1
|
Lindemann CB, Lesich KA. The mechanics of cilia and flagella: What we know and what we need to know. Cytoskeleton (Hoboken) 2024; 81:648-668. [PMID: 38780123 DOI: 10.1002/cm.21879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
In this review, we provide a condensed overview of what is currently known about the mechanical functioning of the flagellar/ciliary axoneme. We also present a list of 10 specific areas where our current knowledge is incomplete and explain the benefits of further experimental investigation. Many of the physical parameters of the axoneme and its component parts have not been determined. This limits our ability to understand how the axoneme structure contributes to its functioning in several regards. It restricts our ability to understand how the mechanics of the structure contribute to the regulation of motor function. It also confines our ability to understand the three-dimensional workings of the axoneme and how various beating modes are accomplished. Lastly, it prevents accurate computational modeling of the axoneme in three-dimensions.
Collapse
Affiliation(s)
- Charles B Lindemann
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Kathleen A Lesich
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
2
|
Shen W, Fu Y, Bai H, Zhang Z, Cao Z, Liu Z, Yang C, Sun S, Wang L, Ren C, Ling Y, Zhang Z, Cao H. Antioxidant activity and metabolic regulation of sodium salicylate on goat sperm at low temperature. Anim Biosci 2024; 37:640-654. [PMID: 38271968 PMCID: PMC10915220 DOI: 10.5713/ab.23.0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/22/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE The purpose of this study was to explore the effect of sodium salicylate (SS) on semen preservation and metabolic regulation in goats. METHODS Under the condition of low temperature, SS was added to goat semen diluent to detect goat sperm motility, plasma membrane, acrosome, antioxidant capacity, mitochondrial membrane potential (MMP) and metabonomics. RESULTS The results show that at the 8th day of low-temperature storage, the sperm motility of the 20 μM SS group was 66.64%, and the integrity rates of the plasma membrane and acrosome were both above 60%, significantly higher than those of the other groups. The activities of catalase and superoxide dismutase in the sperm of the 20 μM SS group were significantly higher than those of the control group, the contents of reactive oxygen species and malondialdehyde were significantly lower than those in the control group, the MMP was significantly higher than that in the control group, and the contents of Ca2+ and total cholesterol were significantly higher than those in the control group. Through metabonomics analysis, there were significant metabolic differences between the control group and the 20 μM SS group. Twenty of the most significant metabolic markers were screened, mainly involving five metabolic pathways, of which nicotinic acid and nicotinamide metabolic pathways were the most significant. CONCLUSION The results indicate that SS can effectively improve the low-temperature preservation quality of goat sperm.
Collapse
Affiliation(s)
- Wenzheng Shen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Yu Fu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Haiyu Bai
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Zhiyu Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Zhikun Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Zibo Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Chao Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Shixin Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Lei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, 230036,
China
| | - Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, 230036,
China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, 230036,
China
| | - Hongguo Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036,
China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei, 230036,
China
| |
Collapse
|
3
|
Fu Y, Shen W, Bai H, Zhang Z, Cao Z, Liu Z, Yang C, Sun S, Wang L, Ling Y, Zhang Z, Cao H. Roles of Y-27632 on sheep sperm metabolism. J Anim Sci 2024; 102:skae020. [PMID: 38263469 PMCID: PMC10889731 DOI: 10.1093/jas/skae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/20/2024] [Indexed: 01/25/2024] Open
Abstract
To investigate the effect of Y-27632 on low-temperature metabolism of sheep sperm, different concentrations of Y-27632 were added to sheep semen at 4 °C in this experiment to detect indicators such as sperm motility, plasma membrane, acrosome, antioxidant performance, mitochondrial membrane potential (MMP), and metabolomics. The results showed that the addition of 20 µM Y-27632 significantly increased sperm motility, plasma membrane integrity rate, acrosome integrity rate, antioxidant capacity, MMP level, significantly increased sperm adenosine triphosphate (ATP) and total cholesterol content, and significantly reduced sperm Ca2+ content. In metabolomics analysis, compared with the control group, the 20 µM Y-27632 group screened 20 differential metabolites, mainly involved in five metabolic pathways, with the most significant difference in Histidine metabolism (P = 0.001). The results confirmed that Y-27632 significantly improved the quality of sheep sperm preservation under low-temperature conditions.
Collapse
Affiliation(s)
- Yu Fu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Wenzheng Shen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Haiyu Bai
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Zhiyu Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Zhikun Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Zibo Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Chao Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Shixin Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Lei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Hongguo Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, PR China
| |
Collapse
|
4
|
Bai H, Zhang Z, Shen W, Fu Y, Cao Z, Liu Z, Yang C, Sun S, Wang L, Ling Y, Zhang Z, Cao H. Metabolomics Analysis of Sodium Salicylate Improving the Preservation Quality of Ram Sperm. Molecules 2023; 29:188. [PMID: 38202772 PMCID: PMC10780297 DOI: 10.3390/molecules29010188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The aim of this study was to investigate the effects of sodium salicylate (SS) on the preservation and metabolic regulation of sheep sperm. Under 4 °C low-temperature conditions, SS (at 10 µM, 20 µM, 30 µM, and 50 µM) was added to the semen diluent to detect sperm motility, plasma membrane, and acrosome integrity. Based on the selected optimal concentration of SS (20 µM), the effects of 20 µM of SS on sperms' antioxidant capacity and mitochondrial membrane potential (MMP) were evaluated, and metabolomics analysis was conducted. The results showed that on the 20th day of low-temperature storage, the sperm motility of the 20 µM SS group was 62.80%, and the activities of catalase (CAT) and superoxide dismutase (SOD) were significantly higher than those of the control group (p < 0.01). The content of Ca2+, reactive oxygen species (ROS), and malondialdehyde (MDA) were significantly lower than those of the control group (p < 0.01), and the total antioxidant capacity (T-AOC) was significantly higher than that of the control group (p < 0.05); mitochondrial activity and the total cholesterol (TC) content were significantly higher than those in the control group (p < 0.01). An ultrastructural examination showed that in the SS group, the sperm plasma membrane and acrosome were intact, the fibrous sheath and axoneme morphology of the outer dense fibers were normal, and the mitochondria were arranged neatly. In the control group, there was significant swelling of the sperm plasma membrane, rupture of the acrosome, and vacuolization of mitochondria. Using metabolomics analysis, 20 of the most significant differential metabolic markers were screened, mainly involving 6 metabolic pathways, with the amino acid biosynthesis pathway being the most abundant. In summary, 20 µM of SS significantly improved the preservation quality of sheep sperm under low-temperature conditions of 4 °C.
