1
|
Yi C, Kitamura Y, Maezawa S, Namekawa SH, Cairns BR. ZBTB16/PLZF regulates juvenile spermatogonial stem cell development through an extensive transcription factor poising network. Nat Struct Mol Biol 2025:10.1038/s41594-025-01509-5. [PMID: 40033150 DOI: 10.1038/s41594-025-01509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/28/2025] [Indexed: 03/05/2025]
Abstract
Spermatogonial stem cells balance self-renewal with differentiation and spermatogenesis to ensure continuous sperm production. Here, we identify roles for the transcription factor zinc finger and BTB domain-containing protein 16 (ZBTB16; also known as promyelocytic leukemia zinc finger (PLZF)) in juvenile mouse undifferentiated spermatogonia (uSPG) in promoting self-renewal and cell-cycle progression to maintain uSPG and transit-amplifying states. Notably, ZBTB16, Spalt-like transcription factor 4 (SALL4) and SRY-box transcription factor 3 (SOX3) colocalize at over 12,000 promoters regulating uSPG and meiosis. These regions largely share broad histone 3 methylation and acetylation (H3K4me3 and H3K27ac), DNA hypomethylation, RNA polymerase II (RNAPol2) and often CCCTC-binding factor (CTCF). Hi-C analyses show robust three-dimensional physical interactions among these cobound promoters, suggesting the existence of a transcription factor and higher-order active chromatin interaction network within uSPG that poises meiotic promoters for subsequent activation. Conversely, these factors do not notably occupy germline-specific promoters driving spermiogenesis, which instead lack promoter-promoter physical interactions and bear DNA hypermethylation, even when active. Overall, ZBTB16 promotes uSPG cell-cycle progression and colocalizes with SALL4, SOX3, CTCF and RNAPol2 to help establish an extensive and interactive chromatin poising network.
Collapse
Affiliation(s)
- Chongil Yi
- Howard Hughes Medical Institute, Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Yuka Kitamura
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - So Maezawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Bradley R Cairns
- Howard Hughes Medical Institute, Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
2
|
He CM, Zhang D, He Z. Gene regulation and signaling transduction in mediating the self-renewal, differentiation, and apoptosis of spermatogonial stem cells. Asian J Androl 2025; 27:4-12. [PMID: 39162186 PMCID: PMC11784953 DOI: 10.4103/aja202464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/04/2024] [Indexed: 08/21/2024] Open
Abstract
ABSTRACT Infertility has become one of the most serious diseases worldwide, and 50% of this disease can be attributed to male-related factors. Spermatogenesis, by definition, is a complex process by which spermatogonial stem cells (SSCs) self-renew to maintain stem cell population within the testes and differentiate into mature spermatids. It is of great significance to uncover gene regulation and signaling pathways that are involved in the fate determinations of SSCs with aims to better understand molecular mechanisms underlying human spermatogenesis and identify novel targets for gene therapy of male infertility. Significant achievement has recently been made in demonstrating the signaling molecules and pathways mediating the fate decisions of mammalian SSCs. In this review, we address key gene regulation and crucial signaling transduction pathways in controlling the self-renewal, differentiation, and apoptosis of SSCs, and we illustrate the networks of genes and signaling pathways in SSC fate determinations. We also highlight perspectives and future directions in SSC regulation by genes and their signaling pathways. This review could provide novel insights into the genetic regulation of normal and abnormal spermatogenesis and offer molecular targets to develop new approaches for gene therapy of male infertility.
Collapse
Affiliation(s)
- Cai-Mei He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Changsha 410013, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
- Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China
| | - Dong Zhang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Changsha 410013, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
- Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China
| | - Zuping He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Changsha 410013, China
- Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha 410013, China
- Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China
| |
Collapse
|
3
|
Pfaltzgraff NG, Liu B, de Rooij DG, Page DC, Mikedis MM. Destabilization of mRNAs enhances competence to initiate meiosis in mouse spermatogenic cells. Development 2024; 151:dev202740. [PMID: 38884383 PMCID: PMC11273298 DOI: 10.1242/dev.202740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
The specialized cell cycle of meiosis transforms diploid germ cells into haploid gametes. In mammals, diploid spermatogenic cells acquire the competence to initiate meiosis in response to retinoic acid. Previous mouse studies revealed that MEIOC interacts with RNA-binding proteins YTHDC2 and RBM46 to repress mitotic genes and to promote robust meiotic gene expression in spermatogenic cells that have initiated meiosis. Here, we have used the enhanced resolution of scRNA-seq and bulk RNA-seq of developmentally synchronized spermatogenesis to define how MEIOC molecularly supports early meiosis in spermatogenic cells. We demonstrate that MEIOC mediates transcriptomic changes before meiotic initiation, earlier than previously appreciated. MEIOC, acting with YTHDC2 and RBM46, destabilizes its mRNA targets, including the transcriptional repressors E2f6 and Mga, in mitotic spermatogonia. MEIOC thereby derepresses E2F6- and MGA-repressed genes, including Meiosin and other meiosis-associated genes. This confers on spermatogenic cells the molecular competence to, in response to retinoic acid, fully activate the transcriptional regulator STRA8-MEIOSIN, which is required for the meiotic G1/S phase transition and for meiotic gene expression. We conclude that, in mice, mRNA decay mediated by MEIOC-YTHDC2-RBM46 enhances the competence of spermatogenic cells to initiate meiosis.
Collapse
Affiliation(s)
- Natalie G. Pfaltzgraff
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Bingrun Liu
- Whitehead Institute, Cambridge, MA 02142, USA
| | | | - David C. Page
- Whitehead Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maria M. Mikedis
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Whitehead Institute, Cambridge, MA 02142, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
4
|
Zhang P, Jing K, Tian Y, Li Y, Chai Z, Cai X. Additional glial cell line-derived neurotrophic factor in vitro promotes the proliferation of undifferentiated spermatogonia from sterile cattleyak. Anim Reprod Sci 2024; 260:107385. [PMID: 38056175 DOI: 10.1016/j.anireprosci.2023.107385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Cattleyak is a typically male sterile species. The meiosis process is blocked and the scarcity of spermatogenic stems cells are both contributing factors to the inability of male cattleyak to produce sperm. While Glial cell line-derived neurotrophic factor (GDNF) is the first discovered growth factor known to promote the proliferation and self-renewal of spermatogenic stem cells, its relationship to the spermatogenesis arrest of cattleyak remains unclear. In this report, we studied the differential expression of GDNF in the testis of yak and cattleyak, and discussed the optimal concentration of GDNF in the culture medium of undifferentiated spermatogonia (UDSPG) of cattleyak in vitro and the effect of GDNF on the proliferation of cattleyak UDSPG. The results indicated that GDNF expression in the testicular tissue of cattleyak was inferior to that of yak. Moreover, the optimum value for the UDSPG in vitro culture was determined to be 20-30 ng/mL for cattleyak. In vitro, the proliferation activity of UDSPG was observed to increase with additional GDNF due to the up-regulation of proliferation-related genes and the down-regulation of differentiation-related genes. We hereby report that the scarcity of cattleyak UDSPG is due to insufficient expression of GDNF, and that the addition of GDNF in vitro can promote the proliferation of cattleyak UDSPG by regulating the expression of genes related to proliferation and differentiation. This work provides a new insight to solve the issue of spermatogenic arrest in cattleyak.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Kemin Jing
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yuan Tian
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yuqian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Zhang X, Wang N. Induction of Meiotic Initiation in Long-Term Mouse Spermatogonial Stem Cells Under Retinoid Acid and Nutrient Restriction Conditions. Methods Mol Biol 2024; 2770:113-121. [PMID: 38351450 PMCID: PMC11225876 DOI: 10.1007/978-1-0716-3698-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Spermatogonial stem cells (SSCs) produce haploid sperm via mitosis and meiosis in vivo. Although the technique to culture mouse SSCs has been well established, induction of meiosis in vitro has remained a challenge. Retinoic acid (RA) is required for meiosis in vivo; however, RA alone is not sufficient to induce meiosis in vitro. Here, we describe a method in which nutrient restriction and RA synergistically induce meiotic initiation into meiotic prophase I in cultured mouse SSCs.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
- Center for Reproductive Sciences, Institute for Reproductive and Developmental Sciences (IRDS), University of Kansas Medical Center, Kansas City, KS, USA
| | - Ning Wang
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
- Center for Reproductive Sciences, Institute for Reproductive and Developmental Sciences (IRDS), University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
6
|
Cason C, Lord T. RNA Interference as a Method of Gene Knockdown in Cultured Spermatogonia. Methods Mol Biol 2023; 2656:161-177. [PMID: 37249871 DOI: 10.1007/978-1-0716-3139-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Maintenance and self-renewal of the spermatogonial stem cell (SSC) population in the testis are dictated by the expression of a unique suite of genes. In manipulating gene expression through loss-of-function approaches, we can identify important regulatory mechanisms that dictate spermatogonial fate decisions. One such approach is RNA interference (RNAi), which uses natural cellular responses to small interfering RNAs to decrease levels of a targeted transcript. RNAi is performed in primary cultures of undifferentiated spermatogonia, and can be paired with techniques such as spermatogonial transplantation to assess the functional consequences of downregulated expression of the target gene on stem cell maintenance. This approach provides an alternative or complementary strategy to the generation of knockout mouse lines / cell lines. Here, we describe the methodology of RNAi in undifferentiated spermatogonia, and outline its inherent advantages and disadvantages over other technologies in the study of gene regulation in these cells.
Collapse
Affiliation(s)
- Connor Cason
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Tessa Lord
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia.
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
7
|
scATAC-Seq reveals heterogeneity associated with spermatogonial differentiation in cultured male germline stem cells. Sci Rep 2022; 12:21482. [PMID: 36509798 PMCID: PMC9744833 DOI: 10.1038/s41598-022-25729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Spermatogonial stem cells are the most primitive spermatogonia in testis, which can self-renew to maintain the stem cell pool or differentiate to give rise to germ cells including haploid spermatids. All-trans-retinoic acid (RA), a bioactive metabolite of vitamin A, plays a fundamental role in initiating spermatogonial differentiation. In this study, single-cell ATAC-seq (scATAC-seq) was used to obtain genome-wide chromatin maps of cultured germline stem cells (GSCs) that were in control and RA-induced differentiation states. We showed that different subsets of GSCs can be distinguished based on chromatin accessibility of self-renewal and differentiation signature genes. Importantly, both progenitors and a subset of stem cells are able to respond to RA and give rise to differentiating cell subsets with distinct chromatin accessibility profiles. In this study, we identified regulatory regions that undergo chromatin remodeling and are associated with the retinoic signaling pathway. Moreover, we reconstructed the differentiation trajectory and identified novel transcription factor candidates enriched in different spermatogonia subsets. Collectively, our work provides a valuable resource for understanding the heterogeneity associated with differentiation and RA response in GSCs.
