Portugal.
| | | |
Collapse
|
10
|
Shinde DN, Elmer DP, Calabrese P, Boulanger J, Arnheim N, Tiemann-Boege I. New evidence for positive selection helps explain the paternal age effect observed in achondroplasia. Hum Mol Genet 2013; 22:4117-26. [PMID: 23740942 PMCID: PMC3781639 DOI: 10.1093/hmg/ddt260] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There are certain de novo germline mutations associated with genetic disorders whose mutation rates per generation are orders of magnitude higher than the genome average. Moreover, these mutations occur exclusively in the male germ line and older men have a higher probability of having an affected child than younger ones, known as the paternal age effect (PAE). The classic example of a genetic disorder exhibiting a PAE is achondroplasia, caused predominantly by a single-nucleotide substitution (c.1138G>A) in FGFR3. To elucidate what mechanisms might be driving the high frequency of this mutation in the male germline, we examined the spatial distribution of the c.1138G>A substitution in a testis from an 80-year-old unaffected man. Using a technology based on bead-emulsion amplification, we were able to measure mutation frequencies in 192 individual pieces of the dissected testis with a false-positive rate lower than 2.7 × 10−6. We observed that most mutations are clustered in a few pieces with 95% of all mutations occurring in 27% of the total testis. Using computational simulations, we rejected the model proposing an elevated mutation rate per cell division at this nucleotide site. Instead, we determined that the observed mutation distribution fits a germline selection model, where mutant spermatogonial stem cells have a proliferative advantage over unmutated cells. Combined with data on several other PAE mutations, our results support the idea that the PAE, associated with a number of Mendelian disorders, may be explained primarily by a selective mechanism.
Collapse
Affiliation(s)
- Deepali N Shinde
- The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Birth rates for older fathers have increased 30% since 1980. When combined with the increased risk for genetic and multifactorial disorders in children conceived by older fathers, paternal age has become an important health issue for modern society. Laboratory research in this area has been minimal, perhaps because of significant experimental barriers, not the least of which is inadequate access to fresh, disease-free human testicular tissue. Regardless, progress has been made and intriguing models supported by experimental evidence have been proposed. The putative mechanisms range from reduced DNA repair activity, leading to increased mutagenesis, to positive selection of germ cells harboring specific disease-causing mutations. There remain many important venues for research in this increasingly relevant phenomenon that impacts future generations.
Collapse
Affiliation(s)
- Jamila R Momand
- South Texas Veterans Health Care System, San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
12
|
Murphey P, McLean DJ, McMahan CA, Walter CA, McCarrey JR. Enhanced genetic integrity in mouse germ cells. Biol Reprod 2013; 88:6. [PMID: 23153565 DOI: 10.1095/biolreprod.112.103481] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Genetically based diseases constitute a major human health burden, and de novo germline mutations represent a source of heritable genetic alterations that can cause such disorders in offspring. The availability of transgenic rodent systems with recoverable, mutation reporter genes has been used to assess the occurrence of spontaneous point mutations in germline cells. Previous studies using the lacI mutation reporter transgenic mouse system showed that the frequency of spontaneous mutations is significantly lower in advanced male germ cells than in somatic cell types from the same individuals. Here we used this same mutation reporter transgene system to show that female germ cells also display a mutation frequency that is lower than that in corresponding somatic cells and similar to that seen in male germ cells, indicating this is a common feature of germ cells in both sexes. In addition, we showed that statistically significant differences in mutation frequencies are evident between germ cells and somatic cells in both sexes as early as mid-fetal stages in the mouse. Finally, a comparison of the mutation frequency in a general population of early type A spermatogonia with that in a population enriched for Thy-1-positive spermatogonia suggests there is heterogeneity among the early spermatogonial population such that a subset of these cells are predestined to form true spermatogonial stem cells. Taken together, these results support the disposable soma theory, which posits that genetic integrity is normally maintained more stringently in the germ line than in the soma and suggests that this is achieved by minimizing the initial occurrence of mutations in early germline cells and their subsequent gametogenic progeny relative to that in somatic cells.