Collapse
Affiliation(s)
- Haiyu Bai
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhiyu Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Wenzheng Shen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yu Fu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhikun Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zibo Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chao Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shixin Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Hongguo Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
5
|
Lindemann CB. The flagellar germ-line hypothesis: How flagellate and ciliate gametes significantly shaped the evolution of organismal complexity. Bioessays 2021; 44:e2100143. [PMID: 34967029 DOI: 10.1002/bies.202100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022]
Abstract
This essay presents a hypothesis which contends that the development of organismic complexity in the eukaryotes depended extensively on propagation via flagellated and ciliated gametes. Organisms utilizing flagellate and ciliate gametes to propagate their germ line have contributed most of the organismic complexity found in the higher animals. The genes of the flagellum and the flagellar assembly system (intraflagellar transport) have played a disproportionately important role in the construction of complex tissues and organs. The hypothesis also proposes that competition between large numbers of haploid flagellated male gametes rigorously conserved the functionality of a key set of flagellar genes for more than 700 million years. This in turn has insured that a large set (>600) of highly functional cytoskeletal and signal pathway genes is always present in the lineage of organisms with flagellated or ciliated gametes to act as a dependable resource, or "toolkit," for organ elaboration.
Collapse
|
6
|
Lindemann CB, Lesich KA. The many modes of flagellar and ciliary beating: Insights from a physical analysis. Cytoskeleton (Hoboken) 2021; 78:36-51. [PMID: 33675288 PMCID: PMC8048621 DOI: 10.1002/cm.21656] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
The mechanism that allows the axoneme of eukaryotic cilia and flagella to produce both helical and planar beating is an enduring puzzle. The nine outer doublets of eukaryotic cilia and flagella are arranged in a circle. Therefore, each doublet pair with its associated dynein motors, should produce torque to bend the flagellum in a different direction. Sequential activation of each doublet pair should, therefore result in a helical bending wave. In reality, most cilia and flagella have a well‐defined bending plane and many exhibit an almost perfectly flat (planar) beating pattern. In this analysis we examine the physics that governs flagellar bending, and arrive at two distinct possibilities that could explain the mechanism of planar beating. Of these, the mechanism with the best observational support is that the flagellum behaves as two ribbons of doublets interacting with a central partition. We also examine the physics of torsion in flagella and conclude that torsion could play a role in transitioning from a planar to a helical beating modality in long flagella. Lastly, we suggest some tests that would provide theoretical and/or experimental evaluation of our proposals.
Collapse
Affiliation(s)
- Charles B Lindemann
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Kathleen A Lesich
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
7
|
Olaniyan OT, Dare A, Okotie GE, Adetunji CO, Ibitoye BO, Eweoya O, Dare JB, Okoli BJ. Ovarian odorant-like biomolecules in promoting chemotaxis behavior of spermatozoa olfactory receptors during migration, maturation, and fertilization. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2021. [DOI: 10.1186/s43043-020-00049-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Background
Studies have shown that olfactory receptor genes are the largest in the human genome, which are significantly expressed in olfactory and non-olfactory tissues such as the reproductive systems where they perform many important biological functions.
Main body
There is growing evidence that bioactive metabolites from the ovary, follicular fluid, and other parts of the female reproductive tract signal the sperm through a series of signal transduction cascades that regulate sperm migration, maturation, and fertilization processes. Several studies have highlighted the role of G-protein-coupled receptors in these cellular processes. Thus, we aimed to summarize the existing evidence describing the physiological role of most prominent exogenous and endogenous biomolecules found in the female reproductive organ in enhancing the chemotaxis behavior of spermatozoa during migration, maturation, and fertilization and also to elucidate the pathological implications of its dysfunctions and the clinical significance in human fertility.
Short conclusion
In the future, drugs and molecules can be designed to activate these receptors on sperm to facilitate fertility among infertile couples and use as contraceptives.