Collapse
|
8
|
Li P, Tang J, Yu Z, Jin C, Wang Z, Li M, Zou D, Mang X, Liu J, Lu Y, Miao S, Wang L, Li K, Song W. CHD4 acts as a critical regulator in the survival of spermatogonial stem cells in mice. Biol Reprod 2022; 107:1331-1344. [PMID: 35980806 DOI: 10.1093/biolre/ioac162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/18/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Spermatogenesis is sustained by homeostatic balance between the self-renewal and differentiation of spermatogonial stem cells (SSCs), which is dependent on the strict regulation of transcription factor and chromatin modulator gene expression. Chromodomain helicase DNA-binding protein 4 (CHD4) is highly expressed in SSCs but roles in mouse spermatogenesis are not fully understood. Here, we report that the germ-cell-specific deletion of Chd4 resulted in complete infertility in male mice, with rapid loss of SSCs and excessive germ cell apoptosis. Chd4-knockdown in cultured SSCs also promoted the expression of apoptosis-related genes and thereby activated the tumor necrosis factor signaling pathway. Mechanistically, CHD4 occupies the genomic regulatory region of key apoptosis-related genes including Jun and Nfkb1. Together, our findings reveal the determinant role of CHD4 in SSCs survival in vivo, which will offer insight into the pathogenesis of male sterility and potential novel therapeutic targets.
Collapse
Affiliation(s)
- Pengyu Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| | - Jielin Tang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| | - Zhixin Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| | - Cheng Jin
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| | - Zhipeng Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| | - Mengzhen Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| | - Dingfeng Zou
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| | - Linfang Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| | - Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College; Beijing 100005, China
| |
Collapse
|
9
|
TCFL5 deficiency impairs the pachytene to diplotene transition during spermatogenesis in the mouse. Sci Rep 2022; 12:10956. [PMID: 35768632 PMCID: PMC9242989 DOI: 10.1038/s41598-022-15167-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
Abstract
Spermatogenesis is a complex, multistep process during which spermatogonia give rise to spermatozoa. Transcription Factor Like 5 (TCFL5) is a transcription factor that has been described expressed during spermatogenesis. In order to decipher the role of TCFL5 during in vivo spermatogenesis, we generated two mouse models. Ubiquitous removal of TCFL5 generated by breeding TCFL5fl/fl with SOX2-Cre mice resulted in sterile males being unable to produce spermatozoa due to a dramatic alteration of the testis architecture presenting meiosis arrest and lack of spermatids. SYCP3, SYCP1 and H1T expression analysis showed that TCFL5 deficiency causes alterations during pachytene/diplotene transition resulting in a meiotic arrest in a diplotene-like stage. Even more, TCFL5 deficient pachytene showed alterations in the number of MLH1 foci and the condensation of the sexual body. In addition, tamoxifen-inducible TCFL5 knockout mice showed, besides meiosis phenotype, alterations in the spermatids elongation process resulting in aberrant spermatids. Furthermore, TCFL5 deficiency increased spermatogonia maintenance genes (Dalz, Sox2, and Dmrt1) but also increased meiosis genes (Syce1, Stag3, and Morc2a) suggesting that the synaptonemal complex forms well, but cannot separate and meiosis does not proceed. TCFL5 is able to bind to the promoter of Syce1, Stag3, Dmrt1, and Syce1 suggesting a direct control of their expression. In conclusion, TCFL5 plays an essential role in spermatogenesis progression being indispensable for meiosis resolution and spermatids maturation.
Collapse
|
10
|
De Oliveira CS, Nixon B, Lord T. A scRNA-seq Approach to Identifying Changes in Spermatogonial Stem Cell Gene Expression Following in vitro Culture. Front Cell Dev Biol 2022; 10:782996. [PMID: 35433696 PMCID: PMC9010880 DOI: 10.3389/fcell.2022.782996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/08/2022] [Indexed: 01/15/2023] Open
Abstract
Spermatogonial stem cell (SSC) function is essential for male fertility, and these cells hold potential therapeutic value spanning from human infertility treatments to wildlife conservation. As in vitro culture is likely to be an integral component of many therapeutic pipelines, we have elected to explore changes in gene expression occurring in undifferentiated spermatogonia in culture that may be intertwined with the temporal reduction in regenerative capacity that they experience. Single cell RNA-sequencing analysis was conducted, comparing undifferentiated spermatogonia retrieved from the adult mouse testis with those that had been subjected to 10 weeks of in vitro culture. Although the majority of SSC signature genes were conserved between the two populations, a suite of differentially expressed genes were also identified. Gene ontology analysis revealed upregulated expression of genes involved in oxidative phosphorylation in cultured spermatogonia, along with downregulation of integral processes such as DNA repair and ubiquitin-mediated proteolysis. Indeed, our follow-up analyses have provided the first depiction of a significant accumulation of ubiquitinated proteins in cultured spermatogonia, when compared to those residing in the testis. The data produced in this manuscript will provide a valuable platform for future studies looking to improve SSC culture approaches and assess their safety for utilisation in therapeutic pipelines.
Collapse
Affiliation(s)
- Camila Salum De Oliveira
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Tessa Lord
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
- *Correspondence: Tessa Lord,
| |
Collapse
|
11
|
Hofmann MC, McBeath E. Sertoli Cell-Germ Cell Interactions Within the Niche: Paracrine and Juxtacrine Molecular Communications. Front Endocrinol (Lausanne) 2022; 13:897062. [PMID: 35757413 PMCID: PMC9226676 DOI: 10.3389/fendo.2022.897062] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022] Open
Abstract
Male germ cell development depends on multiple biological events that combine epigenetic reprogramming, cell cycle regulation, and cell migration in a spatio-temporal manner. Sertoli cells are a crucial component of the spermatogonial stem cell niche and provide essential growth factors and chemokines to developing germ cells. This review focuses mainly on the activation of master regulators of the niche in Sertoli cells and their targets, as well as on novel molecular mechanisms underlying the regulation of growth and differentiation factors such as GDNF and retinoic acid by NOTCH signaling and other pathways.
Collapse
|
12
|
Neonatal Porcine Germ Cells Dedifferentiate and Display Osteogenic and Pluripotency Properties. Cells 2021; 10:cells10112816. [PMID: 34831039 PMCID: PMC8616047 DOI: 10.3390/cells10112816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Gonocytes are progenitors of spermatogonial stem cells in the neonatal testis. We have previously shown that upon culturing, neonatal porcine gonocytes and their colonies express germ cell and pluripotency markers. The objectives of present study were to investigate in vitro trans-differentiation potential of porcine gonocytes and their colonies into cells from three germinal layers, and to assess pluripotency of cultured gonocytes/colonies in vivo. For osteogenic and tri-lineage differentiation, cells were incubated in regular culture media for 14 and 28 days, respectively. Cells were cultured for an additional 14 days for osteogenic differentiation or 7 days for differentiation into derivates of the three germinal layers. Osteogenic differentiation of cells and colonies was verified by Alizarin Red S staining and tri-lineage differentiation was confirmed using immunofluorescence and gene expression analyses. Furthermore, upon implantation into recipient mice, the cultured cells/colonies developed teratomas expressing markers of all three germinal layers. Successful osteogenic differentiation from porcine germ cells has important implications for bone regeneration and matrix formation studies. Hence, gonocytes emerge as a promising source of adult pluripotent stem cells due to the ability to differentiate into all germinal layers without typical biosafety risks associated with viral vectors or ethical implications.
Collapse
|
13
|
Yang C, Yao C, Ji Z, Zhao L, Chen H, Li P, Tian R, Zhi E, Huang Y, Han X, Hong Y, Zhou Z, Li Z. RNA-binding protein ELAVL2 plays post-transcriptional roles in the regulation of spermatogonia proliferation and apoptosis. Cell Prolif 2021; 54:e13098. [PMID: 34296486 PMCID: PMC8450129 DOI: 10.1111/cpr.13098] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/27/2022] Open
Abstract
Objectives RNA‐binding proteins (RBPs) play essential post‐transcriptional roles in regulating spermatogonial stem cells (SSCs) maintenance and differentiation. We identified a conserved and SSCs‐enriched RBP ELAVL2 from our single‐cell sequencing data, but its function and mechanism in SSCs were unclear. Materials and methods Expressions of ELAVL2 during human and mouse testis development were validated. Stable C18‐4 and TCam‐2 cell lines with overexpression and knockdown of ELAVL2 were established, which were applied to proliferation and apoptosis analysis. RNA immunoprecipitation and sequencing were used to identify ELAVL2 targets, and regulatory functions of ELAVL2 on target mRNAs were studied. Proteins interacting with ELAVL2 in human and mouse testes were identified using immunoprecipitation and mass spectrometric, which were validated by in vivo and in vitro experiments. Results ELAVL2 was testis‐enriched and preferentially expressed in human and mouse SSCs. ELAVL2 was down‐regulated in NOA patients. ELAVL2 promoted proliferation and inhibited apoptosis of C18‐4 and TCam‐2 cell lines via activating ERK and AKT pathways. ELAVL2 associated with mRNAs encoding essential regulators of SSCs proliferation and survival, and promoted their protein expression at post‐transcriptional level. ELAVL2 interacted with DAZL in vivo and in vitro in both human and mouse testes. Conclusions Taken together, these results indicate that ELAVL2 is a conserved SSCs‐enriched RBP that down‐regulated in NOA, which regulates spermatogonia proliferation and apoptosis by promoting protein expression of targets.
