1
|
Dong L, Liao H, Zhao L, Wang J, Wang C, Wang B, Sun Y, Xu L, Xia Y, Ling S, Lou X, Qin J. A functional crosstalk between the H3K9 methylation writers and their reader HP1 in safeguarding embryonic stem cell identity. Stem Cell Reports 2023; 18:1775-1792. [PMID: 37703822 PMCID: PMC10545489 DOI: 10.1016/j.stemcr.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023] Open
Abstract
Histone H3 lysine 9 (H3K9) methylation, as a hallmark of heterochromatin, has a central role in cell lineage and fate determination. Although evidence of a cooperation between H3K9 methylation writers and their readers has started to emerge, their actual interplay remains elusive. Here, we show that loss of H3K9 methylation readers, the Hp1 family, causes reduced expression of H3K9 methyltransferases, and that this subsequently leads to the exit of embryonic stem cells (ESCs) from pluripotency and a reciprocal gain of lineage-specific characteristics. Importantly, the phenotypes of Hp1-null ESCs can be rescued by ectopic expression of Setdb1, Nanog, and Oct4. Furthermore, Setdb1 ablation results in loss of ESC identity, which is accompanied by a reduction in the expression of Hp1 genes. Together, our data support a model in which the safeguarding of ESC identity involves the cooperation between the H3K9 methylation writers and their readers.
Collapse
Affiliation(s)
- Lixia Dong
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Huaqi Liao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Linchun Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Jingnan Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Congcong Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Bowen Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Yanqi Sun
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Lijun Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Yin Xia
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shizhang Ling
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wannan Medical College, Wuhu, China.
| | - Xin Lou
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou 311100, China.
| | - Jinzhong Qin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.
| |
Collapse
|
2
|
The Role of Polycomb Proteins in Cell Lineage Commitment and Embryonic Development. EPIGENOMES 2022; 6:epigenomes6030023. [PMID: 35997369 PMCID: PMC9397020 DOI: 10.3390/epigenomes6030023] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Embryonic development is a highly intricate and complex process. Different regulatory mechanisms cooperatively dictate the fate of cells as they progress from pluripotent stem cells to terminally differentiated cell types in tissues. A crucial regulator of these processes is the Polycomb Repressive Complex 2 (PRC2). By catalyzing the mono-, di-, and tri-methylation of lysine residues on histone H3 tails (H3K27me3), PRC2 compacts chromatin by cooperating with Polycomb Repressive Complex 1 (PRC1) and represses transcription of target genes. Proteomic and biochemical studies have revealed two variant complexes of PRC2, namely PRC2.1 which consists of the core proteins (EZH2, SUZ12, EED, and RBBP4/7) interacting with one of the Polycomb-like proteins (MTF2, PHF1, PHF19), and EPOP or PALI1/2, and PRC2.2 which contains JARID2 and AEBP2 proteins. MTF2 and JARID2 have been discovered to have crucial roles in directing and recruiting PRC2 to target genes for repression in embryonic stem cells (ESCs). Following these findings, recent work in the field has begun to explore the roles of different PRC2 variant complexes during different stages of embryonic development, by examining molecular phenotypes of PRC2 mutants in both in vitro (2D and 3D differentiation) and in vivo (knock-out mice) assays, analyzed with modern single-cell omics and biochemical assays. In this review, we discuss the latest findings that uncovered the roles of different PRC2 proteins during cell-fate and lineage specification and extrapolate these findings to define a developmental roadmap for different flavors of PRC2 regulation during mammalian embryonic development.
Collapse
|
3
|
Maeda R, Tachibana M. HP1 maintains protein stability of H3K9 methyltransferases and demethylases. EMBO Rep 2022; 23:e53581. [PMID: 35166421 PMCID: PMC8982598 DOI: 10.15252/embr.202153581] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/09/2022] Open
Abstract
Di- or tri-methylated H3K9 (H3K9me2/3) is an epigenetic mark of heterochromatin. Heterochromatin protein 1 (HP1) specifically recognizes H3K9me2/3, contributing to transcriptional suppression and spread of H3K9me2/3. Here, we demonstrate another role of HP1 in heterochromatin organization: regulation of protein stability of H3K9 methyltransferases (H3K9 MTs) and demethylases (H3K9 DMs). We show that HP1 interaction-defective mutants of H3K9 MTs, Suv39h1 and Setdb1, undergo protein degradation. We further establish mouse embryonic stem cell lines lacking all three HP1 paralogs. In the HP1-deficient cells, Suv39h1, Suv39h2, Setdb1, and G9a/GLP complex decrease at the protein level, and the enzymes are released from chromatin. HP1 mutants that cannot recognize H3K9me2/3 or form dimers cannot stabilize these enzymes, indicating that the tethering of H3K9 MTs to chromatin is critical for their protein stability. We show that HP1 also stabilizes H3K9 DMs, Jmjd1a and Jmjd1b. Our study indicates that mammalian HP1 forms a heterochromatin hub that governs protein stability of H3K9 MTs and H3K9 DMs.
Collapse
Affiliation(s)
- Ryo Maeda
- Graduate School of Frontier BiosciencesOsaka UniversityOsakaJapan,Institute of Advanced Medical SciencesTokushima UniversityTokushimaJapan
| | - Makoto Tachibana
- Graduate School of Frontier BiosciencesOsaka UniversityOsakaJapan,Institute of Advanced Medical SciencesTokushima UniversityTokushimaJapan
| |
Collapse
|
4
|
Smoking-associated upregulation of CBX3 suppresses ARHGAP24 expression to activate Rac1 signaling and promote tumor progression in lung adenocarcinoma. Oncogene 2021; 41:538-549. [PMID: 34785774 PMCID: PMC8782721 DOI: 10.1038/s41388-021-02114-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 01/10/2023]
Abstract
Although tobacco smoking is a risk factor for lung adenocarcinoma (LUAD), the mechanisms by which tobacco smoking induces LUAD development remain elusive. Histone methylation levels in human bronchial epithelial cells have been reported to increase after exposure to cigarettes. In this study, we explored the mechanisms regulating histone methylation in LUAD in response to smoking. We found that the histone H3K9 methylation reader CBX3 was upregulated in current smokers with LUAD, and that CBX3 overexpression promoted LUAD progression. Functional enrichment analyses revealed that CBX3 regulated the activation of Rho GTPases in LUAD. We also found that by forming a complex with TRIM28, TRIM24, and RBBP4, CBX3 repressed the expression of ARHGAP24 and increased the amount of active Rac1 in LUAD cells. Collectively, these results suggest that smoking associated upregulation of CBX3 promotes LUAD progression by activating the ARHGAP24/Rac1 pathway. Hence, the CBX3/ARHGAP24/Rac1 axis may represent a promising therapeutic target in smoking-induced LUAD.
Collapse
|
5
|
Piunti A, Shilatifard A. The roles of Polycomb repressive complexes in mammalian development and cancer. Nat Rev Mol Cell Biol 2021; 22:326-345. [PMID: 33723438 DOI: 10.1038/s41580-021-00341-1] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
More than 80 years ago, the first Polycomb-related phenotype was identified in Drosophila melanogaster. Later, a group of diverse genes collectively called Polycomb group (PcG) genes were identified based on common mutant phenotypes. PcG proteins, which are well-conserved in animals, were originally characterized as negative regulators of gene transcription during development and subsequently shown to function in various biological processes; their deregulation is associated with diverse phenotypes in development and in disease, especially cancer. PcG proteins function on chromatin and can form two distinct complexes with different enzymatic activities: Polycomb repressive complex 1 (PRC1) is a histone ubiquitin ligase and PRC2 is a histone methyltransferase. Recent studies have revealed the existence of various mutually exclusive PRC1 and PRC2 variants. In this Review, we discuss new concepts concerning the biochemical and molecular functions of these new PcG complex variants, and how their epigenetic activities are involved in mammalian development and cancer.