Collapse
|
8
|
Sánchez-Cárdenas C, Montoya F, Navarrete FA, Hernández-Cruz A, Corkidi G, Visconti PE, Darszon A. Intracellular Ca2+ threshold reversibly switches flagellar beat off and on. Biol Reprod 2019; 99:1010-1021. [PMID: 29893793 DOI: 10.1093/biolre/ioy132] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 06/07/2018] [Indexed: 12/21/2022] Open
Abstract
Sperm motility is essential for fertilization. The asymmetry of flagellar beat in spermatozoa is finely regulated by intracellular calcium concentration ([Ca2+]i). Recently, we demonstrated that the application of high concentrations (10-20 μM) of the Ca2+ ionophore A23187 promotes sperm immobilization after 10 min, and its removal thereafter allows motility recovery, hyperactivation, and fertilization. In addition, the same ionophore treatment overcomes infertility observed in sperm from Catsper1-/-, Slo3-/-, and Adcy10-/-, but not PMCA4-/-, which strongly suggest that regulation of [Ca2+]i is mandatory for sperm motility and hyperactivation. In this study, we found that prior to inducing sperm immobilization, high A23187 concentrations (10 μM) increase flagellar beat. While 5-10 μM A23187 substantially elevates [Ca2+]i and rapidly immobilizes sperm in a few minutes, smaller concentrations (0.5 and 1 μM) provoke smaller [Ca2+]i increases and sperm hyperactivation, confirming that [Ca2+]i increases act as a motility switch. Until now, the [Ca2+]i thresholds that switch motility on and off were not fully understood. To study the relationship between [Ca2+]i and flagellar beating, we developed an automatic tool that allows the simultaneous measurement of these two parameters. Individual spermatozoa were treated with A23187, which is then washed to evaluate [Ca2+]i and flagellar beat recovery using the implemented method. We observe that [Ca2+]i must decrease below a threshold concentration range to facilitate subsequent flagellar beat recovery and sperm motility.
Collapse
Affiliation(s)
- C Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Mor., México
| | - F Montoya
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Cuernavaca, Mor., México
| | - F A Navarrete
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - A Hernández-Cruz
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, UNAM, Ciudad Universitaria, México DF, México
| | - G Corkidi
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Cuernavaca, Mor., México
| | - P E Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - A Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Mor., México
| |
Collapse
|
9
|
Jungnickel MK, Sutton KA, Baker MA, Cohen MG, Sanderson MJ, Florman HM. The flagellar protein Enkurin is required for mouse sperm motility and for transport through the female reproductive tract. Biol Reprod 2019; 99:789-797. [PMID: 29733335 DOI: 10.1093/biolre/ioy105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 05/01/2018] [Indexed: 11/14/2022] Open
Abstract
Enkurin was identified initially in mouse sperm where it was suggested to act as an intracellular adaptor protein linking membrane calcium influx to intracellular signaling pathways. In order to examine the function of this protein, a targeted mutation was introduced into the mouse Enkurin gene. Males that were homozygous for this mutated allele were subfertile. This was associated with lower rates of sperm transport in the female reproductive tract, including reduced entry into the oviduct and slower migration to the site of fertilization in the distal oviduct, and with poor progressive motility in vitro. Flagella from wild-type animals exhibited symmetrical bending and progressive motility in culture medium, and demembranated flagella exhibited the "curlicue" response to Ca2+ in vitro. In contrast, flagella of mice homozygous for the mutated allele displayed only asymmetric bending, nonprogressive motility, and a loss of Ca2+-responsiveness following demembrantion. We propose that Enkurin is part of a flagellar Ca2+-sensor that regulates bending and that the motility defects following mutation of the locus are the proximate cause of subfertility.
Collapse
Affiliation(s)
- Melissa K Jungnickel
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Keith A Sutton
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Mark A Baker
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Michael G Cohen
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Michael J Sanderson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Harvey M Florman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
10
|
Tan W, Pang Y, Tubbs C, Thomas P. Induction of sperm hypermotility through membrane progestin receptor alpha (mPRα): A teleost model of rapid, multifaceted, nongenomic progestin signaling. Gen Comp Endocrinol 2019; 279:60-66. [PMID: 30529310 DOI: 10.1016/j.ygcen.2018.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/17/2022]
Abstract
Rapid progestin effects on sperm physiology have been described in a variety of vertebrate species. Here, we briefly review the signaling pathways mediating rapid progestin induction of sperm hypermotility and increased fertility in two teleost species, Atlantic croaker and southern flounder. Acute in vitro treatment of teleost sperm with the progestin hormone, 20β-S, causes activation of progestin membrane receptor alpha (mPRα, or Paqr7) coupled to a stimulatory olfactory G protein (Golf), resulting in increased cAMP and calcium concentrations and hypermotility upon activation in a hyperosmotic medium. Pharmacological tools were used to investigate the involvement of mPRα and several intracellular signaling pathways in the hypermotility response. Evidence was obtained using the specific mPRα agonist, Org OD 02-0, that this progestin action is mediated through mPRα and not through the nuclear PR. The results indicate that progestins induce hypermotility through activation of a membrane adenylyl cyclase (Acy)/cAMP pathway, an epidermal growth factor receptor (Egfr)/Mapkinase pathway, and a Pi3kinase/Akt/phosphodiesterase (Pde) pathway which result in increased sperm calcium concentrations within 10 s. The finding that inhibition of any one of these pathways is sufficient to prevent hypermotility along with the calcium increase suggests that activation of all of them and the associated calcium increase are required for the progestin hypermotility response. On the basis of these findings a model of progestin induction of sperm hypermotility in teleosts is proposed. As teleosts lack CatSper, the model described here is a non-CatSper mediated one and may therefore be applicable to a wide variety of nonmammalian vertebrates.
