1
|
Mao C, Liu X, Guo SW. Decreased Glycolysis at Menstruation is Associated with Increased Menstrual Blood Loss. Reprod Sci 2023; 30:928-951. [PMID: 36042151 DOI: 10.1007/s43032-022-01066-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/11/2022] [Indexed: 12/01/2022]
Abstract
Heavy menstrual bleeding (HMB) is common and severely affects the quality of life of the afflicted women. While HMB is known to be caused by impaired endometrial repair after menstruation, its more proximate cause remains unknown. To investigate whether glycolysis plays any role in endometrial repair and thus HMB, we conducted two mouse experiments using a mouse model of simulated menstruation. We performed immunohistochemistry analyses of proteins involved in glycolysis as well as pro- and anti-inflammatory cytokines in endometrium from decidualized and non-decidualized uterine horns. We also assessed the extent of endometrial repair by staging endometrial morphology from decidualization to full repair using histological scoring of uterine sections and quantitated the amount of menstrual blood loss (MBL). In addition, we employed the scratch assay and the CCK-8 assay to evaluate the effect of glycolysis suppression on cellular migration and proliferation, respectively. Finally, we performed an immunohistochemistry analysis of HK2 in endometrium from women with adenomyosis who experienced either moderate/heavy or excessive MBL. We found that endometrial repair coincided with increased glycolysis in endometrium and glycolysis suppression delayed endometrial repair, resulting in increased MBL. Additionally, glycolysis suppression significantly inhibited the proliferative and migratory capability of endometrial cells, and disrupted normal endometrial repair even when hypoxia was maintained. Women with adenomyosis who experienced excessive MBL had significantly lower HK2 staining than those who experienced moderate/heavy MBL. Thus, our study highlights the importance of glycolysis as well as inflammation in optimal endometrial repair, and provides clues for the cause of HMB in women with adenomyosis.
Collapse
Affiliation(s)
- Chenyu Mao
- Department of Gynecology, Shanghai OB/GYN Hospital, Fudan University, Shanghai, 200011, China
| | - Xishi Liu
- Department of Gynecology, Shanghai OB/GYN Hospital, Fudan University, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| | - Sun-Wei Guo
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China. .,Research Institute, Shanghai OB/GYN Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
2
|
Kirkwood PM, Gibson DA, Shaw I, Dobie R, Kelepouri O, Henderson NC, Saunders PTK. Single-cell RNA sequencing and lineage tracing confirm mesenchyme to epithelial transformation (MET) contributes to repair of the endometrium at menstruation. eLife 2022; 11:e77663. [PMID: 36524724 PMCID: PMC9873258 DOI: 10.7554/elife.77663] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The human endometrium experiences repetitive cycles of tissue wounding characterised by piecemeal shedding of the surface epithelium and rapid restoration of tissue homeostasis. In this study, we used a mouse model of endometrial repair and three transgenic lines of mice to investigate whether epithelial cells that become incorporated into the newly formed luminal epithelium have their origins in one or more of the mesenchymal cell types present in the stromal compartment of the endometrium. Using scRNAseq, we identified a novel population of PDGFRb + mesenchymal stromal cells that developed a unique transcriptomic signature in response to endometrial breakdown/repair. These cells expressed genes usually considered specific to epithelial cells and in silico trajectory analysis suggested they were stromal fibroblasts in transition to becoming epithelial cells. To confirm our hypothesis we used a lineage tracing strategy to compare the fate of stromal fibroblasts (PDGFRa+) and stromal perivascular cells (NG2/CSPG4+). We demonstrated that stromal fibroblasts can undergo a mesenchyme to epithelial transformation and become incorporated into the re-epithelialised luminal surface of the repaired tissue. This study is the first to discover a novel population of wound-responsive, plastic endometrial stromal fibroblasts that contribute to the rapid restoration of an intact luminal epithelium during endometrial repair. These findings form a platform for comparisons both to endometrial pathologies which involve a fibrotic response (Asherman's syndrome, endometriosis) as well as other mucosal tissues which have a variable response to wounding.