Collapse
Affiliation(s)
- Chao Yang
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Yao
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyong Ji
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Liangyu Zhao
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huixing Chen
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Li
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruhui Tian
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Erlei Zhi
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhua Huang
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Han
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Hong
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zheng Li
- Department of Andrology, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Tan K, Song HW, Wilkinson MF. RHOX10 drives mouse spermatogonial stem cell establishment through a transcription factor signaling cascade. Cell Rep 2021; 36:109423. [PMID: 34289349 PMCID: PMC8357189 DOI: 10.1016/j.celrep.2021.109423] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are essential for male fertility. Here, we report that mouse SSC generation is driven by a transcription factor (TF) cascade controlled by the homeobox protein, RHOX10, which acts by driving the differentiation of SSC precursors called pro-spermatogonia (ProSG). We identify genes regulated by RHOX10 in ProSG in vivo and define direct RHOX10-target genes using several approaches, including a rapid temporal induction assay: iSLAMseq. Together, these approaches identify temporal waves of RHOX10 direct targets, as well as RHOX10 secondary-target genes. Many of the RHOX10-regulated genes encode proteins with known roles in SSCs. Using an in vitro ProSG differentiation assay, we find that RHOX10 promotes mouse ProSG differentiation through a conserved transcriptional cascade involving the key germ-cell TFs DMRT1 and ZBTB16. Our study gives important insights into germ cell development and provides a blueprint for how to define TF cascades.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hye-Won Song
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
15
|
Li JY, Liu YF, Xu HY, Zhang JY, Lv PP, Liu ME, Ying YY, Qian YQ, Li K, Li C, Huang Y, Xu GF, Ding GL, Mao YC, Xu CM, Liu XM, Sheng JZ, Zhang D, Huang HF. Basonuclin 1 deficiency causes testicular premature aging: BNC1 cooperates with TAF7L to regulate spermatogenesis. J Mol Cell Biol 2021; 12:71-83. [PMID: 31065688 PMCID: PMC7052986 DOI: 10.1093/jmcb/mjz035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/19/2019] [Accepted: 03/21/2019] [Indexed: 12/19/2022] Open
Abstract
Basonuclin (BNC1) is expressed primarily in proliferative keratinocytes and gametogenic cells. However, its roles in spermatogenesis and testicular aging were not clear. Previously we discovered a heterozygous BNC1 truncation mutation in a premature ovarian insufficiency pedigree. In this study, we found that male mice carrying the truncation mutation exhibited progressively fertility loss and testicular premature aging. Genome-wide expression profiling and direct binding studies (by chromatin immunoprecipitation sequencing) with BNC1 in mouse testis identified several spermatogenesis-specific gene promoters targeted by BNC1 including kelch-like family member 10 (Klhl10), testis expressed 14 (Tex14), and spermatogenesis and centriole associated 1 (Spatc1). Moreover, biochemical analysis showed that BNC1 was associated with TATA-box binding protein-associated factor 7 like (TAF7L), a germ cell-specific paralogue of the transcription factor IID subunit TAF7, both in vitro and in testis, suggesting that BNC1 might directly cooperate with TAF7L to regulate spermatogenesis. The truncation mutation disabled nuclear translocation of the BNC1/TAF7L complex, thus, disturbing expression of related genes and leading to testicular premature aging. Similarly, expressions of BNC1, TAF7L, Y-box-binding protein 2 (YBX2), outer dense fiber of sperm tails 1 (ODF1), and glyceraldehyde-3-phosphate dehydrogenase, spermatogenic (GAPDHS) were significantly decreased in the testis of men with non-obstructive azoospermia. The present study adds to the understanding of the physiology of male reproductive aging and the mechanism of spermatogenic failure in infertile men.
Collapse
Affiliation(s)
- Jing-Yi Li
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yi-Feng Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Hai-Yan Xu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jun-Yu Zhang
- International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ping-Ping Lv
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Miao-E Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yan-Yun Ying
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Ye-Qing Qian
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Kun Li
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Cheng Li
- International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yun Huang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Gu-Feng Xu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Guo-Lian Ding
- International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yu-Chan Mao
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Chen-Ming Xu
- International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xin-Mei Liu
- International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jian-Zhong Sheng
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,Department of Pathology & Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - He-Feng Huang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.,International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
16
|
Expression profile of spermatogenesis associated genes in male germ cells during postnatal development in mice. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2020. [DOI: 10.12750/jarb.35.4.289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
17
|
Yang F, Whelan EC, Guan X, Deng B, Wang S, Sun J, Avarbock MR, Wu X, Brinster RL. FGF9 promotes mouse spermatogonial stem cell proliferation mediated by p38 MAPK signalling. Cell Prolif 2020; 54:e12933. [PMID: 33107118 PMCID: PMC7791179 DOI: 10.1111/cpr.12933] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/24/2020] [Accepted: 10/03/2020] [Indexed: 12/22/2022] Open
Abstract
Objectives Fibroblast growth factor 9 (FGF9) is expressed by somatic cells in the seminiferous tubules, yet little information exists about its role in regulating spermatogonial stem cells (SSCs). Materials and Methods Fgf9 overexpression lentivirus was injected into mouse testes, and PLZF immunostaining was performed to investigate the effect of FGF9 on spermatogonia in vivo. Effect of FGF9 on SSCs was detected by transplanting cultured germ cells into tubules of testes. RNA‐seq of bulk RNA and single cell was performed to explore FGF9 working mechanisms. SB203580 was used to disrupt p38 MAPK pathway. p38 MAPK protein expression was detected by Western blot and qPCR was performed to determine different gene expression. Small interfering RNA (siRNA) was used to knock down Etv5 gene expression in germ cells. Results Overexpression of Fgf9 in vivo resulted in arrested spermatogenesis and accumulation of undifferentiated spermatogonia. Exposure of germ cell cultures to FGF9 resulted in larger numbers of SSCs over time. Inhibition of p38 MAPK phosphorylation negated the SSC growth advantage provided by FGF9. Etv5 and Bcl6b gene expressions were enhanced by FGF9 treatment. Gene knockdown of Etv5 disrupted the growth effect of FGF9 in cultured SSCs along with downstream expression of Bcl6b. Conclusions Taken together, these data indicate that FGF9 is an important regulator of SSC proliferation, operating through p38 MAPK phosphorylation and upregulating Etv5 and Bcl6b in turn.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eoin C Whelan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xuebing Guan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bingquan Deng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shu Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiachen Sun
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mary R Avarbock
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ralph L Brinster
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Xie Y, Wei BH, Ni FD, Yang WX. Conversion from spermatogonia to spermatocytes: Extracellular cues and downstream transcription network. Gene 2020; 764:145080. [PMID: 32858178 DOI: 10.1016/j.gene.2020.145080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
Spermatocyte (spc) formation from spermatogonia (spg) differentiation is the first step of spermatogenesis which produces prodigious spermatozoa for a lifetime. After decades of studies, several factors involved in the functioning of a mouse were discovered both inside and outside spg. Considering the peculiar expression and working pattern of each factor, this review divides the whole conversion of spg to spc into four consecutive development processes with a focus on extracellular cues and downstream transcription network in each one. Potential coordination among Dmrt1, Sohlh1/2 and BMP families mediates Ngn3 upregulation, which marks progenitor spg, with other changes. After that, retinoic acid (RA), as a master regulator, promotes A1 spg formation with its helpers and Sall4. A1-to-B spg transition is under the control of Kitl and impulsive RA signaling together with early and late transcription factors Stra8 and Dmrt6. Finally, RA and its responsive effectors conduct the entry into meiosis. The systematic transcription network from outside to inside still needs research to supplement or settle the controversials in each process. As a step further ahead, this review provides possible drug targets for infertility therapy by cross-linking humans and mouse model.
Collapse
Affiliation(s)
- Yi Xie
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bang-Hong Wei
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei-Da Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Parekh PA, Garcia TX, Hofmann MC. Regulation of GDNF expression in Sertoli cells. Reproduction 2020; 157:R95-R107. [PMID: 30620720 DOI: 10.1530/rep-18-0239] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
Abstract
Sertoli cells regulate male germ cell proliferation and differentiation and are a critical component of the spermatogonial stem cell (SSC) niche, where homeostasis is maintained by the interplay of several signaling pathways and growth factors. These factors are secreted by Sertoli cells located within the seminiferous epithelium, and by interstitial cells residing between the seminiferous tubules. Sertoli cells and peritubular myoid cells produce glial cell line-derived neurotrophic factor (GDNF), which binds to the RET/GFRA1 receptor complex at the surface of undifferentiated spermatogonia. GDNF is known for its ability to drive SSC self-renewal and proliferation of their direct cell progeny. Even though the effects of GDNF are well studied, our understanding of the regulation its expression is still limited. The purpose of this review is to discuss how GDNF expression in Sertoli cells is modulated within the niche, and how these mechanisms impact germ cell homeostasis.