Collapse
Affiliation(s)
- Wenxian Tan
- The University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, United States; Huston-Tillotson University, 900 Chicon Street, Austin, TX 78702, United States
| | - Yefei Pang
- The University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, United States
| | - Christopher Tubbs
- The University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, United States; San Diego Zoo Global, Institute for Conservation Research, 15600 San Pasqual Valley Road, Escondido, CA 92027, United States
| | - Peter Thomas
- The University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, United States.
| |
Collapse
|
11
|
Fan W, Xu Y, Liu Y, Zhang Z, Lu L, Ding Z. Obesity or Overweight, a Chronic Inflammatory Status in Male Reproductive System, Leads to Mice and Human Subfertility. Front Physiol 2018; 8:1117. [PMID: 29354072 PMCID: PMC5758580 DOI: 10.3389/fphys.2017.01117] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/18/2017] [Indexed: 12/18/2022] Open
Abstract
Obesity is frequently accompanied with chronic inflammation over the whole body and is always associated with symptoms that include those arising from metabolic and vascular alterations. On the other hand, the chronic inflammatory status in the male genital tract may directly impair spermatogenesis and is even associated with male subfertility. However, it is still unclear if the chronic inflammation induced by obesity damages spermatogenesis in the male genital tract. To address this question, we used a high fat diet (HFD) induced obese mouse model and recruited obese patients from the clinic. We detected increased levels of tumor necrosis factor (TNF-α), interleukin-6 (IL-6), and NOD-like receptor family pyrin domain containing-3 (NLRP3) in genital tract tissues including testis, epididymis, seminal vesicle, prostate, and serum from obese mice. Meanwhile, the levels of immunoglobulin G (IgG) and corticosterone were significantly higher than those in the control group in serum. Moreover, signal factors regulated by TNF-α, i.e., p38, nuclear factor-κB (NF-κB), Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and their phosphorylated status, and inflammasome protein NLRP3 were expressed at higher levels in the testis. For overweight and obese male patients, the increased levels of TNF-α and IL-6 were also observed in their seminal plasma. Furthermore, there was a positive correlation between the TNF-α and IL-6 levels and BMI whereas they were inversely correlated with the sperm concentration and motility. In conclusion, impairment of male fertility may stem from a chronic inflammatory status in the male genital tract of obese individuals.
Collapse
Affiliation(s)
- Weimin Fan
- Shanghai Key Laboratory for Reproductive Medicine, Department of Histology Embryology, Genetics and Developmental Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Reproductive Medicine Center, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yali Xu
- Shanghai Key Laboratory for Reproductive Medicine, Department of Histology Embryology, Genetics and Developmental Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Liu
- Shanghai Key Laboratory for Reproductive Medicine, Department of Histology Embryology, Genetics and Developmental Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengqing Zhang
- The Laboratory of Clinical Medicine, Shanghai No.9 People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liming Lu
- Laboratory of Immune Regulation, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhide Ding
- Shanghai Key Laboratory for Reproductive Medicine, Department of Histology Embryology, Genetics and Developmental Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Lindemann CB, Lesich KA. Functional anatomy of the mammalian sperm flagellum. Cytoskeleton (Hoboken) 2016; 73:652-669. [PMID: 27712041 DOI: 10.1002/cm.21338] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/21/2016] [Accepted: 10/05/2016] [Indexed: 12/20/2022]
Abstract
The eukaryotic flagellum is the organelle responsible for the propulsion of the male gamete in most animals. Without exception, sperm of all mammalian species use a flagellum for swimming. The mammalian sperm has a centrally located 9 + 2 arrangement of microtubule doublets and hundreds of accessory proteins that together constitute an axoneme. However, they also possess several characteristic peri-axonemal structures that make the mammalian sperm tail function differently. These modifications include nine outer dense fibers (ODFs) that are paired with the nine outer microtubule doublets of the axoneme, and are anchored in a structure called the connecting piece located at the base. The presence of the ODFs and connecting piece, and the absence of a basal body, dictate that physical forces generated by the dynein motors are transmitted to the base of the flagellum through the ODFs. Mammalian sperm flagella also possess a mitochondrial and a fibrous sheath that encircle most of the axoneme. These sheaths and the ODFs add mechanical rigidity to the flagellum creating the functional effect of increasing bend wavelength, which requires the entrainment of more dynein motors in the production of a single wave. The sheaths also act as a retinaculum and maintain the integrity of the central axoneme when large bending torques are generated by dynein. Large torque production is crucial to the process of hyperactivation and the unique motility transitions associated with effective fertilizing capacity. Consequently, these specialized anatomical features are essential for the effective interaction of sperm with the female reproductive tract and ovum. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Kathleen A Lesich
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| |
Collapse
|
13
|
Abstract
β-defensin peptides are a large family of antimicrobial peptides. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. Despite their inducible presence at mucosal surfaces, their main site of expression is the epididymis. Recent evidence suggests that a major function of these peptides is in sperm maturation. In addition to previous work suggesting this, work at the MRC Human Genetics Unit, Edinburgh, has shown that homozygous deletion of a cluster of nine β-defensin genes in the mouse results in profound male sterility. The spermatozoa derived from the mutants had reduced motility and increased fragility. Epididymal spermatozoa isolated from the cauda region of the homozygous mutants demonstrated precocious capacitation and increased spontaneous acrosome reactions compared with those from wild-types. Despite this, these mutant spermatozoa had reduced ability to bind to the zona pellucida of oocytes. Ultrastructural examination revealed a disintegration of the microtubule structure of mutant-derived spermatozoa isolated from the epididymal cauda region, but not from the caput. Consistent with premature acrosome reaction and hyperactivation, spermatozoa from mutant animals had significantly increased intracellular calcium content. This work demonstrates that in vivo β-defensins are essential for successful sperm maturation, and that their disruption alters intracellular calcium levels, which most likely leads to premature activation and spontaneous acrosome reactions that result in hyperactivation and loss of microtubule structure of the axoneme. Determining which of the nine genes are responsible for the phenotype and the relevance to human sperm function is important for future work on male infertility.