Collapse
Affiliation(s)
- Andrea Piunti
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
6
|
Tien CL, Mohammadparast S, Chang C. Heterochromatin protein 1 beta regulates neural and neural crest development by repressing pluripotency-associated gene pou5f3.2/oct25 in Xenopus. Dev Dyn 2021; 250:1113-1124. [PMID: 33595886 DOI: 10.1002/dvdy.319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Heterochromatin protein 1 (HP1) is associated with and plays a role in compact chromatin conformation, but the function of HP1 in vertebrate embryogenesis is not understood completely. RESULTS Here, we explore the activity of HP1 in early neural development in the frog Xenopus laevis. We show that the three isoforms of HP1, HP1α, β, and γ, are expressed in similar patterns in the neural and neural crest derivatives in early embryos. Despite this, knockdown of HP1β and HP1γ, but not HP1α, in presumptive neural tissues leads to head defects. Late pan-neural markers and neural crest specifier genes are reduced, but early neural and neural plate border genes are less affected in the morphant embryos. Further investigation reveals that neuronal differentiation is impaired and a pluripotency-associated gene, pou5f3.2/oct25, is expanded in HP1β morphants. Ectopic expression of pou5f3.2/oct25 mimics the effect of HP1β knockdown on marker expression, whereas simultaneous knockdown of HP1β and pou5f3.2/oct25 partially rescues expression of these genes. CONCLUSION Taken together, the data suggest that HP1β regulates transition from precursor to more differentiated cell types during neural and neural crest development in Xenopus, and it does so at least partially via repression of the pluripotency-associated transcription regulator pou5f3.2/oct25.
Collapse
Affiliation(s)
- Chih-Liang Tien
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Saeid Mohammadparast
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
7
|
A genomics approach to females with infertility and recurrent pregnancy loss. Hum Genet 2020; 139:605-613. [PMID: 32172300 DOI: 10.1007/s00439-020-02143-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 02/19/2020] [Indexed: 12/27/2022]
Abstract
Infertility affects 10% of reproductive-age women and is extremely heterogeneous in etiology. The genetic contribution to female infertility is incompletely understood, and involves chromosomal and single-gene defects. Our aim in this study is to decipher single-gene causes in infertile women in whom endocrinological, anatomical, and chromosomal causes have been excluded. Our cohort comprises women with recurrent pregnancy loss and no offspring from spontaneous pregnancies (RPL, n = 61) and those who never achieved clinical pregnancy and were referred for in vitro fertilization [primary infertility (PI), n = 14]. Whole-exome sequencing revealed candidate variants in 14, which represents 43% of those with PI and 13% of those with RPL. These include variants in previously established female infertility-related genes (TLE6, NLRP7, FSHR, and ZP1) as well as genes with only tentative links in the literature (NLRP5). Candidate variants in genes linked to primary ciliary dyskinesia (DNAH11 and CCNO) were identified in individuals with and without systemic features of the disease. We also identified variants in genes not previously linked to female infertility. These include one homozygous variant each in CCDC68, CBX3, CENPH, PABPC1L, PIF1, PLK1, and REXO4, which we propose as candidate genes for infertility based on their established biology or compatible animal models. Our study expands the contribution of single genes to the etiology of PI and RPL, improves the precision of disease classification at the molecular level, and offers the potential for future treatment and development of human genetics-inspired fertility regulators.
Collapse
|
8
|
Mathison A, Milech De Assuncao T, Dsouza NR, Williams M, Zimmermann MT, Urrutia R, Lomberk G. Discovery, expression, cellular localization, and molecular properties of a novel, alternative spliced HP1γ isoform, lacking the chromoshadow domain. PLoS One 2020; 15:e0217452. [PMID: 32027651 PMCID: PMC7004349 DOI: 10.1371/journal.pone.0217452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
By reading the H3K9Me3 mark through their N-terminal chromodomain (CD), HP1 proteins play a significant role in cancer-associated processes, including cell proliferation, differentiation, chromosomal stability, and DNA repair. Here, we used a combination of bioinformatics-based methodologies, as well as experimentally-derived datasets, that reveal the existence of a novel short HP1γ (CBX3) isoform, named here sHP1γ, generated by alternative splicing of the CBX3 locus. The sHP1γ mRNA encodes a protein composed of 101 residues and lacks the C-terminal chromoshadow domain (CSD) that is required for dimerization and heterodimerization in the previously described 183 a. a HP1γ protein. Fold recognition, order-to-disorder calculations, threading, homology-based molecular modeling, docking, and molecular dynamic simulations show that the sHP1γ is comprised of a CD flanked by intrinsically disordered regions (IDRs) with an IDR-CD-IDR domain organization and likely retains the ability to bind to the H3K9Me3. Both qPCR analyses and mRNA-seq data derived from large-scale studies confirmed that sHP1γ mRNA is expressed in the majority of human tissues at approximately constant ratios with the chromoshadow domain containing isoform. However, sHP1γ mRNA levels appear to be dysregulated in different cancer types. Thus, our data supports the notion that, due to the existence of functionally different isoforms, the regulation of HP1γ-mediated functions is more complex than previously anticipated.
Collapse
Affiliation(s)
- Angela Mathison
- Genomics and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Division of Research, Department of Surgery, Medical College of Wisconsin, WI Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Thiago Milech De Assuncao
- Genomics and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Division of Research, Department of Surgery, Medical College of Wisconsin, WI Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Nikita R. Dsouza
- Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, Genomics and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Monique Williams
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael T. Zimmermann
- Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, Genomics and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Raul Urrutia
- Genomics and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Division of Research, Department of Surgery, Medical College of Wisconsin, WI Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Gwen Lomberk
- Genomics and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Division of Research, Department of Surgery, Medical College of Wisconsin, WI Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
9
|
Singh PB, Newman AG. On the relations of phase separation and Hi-C maps to epigenetics. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191976. [PMID: 32257349 PMCID: PMC7062049 DOI: 10.1098/rsos.191976] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/03/2020] [Indexed: 05/10/2023]
Abstract
The relationship between compartmentalization of the genome and epigenetics is long and hoary. In 1928, Heitz defined heterochromatin as the largest differentiated chromatin compartment in eukaryotic nuclei. Müller's discovery of position-effect variegation in 1930 went on to show that heterochromatin is a cytologically visible state of heritable (epigenetic) gene repression. Current insights into compartmentalization have come from a high-throughput top-down approach where contact frequency (Hi-C) maps revealed the presence of compartmental domains that segregate the genome into heterochromatin and euchromatin. It has been argued that the compartmentalization seen in Hi-C maps is owing to the physiochemical process of phase separation. Oddly, the insights provided by these experimental and conceptual advances have remained largely silent on how Hi-C maps and phase separation relate to epigenetics. Addressing this issue directly in mammals, we have made use of a bottom-up approach starting with the hallmarks of constitutive heterochromatin, heterochromatin protein 1 (HP1) and its binding partner the H3K9me2/3 determinant of the histone code. They are key epigenetic regulators in eukaryotes. Both hallmarks are also found outside mammalian constitutive heterochromatin as constituents of larger (0.1-5 Mb) heterochromatin-like domains and smaller (less than 100 kb) complexes. The well-documented ability of HP1 proteins to function as bridges between H3K9me2/3-marked nucleosomes contributes to polymer-polymer phase separation that packages epigenetically heritable chromatin states during interphase. Contacts mediated by HP1 'bridging' are likely to have been detected in Hi-C maps, as evidenced by the B4 heterochromatic subcompartment that emerges from contacts between large KRAB-ZNF heterochromatin-like domains. Further, mutational analyses have revealed a finer, innate, compartmentalization in Hi-C experiments that probably reflect contacts involving smaller domains/complexes. Proteins that bridge (modified) DNA and histones in nucleosomal fibres-where the HP1-H3K9me2/3 interaction represents the most evolutionarily conserved paradigm-could drive and generate the fundamental compartmentalization of the interphase nucleus. This has implications for the mechanism(s) that maintains cellular identity, be it a terminally differentiated fibroblast or a pluripotent embryonic stem cell.