Collapse
Affiliation(s)
- Parag A Parekh
- Department of Endocrine Neoplasia, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Thomas X Garcia
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA.,Department of Biological and Environmental Sciences, University of Houston-Clear Lake, Houston, Texas, USA
| | - Marie-Claude Hofmann
- Department of Endocrine Neoplasia, UT MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
20
|
Zhang F, Wang S, Zhu J. ETS variant transcription factor 5 and c-Myc cooperate in derepressing the human telomerase gene promoter via composite ETS/E-box motifs. J Biol Chem 2020; 295:10062-10075. [PMID: 32518154 DOI: 10.1074/jbc.ra119.012130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
The human telomerase gene (hTERT) is repressed in most somatic cells. How transcription factors activate the hTERT promoter in its repressive chromatin environment is unknown. Here, we report that the ETS family protein ETS variant transcription factor 5 (ETV5) mediates epidermal growth factor (EGF)-induced hTERT expression in MCF10A cells. This activation required MYC proto-oncogene bHLH transcription factor (c-Myc) and depended on the chromatin state of the hTERT promoter. Using chromatinized bacterial artificial chromosome (BAC) reporters in human fibroblasts, we found that ETV5 and c-Myc/MYC-associated factor X (MAX) synergistically activate the hTERT promoter via two identical, but inverted, composite Ets/E-box motifs enclosing the core promoter. Mutations of Ets or E-box sites in either DNA motif abolished the activation and reduced or eliminated the synergism. ETV5 and c-Myc facilitated each other's binding to the hTERT promoter. ETV5 bound to the hTERT promoter in both telomerase-negative and -positive cells, but it activated the repressed hTERT promoter and altered histone modifications only in telomerase-negative cells. The synergistic ETV5/c-Myc activation disappeared when hTERT promoter repression became relieved because of the loss of distal regulatory elements in chimeric human/mouse BAC reporters. Our results suggest that the binding of c-Myc and ETS family proteins to the Ets/E-box motifs derepresses the hTERT promoter by inducing an active promoter configuration, providing a mechanistic insight into hTERT activation during tumorigenesis.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, Washington, USA
| | - Shuwen Wang
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, Washington, USA
| | - Jiyue Zhu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, Washington, USA
| |
Collapse
|
21
|
Lu C, Zhang Y, Qin Y, Xu Q, Zhou R, Cui Y, Zhu Y, Zhang X, Zhang J, Wei X, Wang M, Hang B, Mao JH, Snijders AM, Liu M, Hu Z, Shen H, Zhou Z, Guo X, Wu X, Wang X, Xia Y. Human X chromosome exome sequencing identifies BCORL1 as contributor to spermatogenesis. J Med Genet 2020; 58:56-65. [PMID: 32376790 DOI: 10.1136/jmedgenet-2019-106598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Infertility affects approximately 15% of couples worldwide with male infertility being responsible for approximately 50% of cases. Although accumulating evidence demonstrates the critical role of the X chromosome in spermatogenesis during the last few decades, the expression patterns and potential impact of the X chromosome, together with X linked genes, on male infertility are less well understood. METHODS We performed X chromosome exome sequencing followed by a two-stage independent population validation in 1333 non-obstructive azoospermia cases and 1141 healthy controls to identify variant classes with high likelihood of pathogenicity. To explore the functions of these candidate genes in spermatogenesis, we first knocked down these candidate genes individually in mouse spermatogonial stem cells (SSCs) using short interfering RNA oligonucleotides and then generated candidate genes knockout mice by CRISPR-Cas9 system. RESULTS Four low-frequency variants were identified in four genes (BCORL1, MAP7D3, ARMCX4 and H2BFWT) associated with male infertility. Functional studies of the mouse SSCs revealed that knocking down Bcorl1 or Mtap7d3 could inhibit SSCs self-renewal and knocking down Armcx4 could repress SSCs differentiation in vitro. Using CRISPR-Cas9 system, Bcorl1 and Mtap7d3 knockout mice were generated. Excitingly, Bcorl1 knockout mice were infertile with impaired spermatogenesis. Moreover, Bcorl1 knockout mice exhibited impaired sperm motility and sperm cells displayed abnormal mitochondrial structure. CONCLUSION Our data indicate that the X-linked genes are associated with male infertility and involved in regulating SSCs, which provides a new insight into the role of X-linked genes in spermatogenesis.
Collapse
Affiliation(s)
- Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yan Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yufeng Qin
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ran Zhou
- Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunfei Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jintao Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiang Wei
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bo Hang
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jian-Hua Mao
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Antoine M Snijders
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Tan K, Song HW, Wilkinson MF. Single-cell RNAseq analysis of testicular germ and somatic cell development during the perinatal period. Development 2020; 147:dev.183251. [PMID: 31964773 DOI: 10.1242/dev.183251] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/03/2020] [Indexed: 12/22/2022]
Abstract
Pro-spermatogonia (SG) serve as the gateway to spermatogenesis. Using single-cell RNA sequencing (RNAseq), we studied the development of ProSG, their SG descendants and testicular somatic cells during the perinatal period in mice. We identified both gene and protein markers for three temporally distinct ProSG cell subsets, including a migratory cell population with a transcriptome distinct from the previously defined T1- and T2-ProSG stages. This intermediate (I)-ProSG subset translocates from the center of seminiferous tubules to the spermatogonial stem cell (SSC) 'niche' in its periphery soon after birth. We identified three undifferentiated SG subsets at postnatal day 7, each of which expresses distinct genes, including transcription factor and signaling genes. Two of these subsets have the characteristics of newly emergent SSCs. We also molecularly defined the development of Sertoli, Leydig and peritubular myoid cells during the perinatal period, allowing us to identify candidate signaling pathways acting between somatic and germ cells in a stage-specific manner during the perinatal period. Our study provides a rich resource for those investigating testicular germ and somatic cell developmental during the perinatal period.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Hye-Won Song
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA .,Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
23
|
The testis-specific expressed gene Spata34 is not required for fertility in mice. Mol Biol Rep 2019; 47:285-292. [PMID: 31621016 DOI: 10.1007/s11033-019-05131-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/09/2019] [Indexed: 01/17/2023]
Abstract
It is estimated that more than two thousand genes exhibit testis-predominant expression pattern. The functions of hundreds of these genes have been explored during mouse spermatogenesis. However, there are still many genes whose relevance to reproduction in vivo remains unexplored. Our previous studies, as well as the other documented study, have indicated that Spata34, an evolutionarily conserved gene in metazoan species, was exclusively expressed in mouse testes and involved in spermatogenesis by regulating cell cycle progression. The present study aims to determine the effect of Spata34 gene knockout on mouse reproduction in vivo by generating a Spata34 gene knockout model using CRISPR/Cas9-mediated genome editing technology. We found that the Spata34 gene KO mice had normal fertility compared with wild type mice, and no overt detectable difference was found in testis/body weight ratios, testicular histology, sperm counts and spermatozoa motility parameters between WT and Spata34 KO mice. Our report indicated that the testis-specific-expressed gene Spata34 was not required for male mouse fertility, which will help to avoid unnecessary expenditures and effort by other researchers.
Collapse
|
24
|
Xu B, Wei X, Chen M, Xie K, Zhang Y, Huang Z, Dong T, Hu W, Zhou K, Han X, Wu X, Xia Y. Glycylglycine plays critical roles in the proliferation of spermatogonial stem cells. Mol Med Rep 2019; 20:3802-3810. [PMID: 31485625 PMCID: PMC6755143 DOI: 10.3892/mmr.2019.10609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Glial cell line‑derived neurotrophic factor (GDNF) is critical for the proliferation of spermatogonial stem cells (SSCs), but the underlying mechanisms remain poorly understood. In this study, an unbiased metabolomic analysis was performed to examine the metabolic modifications in SSCs following GDNF deprivation, and 11 metabolites were observed to decrease while three increased. Of the 11 decreased metabolites identified, glycylglycine was observed to significantly rescue the proliferation of the impaired SSCs, while no such effect was observed by adding sorbitol. However, the expression of self‑renewal genes, including B‑cell CLL/lymphoma 6 member B, ETS variant 5, GDNF family receptor α1 and early growth response protein 4 remained unaltered following glycylglycine treatment. This finding suggests that although glycylglycine serves an important role in the proliferation of SSCs, it is not required for the self‑renewal of SSCs.
Collapse
Affiliation(s)
- Bo Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xiang Wei
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Kaipeng Xie
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
- Department of Women Health Care, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Yuqing Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Zhenyao Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Tianyu Dong
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Weiyue Hu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
25
|
Wang J, Liu C, Fujino M, Tong G, Zhang Q, Li XK, Yan H. Stem Cells as a Resource for Treatment of Infertility-related Diseases. Curr Mol Med 2019; 19:539-546. [PMID: 31288721 PMCID: PMC6806537 DOI: 10.2174/1566524019666190709172636] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022]
Abstract
Worldwide, infertility affects 8-12% of couples of reproductive age and has become a common problem. There are many ways to treat infertility, including medication, intrauterine insemination, and in vitro fertilization. In recent years, stem-cell therapy has raised new hope in the field of reproductive disability management. Stem cells are self-renewing, self-replicating undifferentiated cells that are capable of producing specialized cells under appropriate conditions. They exist throughout a human’s embryo, fetal, and adult stages and can proliferate into different cells. While many issues remain to be addressed concerning stem cells, stem cells have undeniably opened up new ways to treat infertility. In this review, we describe past, present, and future strategies for the use of stem cells in reproductive medicine
Collapse
Affiliation(s)
- Jing Wang
- Reproductive Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Chi Liu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Guoqing Tong
- Reproductive Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinxiu Zhang
- Department of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hua Yan
- Reproductive Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
26
|
Kim YH, Oh MG, Bhang DH, Kim BJ, Jung SE, Kim SM, Dohr G, Kim SU, Ryeom S, Ryu BY. Testicular endothelial cells promote self-renewal of spermatogonial stem cells in rats†. Biol Reprod 2019; 101:360-367. [PMID: 31187129 DOI: 10.1093/biolre/ioz105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/01/2019] [Accepted: 06/10/2019] [Indexed: 01/03/2023] Open
Abstract
Spermatogonial stem cells (SSCs) are the basis of spermatogenesis in male due to their capability to multiply in numbers by self-renewal and subsequent meiotic processes. However, as SSCs are present in a very small proportion in the testis, in vitro proliferation of undifferentiated SSCs will facilitate the study of germ cell biology. In this study, we investigated the effectiveness of various cell lines as a feeder layer for rat SSCs. Germ cells enriched for SSCs were cultured on feeder layers including SIM mouse embryo-derived thioguanine and ouabain-resistant cells, C166 cells, and mouse and rat testicular endothelial cells (TECs) and their stem cell potential for generating donor-derived colonies and offspring was assessed by transplantation into recipient testes. Rat germ cells cultured on TECs showed increased mRNA and protein levels of undifferentiated spermatogonial markers. Rat SSCs derived from these germ cells underwent spermatogenesis and generated offspring when transplanted into recipients. Collectively, TECs can serve as an effective feeder layer that enhances the proliferative and self-renewal capacity of cultured rat SSCs while preserving their stemness properties.
Collapse
Affiliation(s)
- Yong-Hee Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Myeong-Geun Oh
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Dong Ha Bhang
- Department of Molecular and Cellular Biology, BK21Plus Program for 21st Century Biomedical Science Leader Development, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Bang-Jin Kim
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sang-Eun Jung
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Seok-Man Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Gottfried Dohr
- Institute of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Sun-Uk Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.,Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Sandra Ryeom
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea.,BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
27
|
Kubota H, Brinster RL. Spermatogonial stem cells. Biol Reprod 2019; 99:52-74. [PMID: 29617903 DOI: 10.1093/biolre/ioy077] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/29/2018] [Indexed: 12/19/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the most primitive spermatogonia in the testis and have an essential role to maintain highly productive spermatogenesis by self-renewal and continuous generation of daughter spermatogonia that differentiate into spermatozoa, transmitting genetic information to the next generation. Since the 1950s, many experimental methods, including histology, immunostaining, whole-mount analyses, and pulse-chase labeling, had been used in attempts to identify SSCs, but without success. In 1994, a spermatogonial transplantation method was reported that established a quantitative functional assay to identify SSCs by evaluating their ability to both self-renew and differentiate to spermatozoa. The system was originally developed using mice and subsequently extended to nonrodents, including domestic animals and humans. Availability of the functional assay for SSCs has made it possible to develop culture systems for their ex vivo expansion, which dramatically advanced germ cell biology and allowed medical and agricultural applications. In coming years, SSCs will be increasingly used to understand their regulation, as well as in germline modification, including gene correction, enhancement of male fertility, and conversion of somatic cells to biologically competent male germline cells.