Collapse
Affiliation(s)
- Julia R Dorin
- Formerly at MRC Human Genetics Unit, IGMM, University of Edinburgh, now at MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, Scotland, United Kingdom
| |
Collapse
|
14
|
Yeste M, Fernández-Novell JM, Ramió-Lluch L, Estrada E, Rocha LG, Cebrián-Pérez JA, Muiño-Blanco T, Concha II, Ramírez A, Rodríguez-Gil JE. Intracellular calcium movements of boar spermatozoa during 'in vitro' capacitation and subsequent acrosome exocytosis follow a multiple-storage place, extracellular calcium-dependent model. Andrology 2015; 3:729-47. [PMID: 26097097 DOI: 10.1111/andr.12054] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/20/2015] [Accepted: 04/25/2015] [Indexed: 01/12/2023]
Abstract
This work analysed intracellular calcium stores of boar spermatozoa subjected to 'in vitro' capacitation (IVC) and subsequent progesterone-induced acrosome exocytosis (IVAE). Intracellular calcium was analysed through two calcium markers with different physico-chemical properties, Fluo-3 and Rhod-5N. Indicative parameters of IVC and IVAE were also evaluated. Fluo-3 was located at both the midpiece and the whole head. Rhod-5N was present at the sperm head. This distribution did not change in any of the assayed conditions. Induction of IVC was concomitant with an increase in both head and midpiece Ca(2+) signals. Additionally, while IVC induction was concurrent with a significant (p < 0.05) increase in sperm membrane permeability, no significant changes were observed in O2 consumption and ATP levels. Incubation of boar spermatozoa in the absence of calcium showed a loss of both Ca(2+) labellings concomitantly with the sperm's inability to achieve IVC. The absence of extracellular calcium also induced a severe decrease in the percentage of spermatozoa exhibiting high mitochondrial membrane potential (hMMP). The IVAE was accompanied by a fast increase in both Ca(2+) signalling in control spermatozoa. These peaks were either not detected or much lessened in the absence of calcium. Remarkably, Fluo-3 marking at the midpiece increased after progesterone addition to sperm cells incubated in a medium without Ca(2+) . The simultaneous addition of progesterone with the calcium chelant EGTA inhibited IVAE, and this was accompanied by a significant (p < 0.05) decrease in the intensity of progesterone Ca(2+) -induced peak, O2 consumption and ATP levels. Our results suggest that boar spermatozoa present different calcium deposits with a dynamic equilibrium among them and with the extracellular environment. Additionally, the modulation role of the intracellular calcium in spermatozoa function seems to rely on its precise localization in boar spermatozoa.
Collapse
Affiliation(s)
- M Yeste
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra (Cerdanyola del Vallès), Spain.,Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - J M Fernández-Novell
- Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| | - L Ramió-Lluch
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - E Estrada
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - L G Rocha
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - J A Cebrián-Pérez
- Department of Biochemistry and Molecular and Cell Biology, IUCA, School of Veterinary Medicine, University of Zaragoza-IUCA, Zaragoza, Spain
| | - T Muiño-Blanco
- Department of Biochemistry and Molecular and Cell Biology, IUCA, School of Veterinary Medicine, University of Zaragoza-IUCA, Zaragoza, Spain
| | - I I Concha
- Institute of Biochemistry and Microbiology and Institute of Animal Science, Universidad Austral de Chile, Valdivia, Chile
| | - A Ramírez
- Institute of Biochemistry and Microbiology and Institute of Animal Science, Universidad Austral de Chile, Valdivia, Chile
| | - J E Rodríguez-Gil
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| |
Collapse
|
15
|
ISHIJIMA S. Ca2+ and cAMP regulations of microtubule sliding in hyperactivated motility of bull spermatozoa. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:99-108. [PMID: 25765012 PMCID: PMC4410089 DOI: 10.2183/pjab.91.99] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
To reach and fertilize the egg, mammalian spermatozoa change their flagellar movement in the female reproductive tract, named hyperactivation. The biochemical analyses of the hyperactivated movement using demembranated spermatozoa defined the factors inducing this peculiar movement; namely, large asymmetrical flagellar movement observed in the early stage of the hyperactivation was induced with a high Ca(2+) concentration while large symmetrical flagellar movement in the late stage of the hyperactivation was generated with low Ca(2+) and high cAMP concentrations. Under these conditions, the microtubule sliding of bull sperm flagella was investigated by disintegrating the sperm flagella with MgATP(2-) after extracting their plasma membrane and mitochondria. The large asymmetrical flagellar movement was caused by a long sliding displacement of a fiber of the doublet microtubules. On the other hand, the large symmetrical flagellar movement was generated by a large amount of microtubule sliding by many doublet microtubules.