Collapse
Affiliation(s)
- Phoebe M Kirkwood
- Centre for Inflammation Research, University of EdinburghEdinburghUnited Kingdom
| | - Douglas A Gibson
- Centre for Inflammation Research, University of EdinburghEdinburghUnited Kingdom
| | - Isaac Shaw
- Centre for Inflammation Research, University of EdinburghEdinburghUnited Kingdom
| | - Ross Dobie
- Centre for Inflammation Research, University of EdinburghEdinburghUnited Kingdom
| | - Olympia Kelepouri
- Centre for Inflammation Research, University of EdinburghEdinburghUnited Kingdom
| | - Neil C Henderson
- Centre for Inflammation Research, University of EdinburghEdinburghUnited Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of EdinburghEdinburghUnited Kingdom
| | - Philippa TK Saunders
- Centre for Inflammation Research, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
3
|
Zhang S, Chan RWS, Ng EHY, Yeung WSB. The role of Notch signaling in endometrial mesenchymal stromal/stem-like cells maintenance. Commun Biol 2022; 5:1064. [PMID: 36207605 PMCID: PMC9547015 DOI: 10.1038/s42003-022-04044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Human endometrium undergoes cycles of regeneration in women of reproductive age. The endometrial mesenchymal stromal/stem cells (eMSC) contribute to this process. Notch signaling is essential for homeostasis of somatic stem cells. However, its role in eMSC remains unclear. We show with gain- and loss-of-function experiments that activation of Notch signaling promotes eMSC maintenance, while inhibition induces opposite effect. The activation of Notch signaling better maintains eMSC in a quiescent state. However, these quiescent eMSC can re-enter the cell cycle depending on the Notch and Wnt activities in the microenvironment, suggesting a crosstalk between the two signaling pathways. We further show that the Notch signaling is involved in endometrial remodeling event in a mouse menstrual-like model. Suppression of Notch signaling reduces the proliferation of Notch1+ label-retaining stromal cells and delays endometrial repair. Our data demonstrate the importance of Notch signaling in regulating the endometrial stem/progenitor cells in vitro and in vivo. Notch signaling promotes the quiescent state of endometrial mesenchymal stromal/stem cells (eMSC), whose re-rentry into the cell cycle is in turn influenced by Notch and Wnt signaling from the microenvironment.
Collapse
Affiliation(s)
- Sisi Zhang
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China.,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518000, China
| | - Rachel W S Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China. .,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518000, China.
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China.,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518000, China
| | - William S B Yeung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China. .,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, 518000, China.
| |
Collapse
|
4
|
Ludke A, Hatta K, Yao A, Li RK. Uterus: A Unique Stem Cell Reservoir Able to Support Cardiac Repair via Crosstalk among Uterus, Heart, and Bone Marrow. Cells 2022; 11:cells11142182. [PMID: 35883625 PMCID: PMC9324611 DOI: 10.3390/cells11142182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Clinical evidence suggests that the prevalence of cardiac disease is lower in premenopausal women compared to postmenopausal women and men. Although multiple factors contribute to this difference, uterine stem cells may be a major factor, as a high abundance of these cells are present in the uterus. Uterine-derived stem cells have been reported in several studies as being able to contribute to cardiac neovascularization after injury. However, our studies uniquely show the presence of an “utero-cardiac axis”, in which uterine stem cells are able to home to cardiac tissue to promote tissue repair. Additionally, we raise the possibility of a triangular relationship among the bone marrow, uterus, and heart. In this review, we discuss the exchange of stem cells across different organs, focusing on the relationship that exists between the heart, uterus, and bone marrow. We present increasing evidence for the existence of an utero-cardiac axis, in which the uterus serves as a reservoir for cardiac reparative stem cells, similar to the bone marrow. These cells, in turn, are able to migrate to the heart in response to injury to promote healing.