Collapse
Affiliation(s)
- Prim B. Singh
- Nazarbayev University School of Medicine, 5/1 Kerei, Zhanibek Khandar Street, Nur-Sultan Z05K4F4, Kazakhstan
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, Pirogov Street 2, Novosibirsk 630090, Russian Federation
| | - Andrew G. Newman
- Institute of Cell and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
10
|
Naruse C, Abe K, Yoshihara T, Kato T, Nishiuchi T, Asano M. Heterochromatin protein 1γ deficiency decreases histone H3K27 methylation in mouse neurosphere neuronal genes. FASEB J 2020; 34:3956-3968. [PMID: 31961023 DOI: 10.1096/fj.201900139r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 09/12/2019] [Accepted: 12/30/2019] [Indexed: 11/11/2022]
Abstract
Heterochromatin protein (HP) 1γ, a component of heterochromatin in eukaryotes, is involved in H3K9 methylation. Although HP1γ is expressed strongly in neural tissues and neural stem cells, its functions are unclear. To elucidate the roles of HP1γ, we analyzed HP1γ -deficient (HP1γ KO) mouse embryonic neurospheres and determined that HP1γ KO neurospheres tended to differentiate after quaternary culture. Several genes normally expressed in neuronal cells were upregulated in HP1γ KO undifferentiated neurospheres, but not in the wild type (WT). Compared to that in the control neurospheres, the occupancy of H3K27me3 was lower around the transcription start sites (TSSs) of these genes in HP1γ KO neurospheres, while H3K9me2/3, H3K4me3, and H3K27ac amounts remained unchanged. Moreover, amounts of the H3K27me2/3 demethylases, UTX, and JMJD3, were increased around the TSSs of these genes. Treatment with GSK-J4, an inhibitor of H3K27 demethylases, decreased the expression of genes upregulated in HP1γ KO neurospheres, along with an increase of H3K27me3 amounts. Therefore, in murine neurospheres, HP1γ protected the promoter sites of differentiated cell-specific genes against H3K27 demethylases to repress the expression of these genes. A better understanding of central cellular processes such as histone methylation will help elucidate critical events such as cell-specific gene expression, epigenetics, and differentiation.
Collapse
Affiliation(s)
- Chie Naruse
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kanae Abe
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Toru Yoshihara
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoaki Kato
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Takumi Nishiuchi
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Zhong X, Kan A, Zhang W, Zhou J, Zhang H, Chen J, Tang S. CBX3/HP1γ promotes tumor proliferation and predicts poor survival in hepatocellular carcinoma. Aging (Albany NY) 2019; 11:5483-5497. [PMID: 31375643 PMCID: PMC6710055 DOI: 10.18632/aging.102132] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/26/2019] [Indexed: 02/05/2023]
Abstract
HP1γ, encoded by CBX3, is associated with cancer progression and patient prognosis. However, the prognostic value and functions of CBX3/HP1γ in hepatocellular carcinoma (HCC) remain unclear. Here, we performed a bioinformatics analysis using the Oncomine, TCGA and Human Protein Atlas databases, the Kaplan-Meier plotter, and the UALCAN web-portal to explore the expression and prognostic significance of CBX3/HP1γ in patients with different cancers, including liver cancer. HCC tissues and microarrays containing 354 samples were examined using immunohistochemical staining, quantitative real-time polymerase chain reaction, and Western blotting. CBX3-overexpression HCC cell lines were tested in proliferation assays to determine the function of CBX3/HP1γ. We found that CBX3/HP1γ was upregulated in many cancers and was associated with poor prognosis. Our results also revealed that CBX3/HP1γ is elevated in HCC tissues and is associated with malignant clinicopathological characteristics. Kaplan-Meier and Cox regression analyses verified that high CBX3/HP1γ expression is an independent and significant prognostic factor for reduced overall survival in HCC patients. Moreover, invitro functional assays showed that CBX3/HP1γ overexpression promotes HCC cell proliferation. These findings suggest that CBX3/HP1γ is an important oncogene in HCC that might act as a useful biomarker for prognosis and targeted therapy.
Collapse
MESH Headings
- Adult
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Middle Aged
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Xiaoping Zhong
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- The Department of Hepatobiliary Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510060, P.R. China
| | - Anna Kan
- The Department of Hepatobiliary Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510060, P.R. China
| | - Wancong Zhang
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Jianda Zhou
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Huayong Zhang
- The Department of Hepatobiliary Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510060, P.R. China
- Department of Thyroid and Breast Surgery, The Fifth Affiliated Hospital of Sun Yat sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Jiasheng Chen
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Shijie Tang
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| |
Collapse
|
12
|
Heterochromatin protein 1 (HP1) is intrinsically required for post-transcriptional regulation of Drosophila Germline Stem Cell (GSC) maintenance. Sci Rep 2019; 9:4372. [PMID: 30867469 PMCID: PMC6416348 DOI: 10.1038/s41598-019-40152-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/07/2019] [Indexed: 01/05/2023] Open
Abstract
A very important open question in stem cells regulation is how the fine balance between GSCs self-renewal and differentiation is orchestrated at the molecular level. In the past several years much progress has been made in understanding the molecular mechanisms underlying intrinsic and extrinsic controls of GSC regulation but the complex gene regulatory networks that regulate stem cell behavior are only partially understood. HP1 is a dynamic epigenetic determinant mainly involved in heterochromatin formation, epigenetic gene silencing and telomere maintenance. Furthermore, recent studies have revealed the importance of HP1 in DNA repair, sister chromatid cohesion and, surprisingly, in positive regulation of gene expression. Here, we show that HP1 plays a crucial role in the control of GSC homeostasis in Drosophila. Our findings demonstrate that HP1 is required intrinsically to promote GSC self-renewal and progeny differentiation by directly stabilizing the transcripts of key genes involved in GSCs maintenance.
Collapse
|
13
|
Lebedeva LA, Yakovlev KV, Kozlov EN, Schedl P, Deshpande G, Shidlovskii YV. Transcriptional quiescence in primordial germ cells. Crit Rev Biochem Mol Biol 2018; 53:579-595. [PMID: 30280955 PMCID: PMC8729227 DOI: 10.1080/10409238.2018.1506733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/09/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022]
Abstract
In most animal species, newly formed primordial germ cells (PGCs) acquire the special characteristics that distinguish them from the surrounding somatic cells. Proper fate specification of the PGCs is coupled with transcriptional quiescence, whether they are segregated by determinative or inductive mechanisms. Inappropriate differentiation of PGCs into somatic cells is thought to be prevented due to repression of RNA polymerase (Pol) II-dependent transcription. In the case of a determinative mode of PGC formation (Drosophila, Caenorhabditis elegans, etc.), there is a broad downregulation of Pol II activity. By contrast, PGCs display only gene-specific repression in organisms that rely on inductive signaling-based mechanism (e.g., mice). In addition to the global block of Pol II activity in PGCs, gene expression can be suppressed in other ways, such as chromatin remodeling and Piwi-mediated RNAi. Here, we discuss the mechanisms responsible for the transcriptionally silent state of PGCs in common experimental animals, such as Drosophila, C. elegans, Danio rerio, Xenopus, and mouse. While a PGC-specific downregulation of transcription is a common feature among these organisms, the diverse nature of underlying mechanisms suggests that this functional trait likely evolved independently on several instances. We discuss the possible biological relevance of these silencing mechanisms vis-a-vis fate determination of PGCs.