Collapse
Affiliation(s)
- Patricia Murphey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | |
Collapse
|
13
|
Characterization and expression pattern of p53 during spermatogenesis in the Chinese mitten crab Eriocheir sinensis. Mol Biol Rep 2012; 40:1043-51. [PMID: 23065235 DOI: 10.1007/s11033-012-2145-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
Abstract
p53, as a "Guardian of the Genome", plays an important role in cell cycle arrest, apoptosis, DNA repair and inhibition of angiogenesis in different tissues including testis. p53 gene and its protein perform many essential roles for mammalian spermatogenesis. To explore its functions during spermatogenesis in Eriocheir sinensis, we have cloned and sequenced the cDNA (1,218 bp) of p53 from the testis by degenerating primer PCR and rapid-amplification of cDNA ends. The protein alignment of p53 shows the conserved DNA binding domain, dimerization site and zinc binding site consisted of the predicted structures. Phylogenetic analysis revealed that p53 was more closer to Marsupenaeus japonicus and Tigriopus japonicus than other examined species. Tissue expression analysis of p53 mRNA showed p53 was distinctly expressed in accessory sexual gland, muscle, gill, heart, hepatopancreas and testis. In situ hybridization revealed that the p53 mRNA was weakly distributed around the nucleus, but stronger in the invaginated acrosomal tubule at the early stage. At the middle stage, p53 mRNA signal was increased than the early stage and the signal displayed dot-like pattern on the surface of cup-like nucleus. The signal on acrosomal cap is stronger than on the acrosomal tubule, despite acrosomal tubule signal was also distinct. At the late stage, the signal was still mainly located in acrosomal cap and acrosomal tubule. Sporadic signal were found surrounding the cup-like nucleus, but they were very weak. In the mature sperm, the signal was dramatically decreased. Even though the signal on cup-like nucleus and acrosomal tubule were distinct, they were weaker than those in middle stage. Based on these results, we concluded that p53 may play an important role in formation of acrosome biogenesis and nuclear shaping during spermiogenesis of E. sinensis.
Collapse
|
14
|
Cordelli E, Eleuteri P, Grollino MG, Benassi B, Blandino G, Bartoleschi C, Pardini MC, Di Caprio EV, Spanò M, Pacchierotti F, Villani P. Direct and delayed X-ray-induced DNA damage in male mouse germ cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:429-439. [PMID: 22730201 DOI: 10.1002/em.21703] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 06/01/2023]
Abstract
Sperm DNA integrity is essential for the accurate transmission of paternal genetic information. Various stages of spermatogenesis are characterized by large differences in radiosensitivity. Differentiating spermatogonia are susceptible to radiation-induced cell killing, but some of them can repair DNA damage and progress through differentiation. In this study, we applied the neutral comet assay, immunodetection of phosphorylated H2AX (γ-H2AX) and the Sperm Chromatin Structure Assay (SCSA) to detect DNA strand breaks in testicular cells and spermatozoa at different times following in vivo X-ray irradiation. Radiation produced DNA strand breaks in testicular cells that were repaired within the first few hours after exposure. Spermatozoa were resistant to the induction of DNA damage, but non-targeted DNA lesions were detected in spermatozoa derived from surviving irradiated spermatogonia. These lesions formed while round spermatids started to elongate within the testicular seminiferous tubules. The transcription of pro-apoptotic genes at this time was also enhanced, suggesting that an apoptotic-like process was involved in DNA break production. Our results suggest that proliferating spermatogonia retain a memory of the radiation insult that is recognized at a later developmental stage and activates a process leading to DNA fragmentation.