Collapse
Affiliation(s)
- Hiroshi Kubota
- Laboratory of Cell and Molecular Biology, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Ralph L Brinster
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Zhou F, Chen W, Jiang Y, He Z. Regulation of long non-coding RNAs and circular RNAs in spermatogonial stem cells. Reproduction 2019; 158:R15-R25. [DOI: 10.1530/rep-18-0517] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 04/02/2019] [Indexed: 12/18/2022]
Abstract
Spermatogonial stem cells (SSCs) are one of the most significant stem cells with the potentials of self-renewal, differentiation, transdifferentiation and dedifferentiation, and thus, they have important applications in reproductive and regenerative medicine. They can transmit the genetic and epigenetic information across generations, which highlights the importance of the correct establishment and maintenance of epigenetic marks. Accurate transcriptional and post-transcriptional regulation is required to support the highly coordinated expression of specific genes for each step of spermatogenesis. Increasing evidence indicates that non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play essential roles in controlling gene expression and fate determination of male germ cells. These ncRNA molecules have distinct characteristics and biological functions, and they independently or cooperatively modulate the proliferation, apoptosis and differentiation of SSCs. In this review, we summarized the features, biological function and fate of mouse and human SSCs, and we compared the characteristics of lncRNAs and circRNAs. We also addressed the roles and mechanisms of lncRNAs and circRNAs in regulating mouse and human SSCs, which would add novel insights into the epigenetic mechanisms underlying mammalian spermatogenesis and provide new approaches to treat male infertility.
Collapse
|
29
|
Wang JH, Li Y, Deng SL, Liu YX, Lian ZX, Yu K. Recent Research Advances in Mitosis during Mammalian Gametogenesis. Cells 2019; 8:cells8060567. [PMID: 31185583 PMCID: PMC6628140 DOI: 10.3390/cells8060567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/02/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
Mitosis is a highly sophisticated and well-regulated process during the development and differentiation of mammalian gametogenesis. The regulation of mitosis plays an essential role in keeping the formulation in oogenesis and gametogenesis. In the past few years, substantial research progress has been made by showing that cyclins/cyclin-dependent kinase (CDK) have roles in the regulation of meiosis. In addition, more functional signaling molecules have been discovered in mitosis. Growing evidence has also indicated that miRNAs influence cell cycling. In this review, we focus on specific genes, cyclins/Cdk, signaling pathways/molecules, and miRNAs to discuss the latest achievements in understanding their roles in mitosis during gametogenesis. Further elucidation of mitosis during gametogenesis may facilitate delineating all processes of mammalian reproduction and the development of disease treatments.
Collapse
Affiliation(s)
- Jia-Hao Wang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yan Li
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Shou-Long Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
30
|
DDX5 plays essential transcriptional and post-transcriptional roles in the maintenance and function of spermatogonia. Nat Commun 2019; 10:2278. [PMID: 31123254 PMCID: PMC6533336 DOI: 10.1038/s41467-019-09972-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
Mammalian spermatogenesis is sustained by mitotic germ cells with self-renewal potential known as undifferentiated spermatogonia. Maintenance of undifferentiated spermatogonia and spermatogenesis is dependent on tightly co-ordinated transcriptional and post-transcriptional mechanisms. The RNA helicase DDX5 is expressed by spermatogonia but roles in spermatogenesis are unexplored. Using an inducible knockout mouse model, we characterise an essential role for DDX5 in spermatogonial maintenance and show that Ddx5 is indispensable for male fertility. We demonstrate that DDX5 regulates appropriate splicing of key genes necessary for spermatogenesis. Moreover, DDX5 regulates expression of cell cycle genes in undifferentiated spermatogonia post-transcriptionally and is required for cell proliferation and survival. DDX5 can also act as a transcriptional co-activator and we demonstrate that DDX5 interacts with PLZF, a transcription factor required for germline maintenance, to co-regulate select target genes. Combined, our data reveal a critical multifunctional role for DDX5 in regulating gene expression programmes and activity of undifferentiated spermatogonia. Sustained sperm production is dependent on activity of undifferentiated spermatogonia. Here, the authors demonstrate an essential role for RNA helicase DDX5 in maintenance of spermatogonia in adults through control of gene transcription plus RNA processing and export.
Collapse
|
31
|
Fu K, Tian S, Tan H, Wang C, Wang H, Wang M, Wang Y, Chen Z, Wang Y, Yue Q, Xu Q, Zhang S, Li H, Xie J, Lin M, Luo M, Chen F, Ye L, Zheng K. Biological and RNA regulatory function of MOV10 in mammalian germ cells. BMC Biol 2019; 17:39. [PMID: 31088452 PMCID: PMC6515687 DOI: 10.1186/s12915-019-0659-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
Background RNA regulation by RNA-binding proteins (RBPs) involve extremely complicated mechanisms. MOV10 and MOV10L1 are two homologous RNA helicases implicated in distinct intracellular pathways. MOV10L1 participates specifically in Piwi-interacting RNA (piRNA) biogenesis and protects mouse male fertility. In contrast, the functional complexity of MOV10 remains incompletely understood, and its role in the mammalian germline is unknown. Here, we report a study of the biological and molecular functions of the RNA helicase MOV10 in mammalian male germ cells. Results MOV10 is a nucleocytoplasmic protein mainly expressed in spermatogonia. Knockdown and transplantation experiments show that MOV10 deficiency has a negative effect on spermatogonial progenitor cells (SPCs), limiting proliferation and in vivo repopulation capacity. This effect is concurrent with a global disturbance of RNA homeostasis and downregulation of factors critical for SPC proliferation and/or self-renewal. Unexpectedly, microRNA (miRNA) biogenesis is impaired due partially to decrease of miRNA primary transcript levels and/or retention of miRNA via splicing control. Genome-wide analysis of RNA targetome reveals that MOV10 binds preferentially to mRNAs with long 3′-UTR and also interacts with various non-coding RNA species including those in the nucleus. Intriguingly, nuclear MOV10 associates with an array of splicing factors, particularly with SRSF1, and its intronic binding sites tend to reside in proximity to splice sites. Conclusions These data expand the landscape of MOV10 function and highlight a previously unidentified role initiated from the nucleus, suggesting that MOV10 is a versatile RBP involved in a broader RNA regulatory network. Electronic supplementary material The online version of this article (10.1186/s12915-019-0659-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaiqiang Fu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Suwen Tian
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.,Department of Preventive Medicine, Heze Medical College, Heze, 274000, China
| | - Huanhuan Tan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Caifeng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Hanben Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Min Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yuanyuan Wang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Zhen Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Qiushi Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Shuya Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Haixin Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jie Xie
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Mingyan Lin
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Mengcheng Luo
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
32
|
Lin Z, Liang P, Yao Z, Chen Y, Zhang X, Huang R, Zhang Z, Li M, Ma W, Zheng H, Cao S, Shi G, Zhao X, Songyang Z, Huang J. A novel undifferentiated spermatogonia-specific surface protein 1 (USSP1) in neonatal mice. Sci Bull (Beijing) 2019; 64:524-533. [PMID: 36659742 DOI: 10.1016/j.scib.2019.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/11/2019] [Accepted: 03/07/2019] [Indexed: 01/21/2023]
Abstract
Mammalian spermatogenesis is maintained by a rare population of spermatogonial stem cells (SSCs), which are important for male fertility. SSCs remain a subset of undifferentiated spermatogonia, which can be isolated by a combination of surface markers. Specific markers to identify and isolate undifferentiated spermatogonia are lacking. Ussp1, a transcript previously annotated as long noncoding RNA (RIKEN cDNA 4933427D06, Gene ID: 232217), virtually encodes a membrane protein, USSP1, in a highly testis-specific manner in mouse. We demonstrate its expression on the membrane of undifferentiated spermatogonia by a homemade polyclonal rabbit antibody against the protein. In vivo, USSP1+ clusters consist mainly of As, Apr (GFRα1+) and Aal (PLZF+) cells. USSP1+ cells exhibit enrichment of undifferentiated spermatogonia, as shown by increased expression of SSC self-renewal molecular markers and the potential to form SSC clones in vitro and in vivo. However, Ussp1 knockout did not affect the number of SSCs or spermatogenesis in mice. Thy1+ cells from Ussp1 null mice did not show any defect in the SSC colony formation capacity, indicating that USSP1 is not essential for SSC self-renewal. Our data demonstrate that Ussp1 is specifically expressed in undifferentiated murine spermatogonia, indicating the potential to sort undifferentiated spermatogonia with USSP1 antibodies. Ussp1 might be a good maker for SSC enrichment in neonatal mice.
Collapse
Affiliation(s)
- Zhuoheng Lin
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Puping Liang
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhaokai Yao
- Department of Developmental Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Yuxi Chen
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiya Zhang
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Rui Huang
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhen Zhang
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Minyan Li
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenbin Ma
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Haiyan Zheng
- Key Laboratory of Reproductive Medicine of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Shanbo Cao
- Key Laboratory of Reproductive Medicine of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Guang Shi
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoyang Zhao
- Department of Developmental Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Zhou Songyang
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510275, China.
| | - Junjiu Huang
- Key Laboratory of Gene Function and Regulation of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
33
|
Single cell RNA-sequencing identified Dec2 as a suppressive factor for spermatogonial differentiation by inhibiting Sohlh1 expression. Sci Rep 2019; 9:6063. [PMID: 30988352 PMCID: PMC6465314 DOI: 10.1038/s41598-019-42578-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/03/2019] [Indexed: 12/31/2022] Open
Abstract
Gonocyte-to-spermatogonia transition is a critical fate determination process to initiate sperm production throughout the lifecycle. However, the molecular dynamics of this process has not been fully elucidated mainly due to the asynchronized differentiation stages of neonatal germ cells. In this study, we employed single cell RNA sequencing analyses of P1.5–5.5 germ cells to clarify the temporal dynamics of gene expression during gonocyte-to-spermatogonia transition. The analyses identified transcriptional modules, one of which regulates spermatogonial gene network in neonatal germ cells. Among them, we identified Dec2, a bHLH-type transcription factor, as a transcriptional repressor for a spermatogonial differentiation factor Sohlh1. Deficiency of Dec2 in mice induces significant reduction of undifferentiated spermatogonia, and transplantation assay using Dec2-depleted cells also demonstrated the impaired efficiency of engraftment, suggesting its role in maintaining spermatogonial stem cells (SSCs). Collectively, this study revealed the intrinsic role of a new SSC factor Dec2, which protects germ cells from inadequate differentiation during neonatal testis development.