Collapse
Affiliation(s)
- Sumio ISHIJIMA
- Department of Bioengineering, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
16
|
Lesich KA, dePinho TG, Dionne BJ, Lindemann CB. The effects of Ca2+ and ADP on dynein switching during the beat cycle of reactivated bull sperm models. Cytoskeleton (Hoboken) 2014; 71:611-27. [PMID: 25355469 DOI: 10.1002/cm.21196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/14/2014] [Accepted: 10/20/2014] [Indexed: 12/22/2022]
Abstract
Calcium regulation of flagellar motility is the basis for chemotaxis, phototaxis, and hyperactivation responses in eukaryotic flagellates and spermatozoa. Ca2+ is the internal messenger for these responses, but the coupling between Ca2+ and the motor mechanism that generates the flagellar beat is incompletely understood. We examined the effects of Ca2+ on the flagellar curvature at the switch-points of the beat cycle in bull sperm. The sperm were detergent extracted and reactivated with 0.1 mM adenosine triphosphate (ATP). With their heads immobilized and their tails beating freely it is possible to calculate the bending torque and the transverse force acting on the flagellum at the switch-points. An increase in the free Ca2+ concentration (pCa 8 to pCa 4) significantly decreased the development of torque and t-force in the principal bending direction, while having negligible effect on the reverse bend. The action of Ca2+ was more pronounced when the sperm were also treated with 4 mM adenosine diphosphate (ADP); it was sufficient to change the direction of bending that reaches the greater curvature. We also observed that the curvature of the distal half of the flagellum became locked in one direction in the presence of Ca2+ . This indicates that a subset of the dynein becomes continuously activated by Ca2+ and fails to switch with the beat cycle. Our evidence suggests this subset of dyneins is localized to doublets #1-4 of the axoneme.
Collapse
Affiliation(s)
- Kathleen A Lesich
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | | | | | | |
Collapse
|
17
|
Loux SC, Macías-Garcia B, González-Fernández L, Canesin HD, Varner DD, Hinrichs K. Regulation of axonemal motility in demembranated equine sperm. Biol Reprod 2014; 91:152. [PMID: 25339104 DOI: 10.1095/biolreprod.114.122804] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Equine in vitro fertilization is not yet successful because equine sperm do not effectively capacitate in vitro. Results of previous studies suggest that this may be due to failure of induction of hyperactivated motility in equine sperm under standard capacitating conditions. To evaluate factors directly affecting axonemal motility in equine sperm, we developed a demembranated sperm model and analyzed motility parameters in this model under different conditions using computer-assisted sperm analysis. Treatment of ejaculated equine sperm with 0.02% Triton X-100 for 30 sec maximized both permeabilization and total motility after reactivation. The presence of ATP was required for motility of demembranated sperm after reactivation, but cAMP was not. The calculated intracellular pH of intact equine sperm was 7.14 ± 0.07. Demembranated sperm showed maximal total motility at pH 7. Neither increasing pH nor increasing calcium levels, nor any interaction of the two, induced hyperactivated motility in demembranated equine sperm. Motility of demembranated sperm was maintained at free calcium concentrations as low as 27 pM, and calcium arrested sperm motility at much lower concentrations than those reported in other species. Calcium arrest of sperm motility was not accompanied by flagellar curvature, suggesting a failure of calcium to induce the tonic bend seen in other species and thought to support hyperactivated motility. This indicated an absence, or difference in calcium sensitivity, of the related asymmetric doublet-sliding proteins. These studies show a difference in response to calcium of the equine sperm axoneme to that reported in other species that may be related to the failure of equine sperm to penetrate oocytes in vitro under standard capacitating conditions. Further work is needed to determine the factors that stimulate hyperactivated motility at the axonemal level in equine sperm.
Collapse
Affiliation(s)
- Shavahn C Loux
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Beatríz Macías-Garcia
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Lauro González-Fernández
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Heloisa DeSiqueira Canesin
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Dickson D Varner
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Katrin Hinrichs
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
18
|
Xu M, Li XX, Chen Y, Pitzer AL, Zhang Y, Li PL. Enhancement of dynein-mediated autophagosome trafficking and autophagy maturation by ROS in mouse coronary arterial myocytes. J Cell Mol Med 2014; 18:2165-75. [PMID: 24912985 PMCID: PMC4213304 DOI: 10.1111/jcmm.12326] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 04/15/2014] [Indexed: 01/18/2023] Open
Abstract
Dynein-mediated autophagosome (AP) trafficking was recently demonstrated to contribute to the formation of autophagolysosomes (APLs) and autophagic flux process in coronary arterial myocytes (CAMs). However, it remains unknown how the function of dynein as a motor protein for AP trafficking is regulated under physiological and pathological conditions. The present study tested whether the dynein-mediated autophagy maturation is regulated by a redox signalling associated with lysosomal Ca2+ release machinery. In primary cultures of CAMs, reactive oxygen species (ROS) including H2O2 and O2−. (generated by xanthine/xanthine oxidase) significantly increased dynein ATPase activity and AP movement, which were accompanied by increased lysosomal fusion with AP and APL formation. Inhibition of dynein activity by (erythro-9-(2-hydroxy-3-nonyl)adenine) (EHNA) or disruption of the dynein complex by dynamitin (DCTN2) overexpression blocked ROS-induced dynein activation, AP movement and APL formation, and resulted in an accumulation of AP along with a failed breakdown of AP. Antagonism of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca2+ signalling with NED-19 and PPADS abolished ROS-enhanced lysosomal Ca2+ release and dynein activation in CAMs. In parallel, all these changes were also enhanced by overexpression of NADPH oxidase-1 (Nox1) gene in CAMs. Incubation with high glucose led to a marked O2−. production compared with normoglycaemic CAMs, while Nox1 inhibitor ML117 abrogated this effect. Moreover, ML117 and NED-19 and PPADS significantly suppressed dynein activity and APL formation caused by high glucose. Taken together, these data suggest that ROS function as important players to regulate dynein-dependent AP trafficking leading to efficient autophagic maturation in CAMs.