Collapse
Affiliation(s)
| | - Konstantin V. Yakovlev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Eugene N. Kozlov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Paul Schedl
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton, USA
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, USA
| | - Yulii V. Shidlovskii
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
14
|
Alam H, Li N, Dhar SS, Wu SJ, Lv J, Chen K, Flores ER, Baseler L, Lee MG. HP1γ Promotes Lung Adenocarcinoma by Downregulating the Transcription-Repressive Regulators NCOR2 and ZBTB7A. Cancer Res 2018; 78:3834-3848. [PMID: 29764865 DOI: 10.1158/0008-5472.can-17-3571] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/09/2018] [Accepted: 05/11/2018] [Indexed: 12/16/2022]
Abstract
Lung adenocarcinoma is a major form of lung cancer, which is the leading cause of cancer death. Histone methylation reader proteins mediate the effect of histone methylation, a hallmark of epigenetic and transcriptional regulation of gene expression. However, their roles in lung adenocarcinoma are poorly understood. Here, our bioinformatic screening and analysis in search of a lung adenocarcinoma-promoting histone methylation reader protein show that heterochromatin protein 1γ (HP1γ; also called CBX3) is among the most frequently overexpressed and amplified histone reader proteins in human lung adenocarcinoma, and that high HP1γ mRNA levels are associated with poor prognosis in patients with lung adenocarcinoma. In vivo depletion of HP1γ reduced K-RasG12D-driven lung adenocarcinoma and lengthened survival of mice bearing K-RasG12D-induced lung adenocarcinoma. HP1γ and its binding activity to methylated histone H3 lysine 9 were required for the proliferation, colony formation, and migration of lung adenocarcinoma cells. HP1γ directly repressed expression of the transcription-repressive regulators NCOR2 and ZBTB7A. Knockdown of NCOR2 or ZBTB7A significantly restored defects in proliferation, colony formation, and migration in HP1γ-depleted lung adenocarcinoma cells. Low NCOR2 or ZBTB7A mRNA levels were associated with poor prognosis in patients with lung adenocarcinoma and correlated with high HP1γ mRNA levels in lung adenocarcinoma samples. NCOR2 and ZBTB7A downregulated expression of tumor-promoting factors such as ELK1 and AXL, respectively. These findings highlight the importance of HP1γ and its reader activity in lung adenocarcinoma tumorigenesis and reveal a unique lung adenocarcinoma-promoting mechanism in which HP1γ downregulates NCOR2 and ZBTB7A to enhance expression of protumorigenic genes.Significance: Direct epigenetic repression of the transcription-repressive regulators NCOR2 and ZBTB7A by the histone reader protein HP1γ leads to activation of protumorigenic genes in lung adenocarcinoma. Cancer Res; 78(14); 3834-48. ©2018 AACR.
Collapse
Affiliation(s)
- Hunain Alam
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Na Li
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shilpa S Dhar
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah J Wu
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Jie Lv
- Institute for Academic Medicine, the Methodist Hospital Research Institute, Houston, Texas.,Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, the Methodist Hospital Research Institute, Houston, Texas.,Weill Cornell Medical College, Cornell University, New York, New York
| | - Kaifu Chen
- Institute for Academic Medicine, the Methodist Hospital Research Institute, Houston, Texas.,Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, the Methodist Hospital Research Institute, Houston, Texas.,Weill Cornell Medical College, Cornell University, New York, New York
| | - Elsa R Flores
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Laura Baseler
- Department of Veterinary Medicine and Surgery, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Gyu Lee
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas. .,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| |
Collapse
|
15
|
Oyama K, El-Nachef D, Fang C, Kajimoto H, Brown JP, Singh PB, MacLellan WR. Deletion of HP1γ in cardiac myocytes affects H4K20me3 levels but does not impact cardiac growth. Epigenetics Chromatin 2018; 11:18. [PMID: 29665845 PMCID: PMC5905015 DOI: 10.1186/s13072-018-0187-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/01/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Heterochromatin, which is formed when tri-methyl lysine 9 of histone H3 (H3K9me3) is bound by heterochromatin 1 proteins (HP1s), plays an important role in differentiation and senescence by silencing cell cycle genes. Cardiac myocytes (CMs) accumulate heterochromatin during differentiation and demethylation of H3K9me3 inhibits cell cycle gene silencing and cell cycle exit in CMs; however, it is unclear if this process is mediated by HP1s. In this study, we created a conditional CM-specific HP1 gamma (HP1γ) knockout (KO) mouse model and tested whether HP1γ is required for cell cycle gene silencing and cardiac growth. RESULTS HP1γ KO mice were generated by crossing HP1γ floxed mice (fl) with mice expressing Cre recombinase driven by the Nkx2.5 (cardiac progenitor gene) promoter (Cre). We confirmed that deletion of critical exons of HP1γ led to undetectable levels of HP1γ protein in HP1γ KO (Cre;fl/fl) CMs. Analysis of cardiac size and function by echo revealed no significant differences between HP1γ KO and control (WT, Cre, fl/fl) mice. No significant difference in expression of cell cycle genes or cardiac-specific genes was observed. Global transcriptome analysis demonstrated a very moderate effect of HP1γ deletion on global gene expression, with only 51 genes differentially expressed in HP1γ KO CMs. We found that HP1β protein, but not HP1α, was significantly upregulated and that subnuclear localization of HP1β to perinuclear heterochromatin was increased in HP1γ KO CMs. Although HP1γ KO had no effect on H3K9me3 levels, we found a significant reduction in another major heterochromatin mark, tri-methylated lysine 20 of histone H4 (H4K20me3). CONCLUSIONS These data indicate that HP1γ is dispensable for cell cycle exit and normal cardiac growth but has a significant role in maintaining H4K20me3 and regulating a limited number of genes in CMs.
Collapse
Affiliation(s)
- Kyohei Oyama
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, 1959 NE Pacific St, Box 356422, Seattle, WA, 98195-6422, USA
| | - Danny El-Nachef
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, 1959 NE Pacific St, Box 356422, Seattle, WA, 98195-6422, USA
| | - Chen Fang
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, 1959 NE Pacific St, Box 356422, Seattle, WA, 98195-6422, USA
| | - Hidemi Kajimoto
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, 1959 NE Pacific St, Box 356422, Seattle, WA, 98195-6422, USA
| | - Jeremy P Brown
- Fächerverbund Anatomie, Institut für Zell-und Neurobiologie, Charite-Universitätsmedizin, 10117, Berlin, Germany
| | - Prim B Singh
- Fächerverbund Anatomie, Institut für Zell-und Neurobiologie, Charite-Universitätsmedizin, 10117, Berlin, Germany.,Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan, 010000.,Department of Natural Sciences, Laboratory of epigenetics, Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russian Federation
| | - W Robb MacLellan
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington, 1959 NE Pacific St, Box 356422, Seattle, WA, 98195-6422, USA.