Collapse
|
34
|
Morimoto H, Kanastu-Shinohara M, Ogonuki N, Kamimura S, Ogura A, Yabe-Nishimura C, Mori Y, Morimoto T, Watanabe S, Otsu K, Yamamoto T, Shinohara T. ROS amplification drives mouse spermatogonial stem cell self-renewal. Life Sci Alliance 2019; 2:2/2/e201900374. [PMID: 30940732 PMCID: PMC6448598 DOI: 10.26508/lsa.201900374] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 01/10/2023] Open
Abstract
Although reactive oxygen species (ROS) are required for spermatogonial stem cell (SSC) self-renewal, the mechanism has remained unknown. We show that SSC self-renewal signals activate MAPK14/MAPK7 pathway to induce nuclear translocation of BCL6B and activation of NOX1. Reactive oxygen species (ROS) play critical roles in self-renewal division for various stem cell types. However, it remains unclear how ROS signals are integrated with self-renewal machinery. Here, we report that the MAPK14/MAPK7/BCL6B pathway creates a positive feedback loop to drive spermatogonial stem cell (SSC) self-renewal via ROS amplification. The activation of MAPK14 induced MAPK7 phosphorylation in cultured SSCs, and targeted deletion of Mapk14 or Mapk7 resulted in significant SSC deficiency after spermatogonial transplantation. The activation of this signaling pathway not only induced Nox1 but also increased ROS levels. Chemical screening of MAPK7 targets revealed many ROS-dependent spermatogonial transcription factors, of which BCL6B was found to initiate ROS production by increasing Nox1 expression via ETV5-induced nuclear translocation. Because hydrogen peroxide or Nox1 transfection also induced BCL6B nuclear translocation, our results suggest that BCL6B initiates and amplifies ROS signals to activate ROS-dependent spermatogonial transcription factors by forming a positive feedback loop.
Collapse
Affiliation(s)
- Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mito Kanastu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science, Tokyo, Japan
| | - Narumi Ogonuki
- Institute for Physical and Chemical Research (RIKEN), Bioresource Center, Tsukuba, Japan
| | - Satoshi Kamimura
- Institute for Physical and Chemical Research (RIKEN), Bioresource Center, Tsukuba, Japan
| | - Atsuo Ogura
- Institute for Physical and Chemical Research (RIKEN), Bioresource Center, Tsukuba, Japan
| | | | - Yoshifumi Mori
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Morimoto
- Department of Clinical Epidemiology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Satoshi Watanabe
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kinya Otsu
- Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Takuya Yamamoto
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science, Tokyo, Japan.,Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
35
|
Kubota H. Heterogeneity of Spermatogonial Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:225-242. [PMID: 31487027 DOI: 10.1007/978-3-030-24108-7_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Germ cells transfer genetic materials from one generation to the next, which ensures the continuation of the species. Spermatogenesis, the process of male germ cell production, is one of the most productive systems in adult tissues. This high productivity depends on the well-coordinated differentiation cascade in spermatogonia, occurring via their synchronized cell division and proliferation. Spermatogonial stem cells (SSCs) are responsible for maintaining the spermatogonial population via self-renewal and the continuous generation of committed progenitor cells that differentiate into spermatozoa. Like other stem cells in the body, SSCs are defined by their self-renewal and differentiation abilities. A functional transplantation assay, in which these biological properties of SSCs can be quantitatively evaluated, was developed using mice, and the cell surface characteristics and intracellular marker gene expression of murine SSCs were successfully determined. Another approach to elucidate SSC identity is a cell lineage-tracing experiment using transgenic mice, which can track the SSC behavior in the testes. Recent studies using both these experimental approaches have revealed that the SSC identity changed depending upon the developmental, homeostatic, and regenerative circumstances. In addition, single-cell transcriptomic analyses have further indicated the instability of marker gene expression in SSCs. More studies are needed to unify the results of the determination of SSC identity based on the functional properties and accumulating transcriptomic data of SSCs, to elucidate the functional interaction between SSC behavior and gene products and illustrate the conserved features of SSCs amidst their heterogeneity. Furthermore, the deterministic roles of distinct SSC niches under different physiological conditions in the SSC heterogeneity and its causal regulators must also be clarified in future studies.
Collapse
Affiliation(s)
- Hiroshi Kubota
- Laboratory of Cell and Molecular Biology, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan.
| |
Collapse
|
36
|
Expression of the alternative splicing variants of bcl6b in medaka Oryzias latipes. Comp Biochem Physiol B Biochem Mol Biol 2018; 227:83-89. [PMID: 30292753 DOI: 10.1016/j.cbpb.2018.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 01/01/2023]
Abstract
Bcl6B, also known as BAZF, plays important roles in the immune response, repression of cancers, and maintenance of spermatogonial stem cells in mammals. In this study, the homologous gene bcl6b and its 5 alternative splicing variants, namely bcl6bX1 to bcl6bX5, were isolated from medaka fish, Oryzias latipes. Medaka bcl6b possesses conserved domains such as BTB domain, RD2 domain and four zinc fingers. Medaka bcl6bX1 to bcl6bX3 possess all three previously mentioned domains with minor differences in sequences. Medaka bcl6bX4 possesses only the BTB domain due to premature stopping, and bcl6bX5 possesses both the BTB domain and zinc fingers without the RD2 domain. Medaka bcl6b was expressed in the tissues including the brain, heart, gill, muscle, spleen, kidney, intestine, ovary and testes of adult fish. Medaka bcl6b was expressed in the embryos from very early stage, and could be detected clearly in the developing eyes by RT-PCR and in situ hybridization. Medaka bcl6b could respond to the stimuli of polyI:C and LPS in the kidney and spleen. Medaka bcl6bX1 to bcl6bX3 were the majority of the variants expressed in the adult tissues and the embryos, and were the major response to the stimulation of polyI:C and LPS in the spleen. These results suggested that bcl6b, including its isoforms, could function in various tissues and embryogenesis. Moreover, bcl6b might be a factor for immune response in medaka.
Collapse
|
37
|
La HM, Mäkelä JA, Chan AL, Rossello FJ, Nefzger CM, Legrand JMD, De Seram M, Polo JM, Hobbs RM. Identification of dynamic undifferentiated cell states within the male germline. Nat Commun 2018; 9:2819. [PMID: 30026551 PMCID: PMC6053434 DOI: 10.1038/s41467-018-04827-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/22/2018] [Indexed: 01/05/2023] Open
Abstract
The role of stem cells in tissue maintenance is appreciated and hierarchical models of stem cell self-renewal and differentiation often proposed. Stem cell activity in the male germline is restricted to undifferentiated A-type spermatogonia (Aundiff); however, only a fraction of this population act as stem cells in undisturbed testis and Aundiff hierarchy remains contentious. Through newly developed compound reporter mice, here we define molecular signatures of self-renewing and differentiation-primed adult Aundiff fractions and dissect Aundiff heterogeneity by single-cell analysis. We uncover an unappreciated population within the self-renewing Aundiff fraction marked by expression of embryonic patterning genes and homeodomain transcription factor PDX1. Importantly, we find that PDX1 marks a population with potent stem cell capacity unique to mature, homeostatic testis and demonstrate dynamic interconversion between PDX1+ and PDX1- Aundiff states upon transplant and culture. We conclude that Aundiff exist in a series of dynamic cell states with distinct function and provide evidence that stability of such states is dictated by niche-derived cues.
Collapse
Affiliation(s)
- Hue M La
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Juho-Antti Mäkelä
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Ai-Leen Chan
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Fernando J Rossello
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Christian M Nefzger
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Julien M D Legrand
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Mia De Seram
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Jose M Polo
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Robin M Hobbs
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
38
|
Wei C, Lin H, Cui S. The Forkhead Transcription Factor FOXC2 Is Required for Maintaining Murine Spermatogonial Stem Cells. Stem Cells Dev 2018; 27:624-636. [DOI: 10.1089/scd.2017.0233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Chao Wei
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Hao Lin
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Sheng Cui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
39
|
Heckmann L, Pock T, Tröndle I, Neuhaus N. The C-X-C signalling system in the rodent vs primate testis: impact on germ cell niche interaction. Reproduction 2018; 155:R211-R219. [DOI: 10.1530/rep-17-0617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/01/2018] [Indexed: 12/20/2022]
Abstract
In zebrafish, action of the chemokine Cxcl12 is mediated through its G-protein-coupled seven-transmembrane domain receptor Cxcr4 and the atypical receptor Cxcr7. Employing this animal model, it was revealed that this Cxcl12 signalling system plays a crucial role for directed migration of primordial germ cells (PGC) during early testicular development. Importantly, subsequent studies indicated that this regulatory mechanism is evolutionarily conserved also in mice. What is more, the functional role of the CXCL12 system does not seem to be limited to early phases of testicular development. Data from mouse studies rather demonstrate that CXCL12 and its receptors are also involved in the homing process of gonocytes into their niches at the basal membrane of the seminiferous tubules. Intriguingly, even the spermatogonial stem cells (SSCs) present in the adult mouse testis appear to maintain the ability to migrate towards a CXCL12 gradient as demonstrated by functional in vitro migration assays and in vivo germ cell transplantation assays. These findings not only indicate a role of the CXCL12 system throughout male germ cell development in mice but also suggest that this system may be evolutionarily conserved. In this review, we take into account the available literature focusing on the localization patterns of the CXCL12 system not only in rodents but also in primates, including the human. Based on these data, we discuss whether the CXCL12 system is also conserved between rodents and primates and discuss the known and potential functional consequences.