Collapse
Affiliation(s)
- Ana Ludke
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.L.); (K.H.); (A.Y.)
| | - Kota Hatta
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.L.); (K.H.); (A.Y.)
| | - Alina Yao
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.L.); (K.H.); (A.Y.)
| | - Ren-Ke Li
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (A.L.); (K.H.); (A.Y.)
- Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Correspondence: ; Tel.: +1-416-581-7492
| |
Collapse
|
5
|
Kirkwood PM, Shaw IW, Saunders PTK. Mechanisms of Scarless Repair at Time of Menstruation: Insights From Mouse Models. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 3:801843. [PMID: 36304046 PMCID: PMC9580659 DOI: 10.3389/frph.2021.801843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/08/2021] [Indexed: 11/18/2022] Open
Abstract
The human endometrium is a remarkable tissue which may experience up to 400 cycles of hormone-driven proliferation, differentiation and breakdown during a woman's reproductive lifetime. During menstruation, when the luminal portion of tissue breaks down, it resembles a bloody wound with piecemeal shedding, exposure of underlying stroma and a strong inflammatory reaction. In the absence of pathology within a few days the integrity of the tissue is restored without formation of a scar and the endometrium is able to respond appropriately to subsequent endocrine signals in preparation for establishment of pregnancy if fertilization occurs. Understanding mechanisms regulating scarless repair of the endometrium is important both for design of therapies which can treat conditions where this is aberrant (heavy menstrual bleeding, fibroids, endometriosis, Asherman's syndrome) as well as to provide new information that might allow us to reduce fibrosis and scar formation in other tissues. Menstruation only occurs naturally in species that exhibit spontaneous stromal cell decidualization during the fertile cycle such as primates (including women) and the Spiny mouse. To take advantage of genetic models and detailed time course analysis, mouse models of endometrial shedding/repair involving hormonal manipulation, artificial induction of decidualization and hormone withdrawal have been developed and refined. These models are useful in modeling dynamic changes across the time course of repair and have recapitulated key features of endometrial repair in women including local hypoxia and immune cell recruitment. In this review we will consider the evidence that scarless repair of endometrial tissue involves changes in stromal cell function including mesenchyme to epithelial transition, epithelial cell proliferation and multiple populations of immune cells. Processes contributing to endometrial fibrosis (Asherman's syndrome) as well as scarless repair of other tissues including skin and oral mucosa are compared to that of menstrual repair.
Collapse
|
6
|
Tal R, Kisa J, Abuwala N, Kliman HJ, Shaikh S, Chen AY, Lyu F, Taylor HS. Bone marrow-derived progenitor cells contribute to remodeling of the postpartum uterus. Stem Cells 2021; 39:1489-1505. [PMID: 34224633 PMCID: PMC9313624 DOI: 10.1002/stem.3431] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/18/2021] [Indexed: 11/11/2022]
Abstract
Endometrial stem/progenitor cells play a role in postpartum uterine tissue regeneration, but the underlying mechanisms are poorly understood. While circulating bone marrow (BM)-derived cells (BMDCs) contribute to nonhematopoietic endometrial cells, the contribution of BMDCs to postpartum uterus remodeling is unknown. We investigated the contribution of BMDCs to the postpartum uterus using 5-fluorouracil-based nongonadotoxic BM transplant from green fluorescent protein (GFP) donors into wild-type C57BL/6J female mice. Flow cytometry showed an influx of GFP+ cells to the uterus immediately postpartum accounting for 28.7% of total uterine cells, followed by a rapid decrease to prepregnancy levels. The majority of uterine GFP+ cells were CD45+ leukocytes, and the proportion of nonhematopoietic CD45-GFP+ cells peaked on postpartum day (PPD) 1 (17.5%). Immunofluorescence colocalization of GFP with CD45 pan-leukocyte and F4/80 macrophage markers corroborated these findings. GFP+ cells were found mostly in subepithelial stromal location. Importantly, GFP+ cytokeratin-positive epithelial cells were found within the luminal epithelium exclusively on PPD1, demonstrating direct contribution to postpartum re-epithelialization. A subset (3.2%) of GFP+ cells were CD31+CD45- endothelial cells, and found integrated within blood vessel endothelium. Notably, BM-derived GFP+ cells demonstrated preferential proliferation (PCNA+) and apoptosis (TUNEL+) on PPD1 vs resident GFP- cells, suggesting an active role for BMDCs in rapid tissue turnover. Moreover, GFP+ cells gradually acquired cell senescence together with decreased proliferation throughout the postpartum. In conclusion, BM-derived progenitors were found to have a novel nonhematopoietic cellular contribution to postpartum uterus remodeling. This contribution may have an important functional role in physiological as well as pathological postpartum endometrial regeneration.