| |
Collapse
|
16
|
Hamer G, de Rooij DG. Mutations causing specific arrests in the development of mouse primordial germ cells and gonocytes. Biol Reprod 2018; 99:75-86. [DOI: 10.1093/biolre/ioy075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/22/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Geert Hamer
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk G de Rooij
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
17
|
Zhang C, Chen D, Maguire EM, He S, Chen J, An W, Yang M, Afzal TA, Luong LA, Zhang L, Lei H, Wu Q, Xiao Q. Cbx3 inhibits vascular smooth muscle cell proliferation, migration, and neointima formation. Cardiovasc Res 2017; 114:443-455. [DOI: 10.1093/cvr/cvx236] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/29/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, Yuzhong District, China
| | - Dan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, Yuzhong District, China
| | - Eithne Margaret Maguire
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Shiping He
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jiangyong Chen
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Department of Cardiothoracic Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Weiwei An
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Mei Yang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Tayyab Adeel Afzal
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Le Anh Luong
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Han Lei
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, Yuzhong District, China
| | - Qingchen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, Yuzhong District, China
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Guangzhou, Guangdong 511436, Panyu District, China
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Xinzao Town, Guangzhou, Guangdong 511436, Panyu District, China
| |
Collapse
|
18
|
Sun M, Ha N, Pham DH, Frederick M, Sharma B, Naruse C, Asano M, Pipkin ME, George RE, Thai TH. Cbx3/HP1γ deficiency confers enhanced tumor-killing capacity on CD8 + T cells. Sci Rep 2017; 7:42888. [PMID: 28220815 PMCID: PMC5318867 DOI: 10.1038/srep42888] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/16/2017] [Indexed: 11/09/2022] Open
Abstract
Cbx3/HP1γ is a histone reader whose function in the immune system is not completely understood. Here, we demonstrate that in CD8+ T cells, Cbx3/HP1γ insufficiency leads to chromatin remodeling accompanied by enhanced Prf1, Gzmb and Ifng expression. In tumors obtained from Cbx3/HP1γ-insufficient mice or wild type mice treated with Cbx3/HP1γ-insufficient CD8+ T cells, there is an increase of CD8+ effector T cells expressing the stimulatory receptor Klrk1/NKG2D, a decrease in CD4+ CD25+ FOXP3+ regulatory T cells (Treg cells) as well as CD25+ CD4+ T cells expressing the inhibitory receptor CTLA4. Together these changes in the tumor immune environment may have mitigated tumor burden in Cbx3/HP1γ-insufficient mice or wild type mice treated with Cbx3/HP1γ-insufficient CD8+ T cells. These findings suggest that targeting Cbx3/HP1γ can represent a rational therapeutic approach to control growth of solid tumors.
Collapse
Affiliation(s)
- Michael Sun
- Beth Israel Deaconess Medical Center, Harvard Medical School, Department of Pathology, Boston, MA 02215, USA
| | - Ngoc Ha
- Beth Israel Deaconess Medical Center, Harvard Medical School, Department of Pathology, Boston, MA 02215, USA.,Department of Neurobiology and Anatomy, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Duc-Hung Pham
- Beth Israel Deaconess Medical Center, Harvard Medical School, Department of Pathology, Boston, MA 02215, USA.,Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Megan Frederick
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Bandana Sharma
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02215, USA
| | - Chie Naruse
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Matthew E Pipkin
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Rani E George
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02215, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - To-Ha Thai
- Beth Israel Deaconess Medical Center, Harvard Medical School, Department of Pathology, Boston, MA 02215, USA
| |
Collapse
|
19
|
Naruse C, Shibata S, Tamura M, Kawaguchi T, Abe K, Sugihara K, Kato T, Nishiuchi T, Wakana S, Ikawa M, Asano M. New insights into the role of Jmjd3 and Utx in axial skeletal formation in mice. FASEB J 2017; 31:2252-2266. [PMID: 28188179 DOI: 10.1096/fj.201600642r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 01/23/2017] [Indexed: 12/31/2022]
Abstract
Jmjd3 and Utx are demethylases specific for lysine 27 of histone H3. Previous reports indicate that Jmjd3 is essential for differentiation of various cell types, such as macrophages and epidermal cells in mice, whereas Utx is involved in cancer and developmental diseases in humans and mice, as well as Hox regulation in zebrafish and nematodes. Here, we report that Jmjd3, but not Utx, is involved in axial skeletal formation in mice. A Jmjd3 mutant embryo (Jmjd3Δ18/Δ18), but not a catalytically inactive Utx truncation mutant (Utx-/y), showed anterior homeotic transformation. Quantitative RT-PCR and microarray analyses showed reduced Hox expression in both Jmjd3Δ18/Δ18 embryos and tailbuds, whereas levels of Hox activators, such as Wnt signaling factors and retinoic acid synthases, did not decrease, which suggests that Jmjd3 plays a regulatory role in Hox expression during axial patterning. Chromatin immunoprecipitation analyses of embryo tailbud tissue showed trimethylated lysine 27 on histone H3 to be at higher levels at the Hox loci in Jmjd3Δ18/Δ18 mutants compared with wild-type tailbuds. In contrast, trimethylated lysine 4 on histone H3 levels were found to be equivalent in wild-type and Jmjd3Δ18/Δ18 tailbuds. Demethylase-inactive Jmjd3 mutant embryos showed the same phenotype as Jmjd3Δ18/Δ18 mice. These results suggest that the demethylase activity of Jmjd3, but not that of Utx, affects mouse axial patterning in concert with alterations in Hox gene expression.-Naruse, C., Shibata, S., Tamura, M., Kawaguchi, T., Abe, K., Sugihara, K., Kato, T., Nishiuchi, T., Wakana, S., Ikawa, M., Asano, M. New insights into the role of Jmjd3 and Utx in axial skeletal formation in mice.
Collapse
Affiliation(s)
- Chie Naruse
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Shinwa Shibata
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Takayuki Kawaguchi
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Kanae Abe
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Kazushi Sugihara
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Tomoaki Kato
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Takumi Nishiuchi
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Masahito Ikawa
- Animal Resource Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan; .,Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
20
|
Mishima Y, Jayasinghe CD, Lu K, Otani J, Shirakawa M, Kawakami T, Kimura H, Hojo H, Carlton P, Tajima S, Suetake I. Nucleosome compaction facilitates HP1γ binding to methylated H3K9. Nucleic Acids Res 2015; 43:10200-12. [PMID: 26319017 PMCID: PMC4666388 DOI: 10.1093/nar/gkv841] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/07/2015] [Indexed: 12/15/2022] Open
Abstract
The α, β and γ isoforms of mammalian heterochromatin protein 1 (HP1) selectively bind to methylated lysine 9 of histone H3 via their chromodomains. Although the phenotypes of HP1-knockout mice are distinct for each isoform, the molecular mechanisms underlying HP1 isoform-specific function remain elusive. In the present study, we found that in contrast to HP1α, HP1γ could not bind tri-methylated H3 lysine 9 in a reconstituted tetra-nucleosomes when the nucleosomes were in an uncompacted state. The hinge region connecting HP1's chromodomain and chromoshadow domain contributed to the distinct recognition of the nucleosomes by HP1α and HP1γ. HP1γ, but not HP1α, was strongly enhanced in selective binding to tri-methylated lysine 9 in histone H3 by the addition of Mg(2+) or linker histone H1, which are known to induce compaction of nucleosomes. We propose that this novel property of HP1γ recognition of lysine 9 in the histone H3 tail in different nucleosome structures plays a role in reading the histone code.