Collapse
|
40
|
Zhang J, Cao H, Xie J, Fan C, Xie Y, He X, Liao M, Zhang S, Wang H. The oncogene Etv5 promotes MET in somatic reprogramming and orchestrates epiblast/primitive endoderm specification during mESCs differentiation. Cell Death Dis 2018; 9:224. [PMID: 29445086 PMCID: PMC5833841 DOI: 10.1038/s41419-018-0335-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 01/10/2023]
Abstract
Unipotent spermatogonial stem cells (SSCs) can be efficiently reprogrammed into pluripotent stem cells only by manipulating the culture condition, without introducing exogenous reprogramming factors. This phenotype raises the hypothesis that the endogenous transcription factors (TFs) in SSCs may facilitate reprogramming to acquire pluripotency. In this study, we screened a pool of SSCs TFs (Bcl6b, Lhx1, Foxo1, Plzf, Id4, Taf4b, and Etv5), and found that oncogene Etv5 could dramatically increase the efficiency of induced pluripotent stem cells (iPSCs) generation when combined with Yamanaka factors. We also demonstrated that Etv5 could promote mesenchymal-epithelial transition (MET) at the early stage of reprogramming by regulating Tet2-miR200s-Zeb1 axis. In addition, Etv5 knockdown in mouse embryonic stem cells (mESCs) could decrease the genomic 5hmC level by downregulating Tet2. Furthermore, the embryoid body assay revealed that Etv5 could positively regulate primitive endoderm specification through regulating Gata6 and negatively regulate epiblast specification by inhibiting Fgf5 expression. In summary, our findings provide insights into understanding the regulation mechanisms of Etv5 under the context of somatic reprogramming, mESCs maintenance, and differentiation.
Collapse
Affiliation(s)
- Jinglong Zhang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hongxia Cao
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jing Xie
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Fan
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Youlong Xie
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xin He
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingzhi Liao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shiqiang Zhang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Huayan Wang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
41
|
Chen X, Liang M, Wang D. Progress on the study of the mechanism of busulfan cytotoxicity. Cytotechnology 2018; 70:497-502. [PMID: 29350306 DOI: 10.1007/s10616-018-0189-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022] Open
Abstract
The preparation of spermatogonial stem cell (SSC) transplant recipients laid the technical foundation for SSC transplant technology and the understanding of spermatogenesis mechanisms. Busulfan is commonly used to prepare recipients for mouse SSC transplantation; however, its safety and efficiency have been questioned. This review summarizes the relationship between SSCs and Sertoli cells (SCs), and the mechanism of busulfan toxicity against sperm cells. We concluded that the proliferation, differentiation, and apoptosis of SSCs are regulated by SCs. The endogenous spermatogenic cells are depleted by busulfan treatment via alkylation of DNA, destruction of vimentin filament distribution, disruption of SSC differentiation, promotion of SSC dormancy, and generation of oxidative stress. However, the mechanisms require further exploration. The recent establishment of a model in vitro culture system has provided a good technical foundation to further explore these mechanisms, which will help us to find more efficient methods of recipient preparation and optimal transplantation times.
Collapse
Affiliation(s)
- Xiaoli Chen
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing, 100193, China
| | | | - Dong Wang
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing, 100193, China.
| |
Collapse
|
42
|
Jezkova J, Williams JS, Pinto F, Sammut SJ, Williams GT, Gollins S, McFarlane RJ, Reis RM, Wakeman JA. Brachyury identifies a class of enteroendocrine cells in normal human intestinal crypts and colorectal cancer. Oncotarget 2017; 7:11478-86. [PMID: 26862851 PMCID: PMC4905487 DOI: 10.18632/oncotarget.7202] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/23/2016] [Indexed: 12/22/2022] Open
Abstract
Normal homeostasis of adult intestinal epithelium and repair following tissue damage is maintained by a balance of stem and differentiated cells, many of which are still only poorly characterised. Enteroendocrine cells of the gut are a small population of differentiated, secretory cells that are critical for integrating nutrient sensing with metabolic responses, dispersed amongst other epithelial cells. Recent evidence suggests that sub-sets of secretory enteroendocrine cells can act as reserve stem cells. Given the link between cells with stem-like properties and cancer, it is important that we identify factors that might provide a bridge between the two. Here, we identify a sub-set of chromogranin A-positive enteroendocrine cells that are positive for the developmental and cancer-associated transcription factor Brachyury in normal human small intestinal and colonic crypts. Whilst chromogranin A-positive enteroendocrine cells are also Brachyury-positive in colorectal tumours, expression of Brachyury becomes more diffuse in these samples, suggesting a more widespread function in cancer. The finding of the developmental transcription factor Brachyury in normal adult human intestinal crypts may extend the functional complexity of enteroendocrine cells and serves as a platform for assessment of the molecular processes of intestinal homeostasis that underpins our understanding of human health, cancer and aging.
Collapse
Affiliation(s)
- Jana Jezkova
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, UK
| | - Jason S Williams
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, UK
| | - Filipe Pinto
- Life and Health Sciences Research Institute (ICVS), School Health Sciences, University Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Stephen J Sammut
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, UK
| | - Geraint T Williams
- Institute of Cancer and Genetics, Cardiff University Medical School, Cardiff, UK
| | - Simon Gollins
- North Wales Cancer Treatment Centre, Betsi Cadwaladr University Health Board, Bodelwyddan, UK
| | - Ramsay J McFarlane
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, UK.,NISCHR Cancer Genetics Biomedical Research Unit, Cardiff, UK
| | - Rui Manuel Reis
- Life and Health Sciences Research Institute (ICVS), School Health Sciences, University Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Jane A Wakeman
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor, UK
| |
Collapse
|
43
|
Razavi SM, Sabbaghian M, Jalili M, Divsalar A, Wolkenhauer O, Salehzadeh-Yazdi A. Comprehensive functional enrichment analysis of male infertility. Sci Rep 2017; 7:15778. [PMID: 29150651 PMCID: PMC5693951 DOI: 10.1038/s41598-017-16005-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023] Open
Abstract
Spermatogenesis is a multifactorial process that forms differentiated sperm cells in a complex microenvironment. This process involves the genome, epigenome, transcriptome, and proteome to ensure the stability of the spermatogonia and supporting cells. The identification of signaling pathways linked to infertility has been hampered by the inherent complexity and multifactorial aspects of spermatogenesis. Systems biology is a promising approach to unveil underlying signaling pathways and genes and identify putative biomarkers. In this study, we analyzed thirteen microarray libraries of infertile humans and mice, and different classes of male infertility were compared using differentially expressed genes and functional enrichment analysis. We found regulatory processes, immune response, glutathione transferase and muscle tissue development to be among the most common biological processes in up-regulated genes, and genes involved in spermatogenesis were down-regulated in maturation arrest (MArrest) and oligospermia cases. We also observed the overexpression of genes involved in steroid metabolism in post-meiotic and meiotic arrest. Furthermore, we found that the infertile mouse model most similar to human MArrest was the Dazap1 mutant mouse. The results of this study could help elucidate features of infertility etiology and provide the basis for diagnostic markers.
Collapse
Affiliation(s)
- Seyed Morteza Razavi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Mahdi Jalili
- Hematology, Oncology and SCT Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Adeleh Divsalar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany
| | - Ali Salehzadeh-Yazdi
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany.
| |
Collapse
|
44
|
Song HW, Bettegowda A, Lake BB, Zhao AH, Skarbrevik D, Babajanian E, Sukhwani M, Shum EY, Phan MH, Plank TDM, Richardson ME, Ramaiah M, Sridhar V, de Rooij DG, Orwig KE, Zhang K, Wilkinson MF. The Homeobox Transcription Factor RHOX10 Drives Mouse Spermatogonial Stem Cell Establishment. Cell Rep 2017; 17:149-164. [PMID: 27681428 DOI: 10.1016/j.celrep.2016.08.090] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 07/19/2016] [Accepted: 08/27/2016] [Indexed: 12/31/2022] Open
Abstract
The developmental origins of most adult stem cells are poorly understood. Here, we report the identification of a transcription factor-RHOX10-critical for the initial establishment of spermatogonial stem cells (SSCs). Conditional loss of the entire 33-gene X-linked homeobox gene cluster that includes Rhox10 causes progressive spermatogenic decline, a phenotype indistinguishable from that caused by loss of only Rhox10. We demonstrate that this phenotype results from dramatically reduced SSC generation. By using a battery of approaches, including single-cell-RNA sequencing (scRNA-seq) analysis, we show that Rhox10 drives SSC generation by promoting pro-spermatogonia differentiation. Rhox10 also regulates batteries of migration genes and promotes the migration of pro-spermatogonia into the SSC niche. The identification of an X-linked homeobox gene that drives the initial generation of SSCs has implications for the evolution of X-linked gene clusters and sheds light on regulatory mechanisms influencing adult stem cell generation in general.
Collapse
Affiliation(s)
- Hye-Won Song
- School of Medicine, Department of Reproductive Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Anilkumar Bettegowda
- School of Medicine, Department of Reproductive Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Blue B Lake
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Adrienne H Zhao
- School of Medicine, Department of Reproductive Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - David Skarbrevik
- School of Medicine, Department of Reproductive Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Eric Babajanian
- School of Medicine, Department of Reproductive Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Meena Sukhwani
- Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Eleen Y Shum
- School of Medicine, Department of Reproductive Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Mimi H Phan
- School of Medicine, Department of Reproductive Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Terra-Dawn M Plank
- School of Medicine, Department of Reproductive Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Marcy E Richardson
- School of Medicine, Department of Reproductive Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Madhuvanthi Ramaiah
- School of Medicine, Department of Reproductive Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Vaishnavi Sridhar
- School of Medicine, Department of Reproductive Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Faculty of Science, Department of Biology, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Kyle E Orwig
- Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Kun Zhang
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Miles F Wilkinson
- School of Medicine, Department of Reproductive Medicine, University of California at San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
45
|
DMRTC2, PAX7, BRACHYURY/T and TERT Are Implicated in Male Germ Cell Development Following Curative Hormone Treatment for Cryptorchidism-Induced Infertility. Genes (Basel) 2017; 8:genes8100267. [PMID: 29019938 PMCID: PMC5664117 DOI: 10.3390/genes8100267] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/25/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022] Open
Abstract
Defective mini-puberty results in insufficient testosterone secretion that impairs the differentiation of gonocytes into dark-type (Ad) spermatogonia. The differentiation of gonocytes into Ad spermatogonia can be induced by administration of the gonadotropin-releasing hormone agonist, GnRHa (Buserelin, INN)). Nothing is known about the mechanism that underlies successful GnRHa treatment in the germ cells. Using RNA-sequencing of testicular biopsies, we recently examined RNA profiles of testes with and without GnRHa treatment. Here, we focused on the expression patterns of known gene markers for gonocytes and spermatogonia, and found that DMRTC2, PAX7, BRACHYURY/T, and TERT were associated with defective mini-puberty and were responsive to GnRHa. These results indicate novel testosterone-dependent genes and provide valuable insight into the transcriptional response to both defective mini-puberty and curative GnRHa treatment, which prevents infertility in man with one or both undescended (cryptorchid) testes.