Collapse
|
15
|
Wang DH, Hu JR, Wang LY, Hu YJ, Tan FQ, Zhou H, Shao JZ, Yang WX. The apoptotic function analysis of p53, Apaf1, Caspase3 and Caspase7 during the spermatogenesis of the Chinese fire-bellied newt Cynops orientalis. PLoS One 2012; 7:e39920. [PMID: 22768170 PMCID: PMC3386923 DOI: 10.1371/journal.pone.0039920] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/29/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Spontaneous and stress-induced germ cell apoptosis during spermatogenesis of multicellular organisms have been investigated broadly in mammals. Spermatogenetic process in urodele amphibians was essentially like that in mammals in spite of morphological differences; however, the mechanism of germ cell apoptosis in urodele amphibians remains unknown. The Chinese fire-belly newt, Cynops orientalis, was an excellent organism for studying germ cell apoptosis due to its sensitiveness to temperature, strong endurance of starvation, and sensitive skin to heavy metal exposure. METHODOLOGY/PRINCIPAL FINDINGS TUNEL result showed that spontaneous germ cell apoptosis took place in normal newt, and severe stress-induced apoptosis occurred to spermatids and sperm in response to heat shock (40°C 2 h), cold exposure (4°C 12 h), cadmium exposure (Cd 36 h), and starvation stress. Quantitative reverse transcription polymerase chain reactions (qRT-PCR) showed that gene expression of Caspase3 or Caspase7 was obviously elevated after stress treatment. Apaf1 was not altered at its gene expression level, and p53 was significantly decreased after various stress treatment. Caspase assay demonstrated that Caspase-3, -8, -9 enzyme activities in newt testis were significantly elevated after heat shock (40°C 2 h), cold exposure (4°C 12 h), and cadmium exposure (Cd 36 h), while Caspase3 and Caspase8 activities were increased with Caspase9 significantly decreased after starvation treatment. CONCLUSIONS/SIGNIFICANCE Severe germ cell apoptosis triggered by heat shock, cold exposure, and cadmium exposure was Caspase3 dependent, which probably involved both extrinsic and intrinsic pathways. Apaf1 may be involved in this process without elevating its gene expression. But starvation-induced germ cell apoptosis was likely mainly through extrinsic pathway. p53 was probably not responsible for stress-induced germ cell apoptosis in newt testis. The intriguing high occurrence of spermatid and sperm apoptosis probably resulted from the sperm morphology and unique reproduction policy of Chinese fire-belly newt, Cynops orientalis.
Collapse
Affiliation(s)
- Da-Hui Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Jian-Rao Hu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Li-Ya Wang
- Department of Reproductive Endocrinology, The Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yan-Jun Hu
- Department of Reproductive Endocrinology, The Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Hong Zhou
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Jian-Zhong Shao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
16
|
Cao Y, Fu YL, Ge CH, Xu WX, Zhan YQ, Li CY, Li W, Wang XH, Wang ZD, Yu M, Yang XM. Mice overexpression of human augmenter of liver regeneration (hALR) in male germ cells shows abnormal spermatogenesis and reduced fertility. Endocr J 2012; 59:989-99. [PMID: 22863717 DOI: 10.1507/endocrj.ej12-0160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Human augmenter of liver regeneration (hALR) is a sulfhydryl oxidase that is highly expressed in spermatogonia and early spermatocytes. To investigate the physiological effects of hALR in spermatogenesis, we generated a hALR transgenic mouse model driven by the human TSPY (testis-specific protein, Y-encoded) promoter that allows the transgene to be specifically activated in the testes. hALR content was found to be increased in both germ cells. The histological and TUNEL analysis of transgenic testes revealed a number of spermatogenetic defects including primary spermatocyte overpopulation followed by depletion through apoptosis, degenerating and detached nucleated germ cells, haploid cell loss and intraepithelial vacuoles of varying sizes. In line with these features, adult transgenic male mice also displayed a reduction in fertility. Our data suggest that regulated spatial and temporal expression of hALR is required for normal testicular development and spermatogenesis, and overexpression of hALR results in influencing the sperm morphology and quantity and the eventual reduction in male fertility. Present findings in the mouse may be of interest to human male fertility.