Collapse
Affiliation(s)
- Yuichi Mishima
- Laboratory of Epigenetics, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Chanika D Jayasinghe
- Laboratory of Epigenetics, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kai Lu
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Junji Otani
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masahiro Shirakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Toru Kawakami
- Laboratory of Organic Chemistry, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Hironobu Kimura
- Laboratory of Epigenetics, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hironobu Hojo
- Laboratory of Organic Chemistry, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Peter Carlton
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Shoji Tajima
- Laboratory of Epigenetics, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Isao Suetake
- Laboratory of Epigenetics, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
21
|
Aydin E, Kloos DP, Gay E, Jonker W, Hu L, Bullwinkel J, Brown JP, Manukyan M, Giera M, Singh PB, Fundele R. A hypomorphic Cbx3 allele causes prenatal growth restriction and perinatal energy homeostasis defects. J Biosci 2015; 40:325-38. [DOI: 10.1007/s12038-015-9520-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Kim H, Choi JD, Kim BG, Kang HC, Lee JS. Interactome Analysis Reveals that Heterochromatin Protein 1γ (HP1γ) Is Associated with the DNA Damage Response Pathway. Cancer Res Treat 2015; 48:322-33. [PMID: 25761473 PMCID: PMC4720079 DOI: 10.4143/crt.2014.294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/05/2015] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Heterochromatin protein 1γ (HP1γ) interacts with chromosomes by binding to lysine 9-methylated histone H3 or DNA/RNA. HP1γ is involved in various biological processes. The purpose of this study is to gain an understanding of how HP1γ functions in these processes by identifying HP1γ-binding proteins using mass spectrometry. MATERIALS AND METHODS We performed affinity purification of HP1γ-binding proteins using G1/S phase or prometaphase HEK293T cell lysates that transiently express mock or FLAG-HP1γ. Coomassie staining was performed for HP1γ-binding complexes, using cell lysates prepared by affinity chromatography FLAG-agarose beads, and the bands were digested and then analyzed using a mass spectrometry. RESULTS We identified 99 HP1γ-binding proteins with diverse cellular functions, including spliceosome, regulation of the actin cytoskeleton, tight junction, pathogenic Escherichia coli infection, mammalian target of rapamycin signaling pathway, nucleotide excision repair, DNA replication, homologous recombination, and mismatch repair. CONCLUSION Our results suggested that HP1γ is functionally active in DNA damage response via protein-protein interaction.
Collapse
Affiliation(s)
- Hongtae Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea ; Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Jae Duk Choi
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Korea ; Department of Life Sciences, College of Natural Sciences, Ajou University, Suwon, Korea
| | - Byung-Gyu Kim
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Korea ; Leading-edge Research Center for Drug Discovery and Development and Metabolic Disease, Kyungpook National University, Daegu, Korea
| | - Ho Chul Kang
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Jong-Soo Lee
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Korea ; Department of Life Sciences, College of Natural Sciences, Ajou University, Suwon, Korea
| |
Collapse
|
23
|
Nishibuchi G, Machida S, Osakabe A, Murakoshi H, Hiragami-Hamada K, Nakagawa R, Fischle W, Nishimura Y, Kurumizaka H, Tagami H, Nakayama JI. N-terminal phosphorylation of HP1α increases its nucleosome-binding specificity. Nucleic Acids Res 2014; 42:12498-511. [PMID: 25332400 PMCID: PMC4227797 DOI: 10.1093/nar/gku995] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/09/2014] [Accepted: 10/06/2014] [Indexed: 01/08/2023] Open
Abstract
Heterochromatin protein 1 (HP1) is an evolutionarily conserved chromosomal protein that binds to lysine 9-methylated histone H3 (H3K9me), a hallmark of heterochromatin. Although HP1 phosphorylation has been described in several organisms, the biological implications of this modification remain largely elusive. Here we show that HP1's phosphorylation has a critical effect on its nucleosome binding properties. By in vitro phosphorylation assays and conventional chromatography, we demonstrated that casein kinase II (CK2) is the kinase primarily responsible for phosphorylating the N-terminus of human HP1α. Pull-down assays using in vitro-reconstituted nucleosomes showed that unmodified HP1α bound H3K9-methylated and H3K9-unmethylated nucleosomes with comparable affinity, whereas CK2-phosphorylated HP1α showed a high specificity for H3K9me3-modified nucleosomes. Electrophoretic mobility shift assays showed that CK2-mediated phosphorylation diminished HP1α's intrinsic DNA binding, which contributed to its H3K9me-independent nucleosome binding. CK2-mediated phosphorylation had a similar effect on the nucleosome-binding specificity of fly HP1a and S. pombe Swi6. These results suggested that HP1 phosphorylation has an evolutionarily conserved role in HP1's recognition of H3K9me-marked nucleosomes.
Collapse
Affiliation(s)
- Gohei Nishibuchi
- Graduate School of Natural Sciences, Nagoya City University, Nagoya 467-8501, Japan
| | - Shinichi Machida
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Akihisa Osakabe
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hiromu Murakoshi
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Kyoko Hiragami-Hamada
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Reiko Nakagawa
- Proteomics Support Unit, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hideaki Tagami
- Graduate School of Natural Sciences, Nagoya City University, Nagoya 467-8501, Japan
| | - Jun-ichi Nakayama
- Graduate School of Natural Sciences, Nagoya City University, Nagoya 467-8501, Japan
| |
Collapse
|
24
|
Harouz H, Rachez C, Meijer BM, Marteyn B, Donnadieu F, Cammas F, Muchardt C, Sansonetti P, Arbibe L. Shigella flexneri targets the HP1γ subcode through the phosphothreonine lyase OspF. EMBO J 2014; 33:2606-22. [PMID: 25216677 DOI: 10.15252/embj.201489244] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
HP1 proteins are transcriptional regulators that, like histones, are targets for post-translational modifications defining an HP1-mediated subcode. HP1γ has multiple phosphorylation sites, including serine 83 (S83) that marks it to sites of active transcription. In a guinea pig model for Shigella enterocolitis, we observed that the defective type III secretion mxiD Shigella flexneri strain caused more HP1γ phosphorylation in the colon than the wild-type strain. Shigella interferes with HP1 phosphorylation by injecting the phospholyase OspF. This effector interacts with HP1γ and alters its phosphorylation at S83 by inactivating ERK and consequently MSK1, a downstream kinase. MSK1 that here arises as a novel HP1γ kinase, phosphorylates HP1γ at S83 in the context of an MSK1-HP1γ complex, and thereby favors its accumulation on its target genes. Genome-wide transcriptome analysis reveals that this mechanism is linked to up-regulation of proliferative gene and fine-tuning of immune gene expression. Thus, in addition to histones, bacteria control host transcription by modulating the activity of HP1 proteins, with potential implications in transcriptional reprogramming at the mucosal barrier.