Collapse
|
46
|
Wang M, Guo Y, Wang M, Zhou T, Xue Y, Du G, Wei X, Wang J, Qi L, Zhang H, Li L, Ye L, Guo X, Wu X. The Glial Cell-Derived Neurotrophic Factor (GDNF)-responsive Phosphoprotein Landscape Identifies Raptor Phosphorylation Required for Spermatogonial Progenitor Cell Proliferation. Mol Cell Proteomics 2017; 16:982-997. [PMID: 28408662 DOI: 10.1074/mcp.m116.065797] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/24/2017] [Indexed: 01/15/2023] Open
Abstract
Cytokine-dependent renewal of stem cells is a fundamental requisite for tissue homeostasis and regeneration. Spermatogonial progenitor cells (SPCs) including stem cells support life-long spermatogenesis and male fertility, but pivotal phosphorylation events that regulate fate decisions in SPCs remain unresolved. Here, we described a quantitative mass-spectrometry-based proteomic and phosphoproteomic analyses of SPCs following sustained stimulation with glial cell-derived neurotrophic factor (GDNF), an extrinsic factor supporting SPC proliferation. Stimulated SPCs contained 3382 identified phosphorylated proteins and 12141 phosphorylation sites. Of them, 325 differentially phosphorylated proteins and 570 phosphorylation sites triggered by GDNF were highly enriched for ERK1/2, GSK3, CDK1, and CDK5 phosphorylating motifs. We validated that inhibition of GDNF/ERK1/2-signaling impaired SPC proliferation and increased G2/M cell cycle arrest. Significantly, we found that proliferation of SPCs requires phosphorylation of the mTORC1 component Raptor at Ser863 Tissue-specific deletion of Raptor in mouse germline cells results in impaired spermatogenesis and progressive loss of spermatogonia, but in vitro increased phosphorylation of Raptor by raptor over-expression in SPCs induced a more rapidly growth of SPCs in culture. These findings implicate previously undescribed signaling networks in governing fate decision of SPCs, which is essential for the understanding of spermatogenesis and of potential consequences of pathogenic insult for male infertility.
Collapse
Affiliation(s)
- Min Wang
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yueshuai Guo
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Mei Wang
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tao Zhou
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuanyuan Xue
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Guihua Du
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiang Wei
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jing Wang
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lin Qi
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hao Zhang
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lufan Li
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lan Ye
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuejiang Guo
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Wu
- From the ‡State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
47
|
Tokue M, Ikami K, Mizuno S, Takagi C, Miyagi A, Takada R, Noda C, Kitadate Y, Hara K, Mizuguchi H, Sato T, Taketo MM, Sugiyama F, Ogawa T, Kobayashi S, Ueno N, Takahashi S, Takada S, Yoshida S. SHISA6 Confers Resistance to Differentiation-Promoting Wnt/β-Catenin Signaling in Mouse Spermatogenic Stem Cells. Stem Cell Reports 2017; 8:561-575. [PMID: 28196692 PMCID: PMC5355566 DOI: 10.1016/j.stemcr.2017.01.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 01/15/2023] Open
Abstract
In the seminiferous tubules of mouse testes, a population of glial cell line-derived neurotrophic factor family receptor alpha 1 (GFRα1)-positive spermatogonia harbors the stem cell functionality and supports continual spermatogenesis, likely independent of asymmetric division or definitive niche control. Here, we show that activation of Wnt/β-catenin signaling promotes spermatogonial differentiation and reduces the GFRα1+ cell pool. We further discovered that SHISA6 is a cell-autonomous Wnt inhibitor that is expressed in a restricted subset of GFRα1+ cells and confers resistance to the Wnt/β-catenin signaling. Shisa6+ cells appear to show stem cell-related characteristics, conjectured from the morphology and long-term fates of T (Brachyury)+ cells that are found largely overlapped with Shisa6+ cells. This study proposes a generic mechanism of stem cell regulation in a facultative (or open) niche environment, with which different levels of a cell-autonomous inhibitor (SHISA6, in this case) generates heterogeneous resistance to widely distributed differentiation-promoting extracellular signaling, such as WNTs. Wnt/β-catenin signaling promotes the differentiation of GFRα1+ spermatogonia SHISA6 is a cell-autonomous Wnt inhibitor expressed in subset GFRα1+ cells SHISA6 confers resistance to differentiation induction by Wnt/β-catenin signaling SHISA6+ spermatogonia show stem cell-related properties
Collapse
Affiliation(s)
- Moe Tokue
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444-8585, Japan
| | - Kanako Ikami
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444-8585, Japan
| | - Seiya Mizuno
- Laborarory Animal Resource Center, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Chiyo Takagi
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| | - Asuka Miyagi
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| | - Ritsuko Takada
- Division of Molecular and Developmental Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Chiyo Noda
- Division of Developmental Genetics, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Yu Kitadate
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444-8585, Japan
| | - Kenshiro Hara
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444-8585, Japan; Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Hiroko Mizuguchi
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Takuya Sato
- Laboratory of Proteomics, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama 236-0004, Japan
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Fumihiro Sugiyama
- Laborarory Animal Resource Center, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Takehiko Ogawa
- Laboratory of Proteomics, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama 236-0004, Japan
| | - Satoru Kobayashi
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444-8585, Japan; Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Division of Developmental Genetics, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Naoto Ueno
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444-8585, Japan; Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| | - Satoru Takahashi
- Laborarory Animal Resource Center, University of Tsukuba, Tsukuba 305-8575, Japan; Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Shinji Takada
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444-8585, Japan; Division of Molecular and Developmental Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444-8585, Japan.
| |
Collapse
|
48
|
Koh B, Hufford MM, Sun X, Kaplan MH. Etv5 Regulates IL-10 Production in Th Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:2165-2171. [PMID: 28100679 DOI: 10.4049/jimmunol.1600801] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/19/2016] [Indexed: 01/27/2023]
Abstract
IL-10 is an immunoregulatory cytokine that has broad effects across the immune system. In Th cell subsets, Th2 cells produce considerable amounts of IL-10. The transcription factors that regulate IL-10 production in Th2 cells are still incompletely described. In this study, we demonstrate that the ETS family transcription factor ETS variant (Etv)5 regulates IL-10 production in Th2 cells. T cell-specific Etv5-deficient and littermate control mice demonstrated that IL-10 production and gene expression were significantly decreased in the absence of Etv5. In an Aspergillus fumigatus extract-induced inflammation model, IL-10-producing CD4+ T cells in bronchoalveolar lavage and lung were significantly decreased in mice that lacked Etv5 in T cells, compared with control mice. We showed that Etv5 directly binds to the Il10 locus conserved noncoding sequence 3 site and that it activates gene expression in a luciferase reporter assay and following retroviral transduction. Etv5 deficiency did not affect the expression of other transcription factors known to be important for expression of IL-10, including Jun family members, GATA3, E4BP4, and IFN regulatory factor 4. However, in the absence of Etv5, binding of these transcription factors to the Il10 locus was dramatically reduced. Ectopic Etv5 expression in Th2 cells that lack Etv5 restored IL-10 production and the binding of IL-10-inducing transcription factors including E4BP4, IFN regulatory factor 4, and GATA3. Taken together, we conclude that Etv5 plays a crucial role in regulating IL-10 production in Th2 cells by facilitating the binding of IL-10-inducing transcription factors at the Il10 locus.
Collapse
Affiliation(s)
- Byunghee Koh
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202; and
| | - Matthew M Hufford
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Xin Sun
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Mark H Kaplan
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202; .,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202; and
| |
Collapse
|
49
|
Ma F, Zhou Z, Li N, Zheng L, Wu C, Niu B, Tang F, He X, Li G, Hua J. Lin28a promotes self-renewal and proliferation of dairy goat spermatogonial stem cells (SSCs) through regulation of mTOR and PI3K/AKT. Sci Rep 2016; 6:38805. [PMID: 27941834 PMCID: PMC5150521 DOI: 10.1038/srep38805] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/15/2016] [Indexed: 12/14/2022] Open
Abstract
Lin28a is a conserved RNA-binding protein that plays an important role in development, pluripotency, stemness maintenance, proliferation and self-renewal. Early studies showed that Lin28a serves as a marker of spermatogonial stem cells (SSCs) and promotes the proliferation capacity of mouse SSCs. However, there is little information about Lin28a in livestock SSCs. In this study, we cloned Capra hircus Lin28a CDS and found that it is evolutionarily conserved. Lin28a is widely expressed in different tissues of Capra hircus, but is expressed at a high level in the testis. Lin28a is specifically located in the cytoplasm of Capra hircus spermatogonial stem cells and may also be a marker of dairy goat spermatogonial stem cells. Lin28a promoted proliferation and maintained the self-renewal of GmGSCs-I-SB in vivo and in vitro. Lin28a-overexpressing GmGSCs-I-SB showed an enhanced proliferation rate, which might be due to increased PCNA expression. Moreover, Lin28a maintained the self-renewal of GmGSCs-I-SB by up-regulating the expression of OCT4, SOX2, GFRA1, PLZF and ETV5. Furthermore, we found that Lin28a may activate the AKT, ERK, and mTOR signaling pathways to promote the proliferation and maintain the self-renewal of GmGSCs-I-SB.
Collapse
Affiliation(s)
- Fanglin Ma
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Zhe Zhou
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Liming Zheng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Chongyang Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Bowen Niu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Furong Tang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Xin He
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| | - Guangpeng Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering &Technology, Northwest A&F University, Yangling, Shaanxi, 712100 China
| |
Collapse
|
50
|
Ishikura Y, Yabuta Y, Ohta H, Hayashi K, Nakamura T, Okamoto I, Yamamoto T, Kurimoto K, Shirane K, Sasaki H, Saitou M. In Vitro Derivation and Propagation of Spermatogonial Stem Cell Activity from Mouse Pluripotent Stem Cells. Cell Rep 2016; 17:2789-2804. [DOI: 10.1016/j.celrep.2016.11.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/23/2016] [Accepted: 11/02/2016] [Indexed: 01/11/2023] Open
|