Collapse
Affiliation(s)
- Reshef Tal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jacqueline Kisa
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nafeesa Abuwala
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Harvey J Kliman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shafiq Shaikh
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Alice Y Chen
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Fang Lyu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Dorning A, Dhami P, Panir K, Hogg C, Park E, Ferguson GD, Hargrove D, Karras J, Horne AW, Greaves E. Bioluminescent imaging in induced mouse models of endometriosis reveals differences in four model variations. Dis Model Mech 2021; 14:dmm049070. [PMID: 34382636 PMCID: PMC8419713 DOI: 10.1242/dmm.049070] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022] Open
Abstract
Our understanding of the aetiology and pathophysiology of endometriosis remains limited. Disease modelling in the field is problematic as many versions of induced mouse models of endometriosis exist. We integrated bioluminescent imaging of 'lesions' generated using luciferase-expressing donor mice. We compared longitudinal bioluminescence and histology of lesions, sensory behaviour of mice with induced endometriosis and the impact of the gonadotropin-releasing hormone antagonist Cetrorelix on lesion regression and sensory behaviour. Four models of endometriosis were tested. We found that the nature of the donor uterine material was a key determinant of how chronic the lesions were, as well as their cellular composition. The severity of pain-like behaviour also varied across models. Although Cetrorelix significantly reduced lesion bioluminescence in all models, it had varying impacts on pain-like behaviour. Collectively, our results demonstrate key differences in the progression of the 'disease' across different mouse models of endometriosis. We propose that validation and testing in multiple models, each of which may be representative of the different subtypes/heterogeneity observed in women, should become a standard approach to discovery science in the field of endometriosis.
Collapse
Affiliation(s)
- Ashley Dorning
- Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Priya Dhami
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Kavita Panir
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Chloe Hogg
- Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Emma Park
- Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Gregory D. Ferguson
- Ferring Research Institute, 4245 Sorrento Valley Blvd, San Diego, CA 92121, USA
| | - Diane Hargrove
- Ferring Research Institute, 4245 Sorrento Valley Blvd, San Diego, CA 92121, USA
| | - James Karras
- Ferring Research Institute, 4245 Sorrento Valley Blvd, San Diego, CA 92121, USA
| | - Andrew W. Horne
- Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Erin Greaves
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
8
|
Kirkwood PM, Gibson DA, Smith JR, Wilson-Kanamori JR, Kelepouri O, Esnal-Zufiaurre A, Dobie R, Henderson NC, Saunders PTK. Single-cell RNA sequencing redefines the mesenchymal cell landscape of mouse endometrium. FASEB J 2021; 35:e21285. [PMID: 33710643 PMCID: PMC9328940 DOI: 10.1096/fj.202002123r] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
The endometrium is a dynamic tissue that exhibits remarkable resilience to repeated episodes of differentiation, breakdown, regeneration, and remodeling. Endometrial physiology relies on a complex interplay between the stromal and epithelial compartments with the former containing a mixture of fibroblasts, vascular, and immune cells. There is evidence for rare populations of putative mesenchymal progenitor cells located in the perivascular niche of human endometrium, but the existence of an equivalent cell population in mouse is unclear. We used the Pdgfrb‐BAC‐eGFP transgenic reporter mouse in combination with bulk and single‐cell RNA sequencing to redefine the endometrial mesenchyme. In contrast to previous reports we show that CD146 is expressed in both PDGFRβ + perivascular cells and CD31 + endothelial cells. Bulk RNAseq revealed cells in the perivascular niche which express the high levels of Pdgfrb as well as genes previously identified in pericytes and/or vascular smooth muscle cells (Acta2, Myh11, Olfr78, Cspg4, Rgs4, Rgs5, Kcnj8, and Abcc9). scRNA‐seq identified five subpopulations of cells including closely related pericytes/vascular smooth muscle cells and three subpopulations of fibroblasts. All three fibroblast populations were PDGFRα+/CD34 + but were distinct in their expression of Ngfr/Spon2/Angptl7 (F1), Cxcl14/Smoc2/Rgs2 (F2), and Clec3b/Col14a1/Mmp3 (F3), with potential functions in the regulation of immune responses, response to wounding, and organization of extracellular matrix, respectively. Immunohistochemistry was used to investigate the spatial distribution of these populations revealing F1/NGFR + cells in most abundance beside epithelial cells. We provide the first definitive analysis of mesenchymal cells in the adult mouse endometrium identifying five subpopulations providing a platform for comparisons between mesenchymal cells in endometrium and other adult tissues which are prone to fibrosis.