Collapse
Affiliation(s)
- Ming Xu
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | |
Collapse
|
19
|
Zhang Y, Xu M, Xia M, Li X, Boini KM, Wang M, Gulbins E, Ratz PH, Li PL. Defective autophagosome trafficking contributes to impaired autophagic flux in coronary arterial myocytes lacking CD38 gene. Cardiovasc Res 2014; 102:68-78. [PMID: 24445604 DOI: 10.1093/cvr/cvu011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM Autophagic flux is an important process during autophagy maturation in smooth muscle cells. However, the molecular mechanisms underlying autophagic flux in these cells are largely unknown. Here, we revealed a previously undefined role of CD38, an enzyme that metabolizes NADP(+) into NAADP, in the regulation of autophagic flux in coronary arterial myocytes (CAMs). METHODS AND RESULTS In vivo CD38 gene knockout mice (CD38(-/-)) fed the high-fat Western diet showed increased accumulation of autophagosomes in coronary arterial media compared with that in wild-type (CD38(+/+)) mice, suggesting that CD38 gene deletion results in a defective autophagic process in CAMs of coronary arteries. In primary cultured CAMs, CD38 gene deletion markedly enhanced 7-ketocholesterol (7-Ket, an atherogenic stimulus and autophagy inducer)-induced accumulation of autophagosomes and increased expression of an autophagic marker, LC3B. However, no difference in autophagosome formation was observed between CD38(+/+) and CD38(-/-) CAMs when autophagic flux was blocked, which indicates that CD38 regulates autophagic flux rather than induction of autophagosome formation. Further, 7-Ket-induced formation of autophagolysosomes was markedly attenuated in CD38(-/-) CAMs compared with CD38(+/+) CAMs. Mechanistically, CD38 gene deletion markedly inhibited 7-Ket-induced dynein activation and autophagosome trafficking, which were associated with attenuated lysosomal Ca(2+) release. Importantly, coronary arterial smooth muscle from CD38(-/-) mice fed the Western diet exhibited phenotypic changes towards a more dedifferentiated state with abnormal extracellular matrix metabolism. CONCLUSION Taken together, these results suggest that CD38 plays a critical role in autophagosome trafficking and fusion with lysosomes, thus controlling autophagic flux in CAMs under atherogenic stimulation.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, VA 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhou YS, Webb S, Lettice L, Tardif S, Kilanowski F, Tyrrell C, MacPherson H, Semple F, Tennant P, Baker T, Hart A, Devenney P, Perry P, Davey T, Barran P, Barratt CL, Dorin JR. Partial deletion of chromosome 8 β-defensin cluster confers sperm dysfunction and infertility in male mice. PLoS Genet 2013; 9:e1003826. [PMID: 24204287 PMCID: PMC3812073 DOI: 10.1371/journal.pgen.1003826] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/09/2013] [Indexed: 01/06/2023] Open
Abstract
β-defensin peptides are a family of antimicrobial peptides present at mucosal surfaces, with the main site of expression under normal conditions in the male reproductive tract. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. We show here that homozygous deletion of a cluster of nine β-defensin genes (DefbΔ9) in the mouse results in male sterility. The sperm derived from the mutants have reduced motility and increased fragility. Epididymal sperm isolated from the cauda should require capacitation to induce the acrosome reaction but sperm from the mutants demonstrate precocious capacitation and increased spontaneous acrosome reaction compared to wild-types but have reduced ability to bind the zona pellucida of oocytes. Ultrastructural examination reveals a defect in microtubule structure of the axoneme with increased disintegration in mutant derived sperm present in the epididymis cauda region, but not in caput region or testes. Consistent with premature acrosome reaction, sperm from mutant animals have significantly increased intracellular calcium content. Thus we demonstrate in vivo that β-defensins are essential for successful sperm maturation, and their disruption leads to alteration in intracellular calcium, inappropriate spontaneous acrosome reaction and profound male infertility. β-defensins are small molecules, considered primarily to be antimicrobials and important in the first defence response to invading organisms. They are predominantly produced at surfaces in contact with the outside environment and these include skin, airway and reproductive tract. We show here that when we delete from the mouse a subset of nine β-defensin genes, surprisingly the main consequence is that the male mice are completely infertile. When normal sperm leave the male and enter the female reproductive tract they are triggered to undergo a reaction that alters the membrane properties of the sperm and allows fertilisation. We show here that sperm isolated from the male mice, that no longer make these β-defensins, are prematurely ready to fertilise an egg. It is far too early for this to happen and as a consequence the sperm are severely reduced in their ability to move and have a major defect in the structure of their tail. We provide evidence that the reason this has happened is due to a dysregulation of calcium transport. This work is important for understanding defensin gene function in a living organism and may enable the design of novel contraceptives with additional antibiotic ability.