Collapse
Affiliation(s)
- Habiba Harouz
- Unité de Pathogénie Microbienne Moléculaire, Unité INSERM 786 Institut Pasteur, Paris, France
| | - Christophe Rachez
- Department of Biologie du Développement et Cellules Souches, Unité de Régulation Epigénétique, Institut Pasteur, Paris, France URA2578 CNRS, Paris, France
| | - Benoit M Meijer
- Unité de Pathogénie Microbienne Moléculaire, Unité INSERM 786 Institut Pasteur, Paris, France
| | - Benoit Marteyn
- Unité de Pathogénie Microbienne Moléculaire, Unité INSERM 786 Institut Pasteur, Paris, France
| | - Françoise Donnadieu
- Unité de Pathogénie Microbienne Moléculaire, Unité INSERM 786 Institut Pasteur, Paris, France
| | - Florence Cammas
- Equipe Epigénétique, différenciation cellulaire et cancer IRCM, Montpellier, France
| | - Christian Muchardt
- Department of Biologie du Développement et Cellules Souches, Unité de Régulation Epigénétique, Institut Pasteur, Paris, France URA2578 CNRS, Paris, France
| | - Philippe Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Unité INSERM 786 Institut Pasteur, Paris, France
| | - Laurence Arbibe
- Unité de Pathogénie Microbienne Moléculaire, Unité INSERM 786 Institut Pasteur, Paris, France
| |
Collapse
|
25
|
Down-regulation of HDAC5 inhibits growth of human hepatocellular carcinoma by induction of apoptosis and cell cycle arrest. Tumour Biol 2014; 35:11523-32. [PMID: 25129440 DOI: 10.1007/s13277-014-2358-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/14/2014] [Indexed: 10/24/2022] Open
Abstract
Histone deacetylases (HDACs) play a critical role in the proliferation, differentiation, and apoptosis of cancer cells. An obstacle for the application of HDAC inhibitors as effective anti-cancer therapeutics is that our current knowledge on the contributions of different HDACs in various cancer types remains scarce. The present study reported that the mRNA and protein levels of HDAC5 were up-regulated in human hepatocellular carcinoma (HCC) tissues and cells as shown by quantitative real-time PCR and Western blot. MTT assay and BrdU incorporation assay showed that the down-regulation of HDAC5 inhibited cell proliferation in HepG2, Hep3B, and Huh7 cell lines. Data from in vivo xenograft tumorigenesis model also demonstrated the anti-proliferative effect of HDAC5 depletion on tumor cell growth. Furthermore, the suppression of HDAC5 promoted cell apoptosis and induced G1-phase cell cycle arrest in HCC cells. On the molecular level, we observed altered expression of apoptosis-related proteins such as p53, bax, bcl-2, cyto C, and caspase 3 in HDAC5-shRNA-transfected cells. Knockdown of HDAC5 led to a significant up-regulation of p21 and down-regulation of cyclin D1 and CDK2/4/6. We also found that the down-regulation of HDAC5 substantially increased p53 stability and promoted its nuclear localization and transcriptional activity. Our study suggested that knockdown of HDAC5 could inhibit cancer cell proliferation by the induction of cell cycle arrest and apoptosis; thus, suppression of HDAC5 may be a viable option for treating HCC patients.
Collapse
|
26
|
Nishibuchi G, Nakayama JI. Biochemical and structural properties of heterochromatin protein 1: understanding its role in chromatin assembly. J Biochem 2014; 156:11-20. [DOI: 10.1093/jb/mvu032] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
27
|
Epigenetics of eu- and heterochromatin in inverted and conventional nuclei from mouse retina. Chromosome Res 2013; 21:535-54. [PMID: 23996328 DOI: 10.1007/s10577-013-9375-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 12/20/2022]
Abstract
To improve light propagation through the retina, the rod nuclei of nocturnal mammals are uniquely changed compared to the nuclei of other cells. In particular, the main classes of chromatin are segregated in them and form regular concentric shells in order; inverted in comparison to conventional nuclei. A broad study of the epigenetic landscape of the inverted and conventional mouse retinal nuclei indicated several differences between them and several features of general interest for the organization of the mammalian nuclei. In difference to nuclei with conventional architecture, the packing density of pericentromeric satellites and LINE-rich chromatin is similar in inverted rod nuclei; euchromatin has a lower packing density in both cases. A high global chromatin condensation in rod nuclei minimizes the structural difference between active and inactive X chromosome homologues. DNA methylation is observed primarily in the chromocenter, Dnmt1 is primarily associated with the euchromatic shell. Heterochromatin proteins HP1-alpha and HP1-beta localize in heterochromatic shells, whereas HP1-gamma is associated with euchromatin. For most of the 25 studied histone modifications, we observed predominant colocalization with a certain main chromatin class. Both inversions in rod nuclei and maintenance of peripheral heterochromatin in conventional nuclei are not affected by a loss or depletion of the major silencing core histone modifications in respective knock-out mice, but for different reasons. Maintenance of peripheral heterochromatin appears to be ensured by redundancy both at the level of enzymes setting the epigenetic code (writers) and the code itself, whereas inversion in rods rely on the absence of the peripheral heterochromatin tethers (absence of code readers).
Collapse
|
28
|
Rad54 is required for the normal development of male and female germ cells and contributes to the maintainance of their genome integrity after genotoxic stress. Cell Death Dis 2013; 4:e774. [PMID: 23949223 PMCID: PMC3763443 DOI: 10.1038/cddis.2013.281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/25/2013] [Accepted: 07/02/2013] [Indexed: 12/31/2022]
Abstract
Rad54 is an important factor in the homologous recombination pathway of DNA double-strand break repair. However, Rad54 knockout (KO) mice do not exhibit overt phenotypes at adulthood, even when exposed to radiation. In this study, we show that in Rad54 KO mouse the germline is actually altered. Compared with the wild-type (WT) animals, these mice have less premeiotic germ cells. This germ cell loss is found as early as in E11.5 embryos, suggesting an early failure during mutant primordial germ cells development. Both testicular and ovarian KO germ cells exhibited high radiation sensitivity leading to a long-term gametogenesis defect at adulthood. The KO female germline was particularly affected displaying decreased litter size or sterility. Spermatogenesis recovery after irradiation was slower and incomplete in Rad54 KO mice compared with that of WT mice, suggesting that loss of germ stem cell precursors is not fully compensated along the successive rounds of spermatogenesis. Finally, spermatogenesis recovery after postnatal irradiation is in part regulated by glial-cell-line-derived neurotrophic factor (GDNF) in KO but not in irradiated WT mice, suggesting that Sertoli cell GDNF production is stimulated upon substantial germ cell loss only. Our findings suggest that Rad54 has a key function in maintaining genomic integrity of the developing germ cells.
Collapse
|
29
|
Grzenda A, Leonard P, Seo S, Mathison AJ, Urrutia G, Calvo E, Iovanna J, Urrutia R, Lomberk G. Functional impact of Aurora A-mediated phosphorylation of HP1γ at serine 83 during cell cycle progression. Epigenetics Chromatin 2013; 6:21. [PMID: 23829974 PMCID: PMC3707784 DOI: 10.1186/1756-8935-6-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/14/2013] [Indexed: 01/17/2023] Open
Abstract
Background Previous elegant studies performed in the fission yeast Schizosaccharomyces pombe have identified a requirement for heterochromatin protein 1 (HP1) for spindle pole formation and appropriate cell division. In mammalian cells, HP1γ has been implicated in both somatic and germ cell proliferation. High levels of HP1γ protein associate with enhanced cell proliferation and oncogenesis, while its genetic inactivation results in meiotic and mitotic failure. However, the regulation of HP1γ by kinases, critical for supporting mitotic progression, remains to be fully characterized. Results We report for the first time that during mitotic cell division, HP1γ colocalizes and is phosphorylated at serine 83 (Ser83) in G2/M phase by Aurora A. Since Aurora A regulates both cell proliferation and mitotic aberrations, we evaluated the role of HP1γ in the regulation of these phenomena using siRNA-mediated knockdown, as well as phosphomimetic and nonphosphorylatable site-directed mutants. We found that genetic downregulation of HP1γ, which decreases the levels of phosphorylation of HP1γ at Ser83 (P-Ser83-HP1γ), results in mitotic aberrations that can be rescued by reintroducing wild type HP1γ, but not the nonphosphorylatable S83A-HP1γ mutant. In addition, proliferation assays showed that the phosphomimetic S83D-HP1γ increases 5-ethynyl-2´-deoxyuridine (EdU) incorporation, whereas the nonphosphorylatable S83A-HP1γ mutant abrogates this effect. Genome-wide expression profiling revealed that the effects of these mutants on mitotic functions are congruently reflected in G2/M gene expression networks in a manner that mimics the on and off states for P-Ser83-HP1γ. Conclusions This is the first description of a mitotic Aurora A-HP1γ pathway, whose integrity is necessary for the execution of proper somatic cell division, providing insight into specific types of posttranslational modifications that associate to distinct functional outcomes of this important chromatin protein.