Collapse
Affiliation(s)
- Phoebe M Kirkwood
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Douglas A Gibson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - James R Smith
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Olympia Kelepouri
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Ross Dobie
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil C Henderson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Philippa T K Saunders
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
de Miguel-Gómez L, López-Martínez S, Francés-Herrero E, Rodríguez-Eguren A, Pellicer A, Cervelló I. Stem Cells and the Endometrium: From the Discovery of Adult Stem Cells to Pre-Clinical Models. Cells 2021; 10:cells10030595. [PMID: 33800355 PMCID: PMC7998473 DOI: 10.3390/cells10030595] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Adult stem cells (ASCs) were long suspected to exist in the endometrium. Indeed, several types of endometrial ASCs were identified in rodents and humans through diverse isolation and characterization techniques. Putative stromal and epithelial stem cell niches were identified in murine models using label-retention techniques. In humans, functional methods (clonogenicity, long-term culture, and multi-lineage differentiation assays) and stem cell markers (CD146, SUSD2/W5C5, LGR5, NTPDase2, SSEA-1, or N-cadherin) facilitated the identification of three main types of endogenous endometrial ASCs: stromal, epithelial progenitor, and endothelial stem cells. Further, exogenous populations of stem cells derived from bone marrow may act as key effectors of the endometrial ASC niche. These findings are promoting the development of stem cell therapies for endometrial pathologies, with an evolution towards paracrine approaches. At the same time, promising therapeutic alternatives based on bioengineering have been proposed.
Collapse
Affiliation(s)
- Lucía de Miguel-Gómez
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain; (L.d.M.-G.); (S.L.-M.); (E.F.-H.); (A.R.-E.)
- Department of Pediatrics, Obstetrics, and Gynaecology, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Sara López-Martínez
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain; (L.d.M.-G.); (S.L.-M.); (E.F.-H.); (A.R.-E.)
| | - Emilio Francés-Herrero
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain; (L.d.M.-G.); (S.L.-M.); (E.F.-H.); (A.R.-E.)
- Department of Pediatrics, Obstetrics, and Gynaecology, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Adolfo Rodríguez-Eguren
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain; (L.d.M.-G.); (S.L.-M.); (E.F.-H.); (A.R.-E.)
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics, and Gynaecology, School of Medicine, University of Valencia, 46010 Valencia, Spain;
- IVIRMA Rome Parioli, 00197 Rome, Italy
| | - Irene Cervelló
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain; (L.d.M.-G.); (S.L.-M.); (E.F.-H.); (A.R.-E.)