Collapse
Affiliation(s)
- Yu S. Zhou
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Sheila Webb
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Laura Lettice
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Steve Tardif
- Reproductive and Developmental Biology, Medical School, University of Dundee, Ninewells Hospital, Dundee, Scotland, United Kingdom
| | - Fiona Kilanowski
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Christine Tyrrell
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Heather MacPherson
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Fiona Semple
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Peter Tennant
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Tina Baker
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Alan Hart
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Paul Devenney
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Paul Perry
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Tracey Davey
- EM Research Services, Newcastle Medical School, Newcastle University, Newcastle, England, United Kingdom
| | - Perdita Barran
- School of Chemistry, Joseph Black Building, Edinburgh, Scotland
| | - Chris L. Barratt
- Reproductive and Developmental Biology, Medical School, University of Dundee, Ninewells Hospital, Dundee, Scotland, United Kingdom
| | - Julia R. Dorin
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Xu M, Li XX, Xiong J, Xia M, Gulbins E, Zhang Y, Li PL. Regulation of autophagic flux by dynein-mediated autophagosomes trafficking in mouse coronary arterial myocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3228-3236. [PMID: 24095928 DOI: 10.1016/j.bbamcr.2013.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 02/06/2023]
Abstract
Autophagic flux is an important process during autophagy maturation in coronary arterial myocytes (CAMs). Here, we defined the role and molecular mechanism of the motor protein dynein in the regulation of autophagic flux in CAMs. In mouse CAMs, dynein protein is abundantly expressed. Pharmacological or genetic inhibition of dynein activity dramatically enhanced 7-ketocholesterol (7-Ket)-induced expression of the autophagic marker LC3B and increased the cellular levels of p62, a selective substrate for autophagy. Inhibition of dynein activity increased 7-Ket-induced formation of autophagosomes (APs), but reduced the number of autophagolysosomes (APLs) in CAMs. Furthermore, 7-Ket increased the fusion of APs with lysosomes and the velocity of APs movement in mouse CAMs, which was abolished when the dynein activity in these cells was inhibited. Interestingly, 7-Ket increased lysosomal Ca(2+) release and stimulated dynein ATPase activity, both of which were abolished by NAADP antagonists, NED-19 and PPADS. Taken together, our data suggest that NAADP-mediated Ca(2+) release plays a crucial role in regulating dynein activity, which mediates APs trafficking and fusion with lysosomes to form APLs thus regulating autophagic flux in CAMs under atherogenic stimulation.
Collapse
Affiliation(s)
- Ming Xu
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Xiao-Xue Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jing Xiong
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Min Xia
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse, 55, 45122 Essen, Germany
| | - Yang Zhang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
22
|
Carrasquel G, Camejo MI, Michelangeli F, Ruiz MC. Effect of Tumor Necrosis Factor-α on the Intracellular Ca2+Homeostasis in Human Sperm. Am J Reprod Immunol 2013; 70:153-61. [DOI: 10.1111/aji.12106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/29/2013] [Indexed: 01/14/2023] Open
Affiliation(s)
- Gabriela Carrasquel
- Laboratorio de Reproducción y Desarrollo Animal; Departamento de Biología de Organismos; Universidad Simón Bolívar; Caracas; Venezuela
| | - Maria I. Camejo
- Laboratorio de Reproducción y Desarrollo Animal; Departamento de Biología de Organismos; Universidad Simón Bolívar; Caracas; Venezuela
| | - Fabian Michelangeli
- Laboratorio de Fisiología Gastrointestinal; Instituto Venezolano de Investigaciones Científicas (IVIC); Caracas; Venezuela
| | - Marie C. Ruiz
- Laboratorio de Fisiología Gastrointestinal; Instituto Venezolano de Investigaciones Científicas (IVIC); Caracas; Venezuela
| |
Collapse
|
23
|
Lin J, Heuser T, Song K, Fu X, Nicastro D. One of the nine doublet microtubules of eukaryotic flagella exhibits unique and partially conserved structures. PLoS One 2012; 7:e46494. [PMID: 23071579 PMCID: PMC3468612 DOI: 10.1371/journal.pone.0046494] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/05/2012] [Indexed: 12/26/2022] Open
Abstract
The axonemal core of motile cilia and flagella consists of nine doublet microtubules surrounding two central single microtubules. Attached to the doublets are thousands of dynein motors that produce sliding between neighboring doublets, which in turn causes flagellar bending. Although many structural features of the axoneme have been described, structures that are unique to specific doublets remain largely uncharacterized. These doublet-specific structures introduce asymmetry into the axoneme and are likely important for the spatial control of local microtubule sliding. Here, we used cryo-electron tomography and doublet-specific averaging to determine the 3D structures of individual doublets in the flagella of two evolutionarily distant organisms, the protist Chlamydomonas and the sea urchin Strongylocentrotus. We demonstrate that, in both organisms, one of the nine doublets exhibits unique structural features. Some of these features are highly conserved, such as the inter-doublet link i-SUB5-6, which connects this doublet to its neighbor with a periodicity of 96 nm. We also show that the previously described inter-doublet links attached to this doublet, the o-SUB5-6 in Strongylocentrotus and the proximal 1–2 bridge in Chlamydomonas, are likely not homologous features. The presence of inter-doublet links and reduction of dynein arms indicate that inter-doublet sliding of this unique doublet against its neighbor is limited, providing a rigid plane perpendicular to the flagellar bending plane. These doublet-specific features and the non-sliding nature of these connected doublets suggest a structural basis for the asymmetric distribution of dynein activity and inter-doublet sliding, resulting in quasi-planar waveforms typical of 9+2 cilia and flagella.
Collapse
Affiliation(s)
- Jianfeng Lin
- Biology Department, Rosenstiel Center, Brandeis University, Waltham, Massachusetts, United States of America
| | | | | | | | | |
Collapse
|