Collapse
Affiliation(s)
- Adrienne Grzenda
- Laboratory of Epigenetics and Chromatin Dynamics, GIH Division, Department of Medicine, Biochemistry and Molecular Biology, Guggenheim 10, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ohno R, Nakayama M, Naruse C, Okashita N, Takano O, Tachibana M, Asano M, Saitou M, Seki Y. A replication-dependent passive mechanism modulates DNA demethylation in mouse primordial germ cells. Development 2013; 140:2892-903. [PMID: 23760957 DOI: 10.1242/dev.093229] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Germline cells reprogramme extensive epigenetic modifications to ensure the cellular totipotency of subsequent generations and to prevent the accumulation of epimutations. Notably, primordial germ cells (PGCs) erase genome-wide DNA methylation and H3K9 dimethylation marks in a stepwise manner during migration and gonadal periods. In this study, we profiled DNA and histone methylation on transposable elements during PGC development, and examined the role of DNA replication in DNA demethylation in gonadal PGCs. CpGs in short interspersed nuclear elements (SINEs) B1 and B2 were substantially demethylated in migrating PGCs, whereas CpGs in long interspersed nuclear elements (LINEs), such as LINE-1, were resistant to early demethylation. By contrast, CpGs in both LINE-1 and SINEs were rapidly demethylated in gonadal PGCs. Four major modifiers of DNA and histone methylation, Dnmt3a, Dnmt3b, Glp and Uhrf1, were actively repressed at distinct stages of PGC development. DNMT1 was localised at replication foci in nascent PGCs, whereas the efficiency of recruitment of DNMT1 into replication foci was severely impaired in gonadal PGCs. Hairpin bisulphite sequencing analysis showed that strand-specific hemi-methylated CpGs on LINE-1 were predominant in gonadal PGCs. Furthermore, DNA demethylation in SINEs and LINE-1 was impaired in Cbx3-deficient PGCs, indicating abnormalities in G1 to S phase progression. We propose that PGCs employ active and passive mechanisms for efficient and widespread erasure of genomic DNA methylation.
Collapse
Affiliation(s)
- Rika Ohno
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
ATM mediates pRB function to control DNMT1 protein stability and DNA methylation. Mol Cell Biol 2013; 33:3113-24. [PMID: 23754744 DOI: 10.1128/mcb.01597-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The retinoblastoma tumor suppressor gene (RB) product has been implicated in epigenetic control of gene expression owing to its ability to physically bind to many chromatin modifiers. However, the biological and clinical significance of this activity was not well elucidated. To address this, we performed genetic and epigenetic analyses in an Rb-deficient mouse thyroid C cell tumor model. Here we report that the genetic interaction of Rb and ATM regulates DNMT1 protein stability and hence controls the DNA methylation status in the promoters of at least the Ink4a, Shc2, FoxO6, and Noggin genes. Furthermore, we demonstrate that inactivation of pRB promotes Tip60 (acetyltransferase)-dependent ATM activation; allows activated ATM to physically bind to DNMT1, forming a complex with Tip60 and UHRF1 (E3 ligase); and consequently accelerates DNMT1 ubiquitination driven by Tip60-dependent acetylation. Our results indicate that inactivation of the pRB pathway in coordination with aberration in the DNA damage response deregulates DNMT1 stability, leading to an abnormal DNA methylation pattern and malignant progression.
Collapse
|
32
|
Morikawa K, Ikeda N, Hisatome I, Shirayoshi Y. Heterochromatin protein 1γ overexpression in P19 embryonal carcinoma cells elicits spontaneous differentiation into the three germ layers. Biochem Biophys Res Commun 2013; 431:225-31. [PMID: 23313480 DOI: 10.1016/j.bbrc.2012.12.128] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 12/30/2012] [Indexed: 11/15/2022]
Abstract
P19 embryonal carcinoma (EC) cells are pluripotent stem cells and have numerous morphological and biochemical properties in common with embryonic stem (ES) cells. However, P19 cells differentiate very ineffectively as embryoid bodies (EBs) without the specific chemical inducers whereas ES cells exhibit spontaneous differentiation to the three germ layers. Recently the heterochromatin protein 1 (HP1) family protein HP1γ, which is an epigenetic modulator that binds histone H3 methylated at lysine 9, is shown to be associated with the progression from pluripotent to differentiated status in ES cells. Therefore, to study the role of HP1γ in the differentiation capacity of P19 cells, we have established a HP1γ-overexpressing P19 cell line (HPlγ-P19). Similar to the parental P19 cells, undifferentiated HP1γ-P19 cells continued to express pluripotency marker genes. However, HP1γ-P19 cells exhibited significant morphological differentiation including beating cardiomyocytes, as well as Tuj1-positive neuronal cells and Sox17-positive endodermal cells after EB formation under a normal culture condition. Moreover, real-time RT-qPCR analysis revealed that HP1γ-P19 EB cells expressed various differentiation marker genes. Thus, HP1γ-P19 cells could give rise to all three germ layers in EBs without any drug treatment. Therefore, HP1γ affects the spontaneous differentiation potential of P19 cells, and might play major roles in the decision of cell fates in pluripotent stem cells.
Collapse
Affiliation(s)
- Kumi Morikawa
- Division of Regenerative Medicine and Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Science, 86 Nishimachi, Yonago, Tottori 683-8503, Japan.
| | | | | | | |
Collapse
|
33
|
|
34
|
Abstract
Germ cell development creates totipotency through genetic as well as epigenetic regulation of the genome function. Primordial germ cells (PGCs) are the first germ cell population established during development and are immediate precursors for both the oocytes and spermatogonia. We here summarize recent findings regarding the mechanism of PGC development in mice. We focus on the transcriptional and signaling mechanism for PGC specification, potential pluripotency, and epigenetic reprogramming in PGCs and strategies for the reconstitution of germ cell development using pluripotent stem cells in culture. Continued studies on germ cell development may lead to the generation of totipotency in vitro, which should have a profound influence on biological science as well as on medicine.
Collapse
Affiliation(s)
- Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Japan.
| | | |
Collapse
|
35
|
Smallwood A, Hon GC, Jin F, Henry RE, Espinosa JM, Ren B. CBX3 regulates efficient RNA processing genome-wide. Genome Res 2012; 22:1426-36. [PMID: 22684280 PMCID: PMC3409256 DOI: 10.1101/gr.124818.111] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CBX5, CBX1, and CBX3 (HP1α, β, and γ, respectively) play an evolutionarily conserved role in the formation and maintenance of heterochromatin. In addition, CBX5, CBX1, and CBX3 may also participate in transcriptional regulation of genes. Recently, CBX3 binding to the bodies of a subset of genes has been observed in human and murine cells. However, the generality of this phenomenon and the role CBX3 may play in this context are unknown. Genome-wide localization analysis reveals CBX3 binding at genic regions, which strongly correlates with gene activity across multiple cell types. Depletion of CBX3 resulted in down-regulation of a subset of target genes. Loss of CBX3 binding leads to a more dramatic accumulation of unspliced nascent transcripts. In addition, we observed defective recruitment of splicing factors, including SNRNP70, to CBX3 target genes. Collectively, our data suggest a role for CBX3 in aiding in efficient cotranscriptional RNA processing.
Collapse
Affiliation(s)
- Andrea Smallwood
- Ludwig Institute for Cancer Research, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|