- Correspondence: ; Tel.: +34-963-903-305
| |
Collapse
|
10
|
Zambuto SG, Clancy KBH, Harley BAC. A gelatin hydrogel to study endometrial angiogenesis and trophoblast invasion. Interface Focus 2019; 9:20190016. [PMID: 31485309 PMCID: PMC6710659 DOI: 10.1098/rsfs.2019.0016] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2019] [Indexed: 12/15/2022] Open
Abstract
The endometrium is the lining of the uterus and site of blastocyst implantation. Each menstrual cycle, the endometrium cycles through rapid phases of growth, remodelling and breakdown. Significant vascular remodelling is also driven by trophoblast cells that form the outer layer of the blastocyst. Trophoblast invasion and remodelling enhance blood flow to the embryo ahead of placentation. Understanding the mechanisms of endometrial vascular remodelling and trophoblast invasion would provide key insights into endometrial physiology and cellular interactions critical for establishment of pregnancy. The objective of this study was to develop a tissue engineering platform to investigate the processes of endometrial angiogenesis and trophoblast invasion in a three-dimensional environment. We report adaptation of a methacrylamide-functionalized gelatin hydrogel that presents matrix stiffness in the range of the native tissue, supports the formation of endometrial endothelial cell networks with human umbilical vein endothelial cells and human endometrial stromal cells as an artificial endometrial perivascular niche and the culture of an endometrial epithelial cell layer, enables culture of a hormone-responsive stromal compartment and provides the capacity to monitor the kinetics of trophoblast invasion. With these studies, we provide a series of techniques that will instruct researchers in the development of endometrial models of increasing complexity.
Collapse
Affiliation(s)
- Samantha G. Zambuto
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kathryn B. H. Clancy
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brendan A. C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
11
|
Patterson AL, George JW, Chatterjee A, Carpenter T, Wolfrum E, Pru JK, Teixeira JM. Label-Retaining, Putative Mesenchymal Stem Cells Contribute to Murine Myometrial Repair During Uterine Involution. Stem Cells Dev 2018; 27:1715-1728. [PMID: 30328770 DOI: 10.1089/scd.2018.0146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Uterine remodeling during pregnancy is a fundamental, dynamic process required for successful propagation of eutherian species. The uterus can increase in size up to 40-fold during pregnancy, which is largely attributed to expansion of the myometrium by hyperplasia and hypertrophy. After pregnancy, the uterus repairs the remodeled or "damaged" tissue during uterine involution (INV). Little is known about this repair process, particularly the role of mesenchymal stem/progenitor cells. The objective of this study was to identify and characterize putative mesenchymal stem/progenitor cells in the murine myometrium using a combination of label retention and mesenchymal stem cell (MSC) marker expression and a pregnancy and uterine INV model. Tet-off transgenic mice with the Cre-lox system were used to specifically label mesenchymal cells (ie, myometrial and endometrial stromal cells) within the uterus while avoiding other cell types (eg, epithelial, immune, and endothelial cells) to identify slowly dividing cells and assess their stem cell qualities. We identified myometrial label-retaining cells (LRCs) that persisted for at least 3 months, expressed CD146 and CD140b (MSC markers), and proliferated at a higher rate during uterine INV compared with nonlabeled cells. The LRCs did not appear to express either estrogen receptor alpha or progesterone receptor, nor did the number of LRCs change at different estrous stages or in response to exogenous estradiol or progesterone administration, suggesting that LRCs were not involved in normal estrous cycling. The results from this study provide important insight into putative stem/progenitor cells in the myometrium and their possible role in uterine physiology.