Collapse
Affiliation(s)
- Yan Cao
- Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Vogel KS, Perez M, Momand JR, Acevedo-Torres K, Hildreth K, Garcia RA, Torres-Ramos CA, Ayala-Torres S, Prihoda TJ, McMahan CA, Walter CA. Age-related instability in spermatogenic cell nuclear and mitochondrial DNA obtained from Apex1 heterozygous mice. Mol Reprod Dev 2011; 78:906-19. [PMID: 21919107 PMCID: PMC3391697 DOI: 10.1002/mrd.21374] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 07/27/2011] [Indexed: 01/17/2023]
Abstract
The prevalence of spontaneous mutations increases with age in the male germline; consequently, older men have an increased risk of siring children with genetic disease due to de novo mutations. The lacI transgenic mouse can be used to study paternal age effects, and in this system, the prevalence of de novo mutations increases in the male germline at old ages. Mutagenesis is linked with DNA repair capacity, and base excision repair (BER), which can ameliorate spontaneous DNA damage, decreases in nuclear extracts of spermatogenic cells from old mice. Mice heterozygous for a null allele of the Apex1 gene, which encodes apurinic/apyrimidinic endonuclease I (APEN), an essential BER enzyme, display an accelerated increase in spontaneous germline mutagenesis early in life. Here, the consequences of lifelong reduction of APEN on genetic instability in the male germline were examined, for the first time, at middle and old ages. Mutant frequency increased earlier in spermatogenic cells from Apex1(+/-) mice (by 6 months of age). Nuclear DNA damage increased with age in the spermatogenic lineage for both wild-type and Apex1(+/-) mice. By old age, mutant frequencies were similar for wild-type and APEN-deficient mice. Mitochondrial genome repair also depends on APEN, and novel analysis of mitochondrial DNA (mtDNA) damage revealed an increase in the Apex1(+/-) spermatogenic cells by middle age. Thus, Apex1 heterozygosity results in accelerated damage to mtDNA and spontaneous mutagenesis, consistent with an essential role for APEN in maintaining nuclear and mtDNA integrity in spermatogenic cells throughout life.
Collapse
Affiliation(s)
- Kristine S. Vogel
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900
| | - Marissa Perez
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900
| | - Jamila R. Momand
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900
| | | | - Kim Hildreth
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900
| | - Rebecca A. Garcia
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900
| | | | | | - Thomas J. Prihoda
- Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900
| | - C. Alex McMahan
- Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900
| | - Christi A. Walter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900
- South Texas Veteran’s Health Care System, San Antonio, TX 78229
| |
Collapse
|
18
|
Dupont PY, Stepien G. Computational analysis of the transcriptional regulation of the adenine nucleotide translocator isoform 4 gene and its role in spermatozoid glycolytic metabolism. Gene 2011; 487:38-45. [PMID: 21827840 DOI: 10.1016/j.gene.2011.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/08/2011] [Accepted: 07/14/2011] [Indexed: 01/01/2023]
Abstract
Computational phylogenetic analysis coupled to promoter sequence alignment was used to understand mechanisms of transcriptional regulation and to identify potentially coregulated genes. Our strategy was validated on the human ANT4 gene which encodes the fourth isoform of the mitochondrial adenine nucleotide translocator specifically expressed during spermatogenesis. The movement of sperm flagella is driven mainly by ATP generated by glycolytic pathways, and the specific induction of the mitochondrial ANT4 protein presented an interesting puzzle. We analysed the sequences of the promoters, introns and exons of 30 mammalian ANT4 genes and constructed regulatory models. The whole human genome and promoter database were screened for genes that were potentially regulated by the generated models. 80% of the identified co-regulated genes encoded proteins with specific roles in spermatogenesis and with functions linked to male reproduction. Our in silico study enabled us to precise the specific role of the ANT4 isoform in spermatozoid bioenergetics.
Collapse
|