Collapse
Affiliation(s)
- Amanda L Patterson
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Jitu W George
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Anindita Chatterjee
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Tyler Carpenter
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Emily Wolfrum
- Department of Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan
| | - James K Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Jose M Teixeira
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| |
Collapse
|
12
|
De Clercq K, Van den Eynde C, Hennes A, Van Bree R, Voets T, Vriens J. The functional expression of transient receptor potential channels in the mouse endometrium. Hum Reprod 2018; 32:615-630. [PMID: 28077439 DOI: 10.1093/humrep/dew344] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/15/2016] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Does mouse endometrial epithelial cells and stromal cells have a similar transient receptor potential (TRP)-channel expression profile and to that found in the human endometrium? SUMMARY ANSWER Mouse endometrial epithelial and stromal cells have a distinct TRP channel expression profile analogous to what has been found in human endometrium, and hence suggests the mouse a good model to investigate the role of TRP channels in reproduction. WHAT IS KNOWN ALREADY An optimal intercellular communication between epithelial and stromal endometrial cells is crucial for successful reproduction. Members of the TRP family were recently described in the human endometrial stroma; however their functional expression in murine endometrium remains unspecified. Furthermore, epithelial and stromal cells have distinct functions in the reproductive process, implying the possibility for a different expression profile. However, knowledge about the functional expression pattern of TRP channels in either epithelial or stromal cells is not available. STUDY DESIGN, SIZE, DURATION In this study, the expression pattern of TRP channels in the murine (C57BL/6 J strain) endometrium was investigated and compared to the human expression pattern. Therefore, expression was examined in uterine tissue isolated during the natural estrous cycle (n = 16) or during an induced menstrual cycle using the menstruating mouse model (n = 28). Next, the functional expression of TRP channels was assessed separately in endometrial epithelial and stromal cell populations. PARTICIPANTS/MATERIALS, SETTING, METHODS Quantitative RT-PCR was used to evaluate the relative mRNA expression of TRP channels in murine uterine tissue and cells. To further assess the functional expression in epithelial or stromal cells, primary endometrial cell cultures and Fura2-based calcium-microfluorimetry experiments were performed. MAIN RESULTS AND THE ROLE OF CHANCE The expression pattern of TRP channels during the natural estrous cycle or the induced menstrual cycle is analog to what has been shown in human samples. Furthermore, a very distinct expression pattern was observed in epithelial cells compared to stromal cells. Expression of TRPV4, TRPV6 and TRPM6 was significantly higher in epithelial cells whereas TRPV2, TRPC1/4 and TRPC6 were almost exclusively expressed in stromal cells. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Although relevant mRNA levels are detected for TRPV6 and TRPM6, and TRPM4, lack of selective, available pharmacology restricted functional analysis of these ion channels. WIDER IMPLICATIONS OF THE FINDINGS Successful reproduction, and more specifically embryo implantation, is a dynamic developmental process that integrates many signaling molecules into a precisely orchestrated program. Here, we describe the expression pattern of TRP channels in mouse endometrium that is similar to human tissue and their restricted functionality in either stromal cells or epithelial cells, suggesting a role in the epithelial-stromal crosstalk. These results will be very helpful to identify key players involved in the signaling cascades required for successful embryo implantation. In addition, these results illustrate that mouse endometrium is a valid representative for human endometrium to investigate TRP channels in the field of reproduction. STUDY FUNDING/COMPETING INTEREST(S) The Research Foundation-Flanders (G.0856.13 N to J.V.); the Research Council of the Katholieke Universiteit Leuven (OT/13/113 to J.V. and PF-TRPLe to T.V.); the Planckaert-De Waele fund (to J.V.); Fonds Wetenschappelijk Onderzoek Belgium (to K.D.C. and A.H.). None of the authors have a conflict of interest.
Collapse
Affiliation(s)
- Katrien De Clercq
- Laboratory of Obstetrics and Experimental Gynaecology, KU Leuven, Herestraat 49 box 611, B-3000 Leuven, Belgium
| | - Charlotte Van den Eynde
- Laboratory of Obstetrics and Experimental Gynaecology, KU Leuven, Herestraat 49 box 611, B-3000 Leuven, Belgium
| | - Aurélie Hennes
- Laboratory of Obstetrics and Experimental Gynaecology, KU Leuven, Herestraat 49 box 611, B-3000 Leuven, Belgium
| | - Rieta Van Bree
- Laboratory of Obstetrics and Experimental Gynaecology, KU Leuven, Herestraat 49 box 611, B-3000 Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), KU Leuven, Herestraat 49 box 802, B-3000 Leuven, Belgium
| | - Joris Vriens
- Laboratory of Obstetrics and Experimental Gynaecology, KU Leuven, Herestraat 49 box 611, B-3000 Leuven, Belgium
| |
Collapse
|
13
|
In vitro evidence that platelet-rich plasma stimulates cellular processes involved in endometrial regeneration. J Assist Reprod Genet 2018; 35:757-770. [PMID: 29404863 DOI: 10.1007/s10815-018-1130-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/23/2018] [Indexed: 12/16/2022] Open
Abstract
PURPOSE The study aims to test the hypothesis that platelet-rich plasma (PRP) stimulates cellular processes involved in endometrial regeneration relevant to clinical management of poor endometrial growth or intrauterine scarring. METHODS Human endometrial stromal fibroblasts (eSF), endometrial mesenchymal stem cells (eMSC), bone marrow-derived mesenchymal stem cells (BM-MSC), and Ishikawa endometrial adenocarcinoma cells (IC) were cultured with/without 5% activated (a) PRP, non-activated (na) PRP, aPPP (platelet-poor-plasma), and naPPP. Treatment effects were evaluated with cell proliferation (WST-1), wound healing, and chemotaxis Transwell migration assays. Mesenchymal-to-epithelial transition (MET) was evaluated by cytokeratin and vimentin expression. Differential gene expression of various markers was analyzed by multiplex Q-PCR. RESULTS Activated PRP enhanced migration of all cell types, compared to naPRP, aPPP, naPPP, and vehicle controls, in a time-dependent manner (p < 0.05). The WST-1 assay showed increased stromal and mesenchymal cell proliferation by aPRP vs. naPRP, aPPP, and naPPP (p < 0.05), while IC proliferation was enhanced by aPRP and aPPP (p < 0.05). There was no evidence of MET. Expressions of MMP1, MMP3, MMP7, and MMP26 were increased by aPRP (p < 0.05) in eMSC and eSF. Transcripts for inflammation markers/chemokines were upregulated by aPRP vs. aPPP (p < 0.05) in eMSC and eSF. No difference in estrogen or progesterone receptor mRNAs was observed. CONCLUSIONS This is the first study evaluating the effect of PRP on different human endometrial cells involved in tissue regeneration. These data provide an initial ex vivo proof of principle for autologous PRP to promote endometrial regeneration in clinical situations with compromised endometrial growth and scarring.
Collapse
|
14
|
Bian F, Gao F, Kartashov AV, Jegga AG, Barski A, Das SK. Polycomb repressive complex 1 controls uterine decidualization. Sci Rep 2016; 6:26061. [PMID: 27181215 PMCID: PMC4867636 DOI: 10.1038/srep26061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/27/2016] [Indexed: 01/21/2023] Open
Abstract
Uterine stromal cell decidualization is an essential part of the reproductive process. Decidual tissue development requires a highly regulated control of the extracellular tissue remodeling; however the mechanism of this regulation remains unknown. Through systematic expression studies, we detected that Cbx4/2, Rybp, and Ring1B [components of polycomb repressive complex 1 (PRC1)] are predominantly utilized in antimesometrial decidualization with polyploidy. Immunofluorescence analyses revealed that PRC1 members are co-localized with its functional histone modifier H2AK119ub1 (mono ubiquitination of histone-H2A at lysine-119) in polyploid cell. A potent small-molecule inhibitor of Ring1A/B E3-ubiquitin ligase or siRNA-mediated suppression of Cbx4 caused inhibition of H2AK119ub1, in conjunction with perturbation of decidualization and polyploidy development, suggesting a role for Cbx4/Ring1B-containing PRC1 in these processes. Analyses of genetic signatures by RNA-seq studies showed that the inhibition of PRC1 function affects 238 genes (154 up and 84 down) during decidualization. Functional enrichment analyses identified that about 38% genes primarily involved in extracellular processes are specifically targeted by PRC1. Furthermore, ~15% of upregulated genes exhibited a significant overlap with the upregulated Bmp2 null-induced genes in mice. Overall, Cbx4/Ring1B-containing PRC1 controls decidualization via regulation of extracellular gene remodeling functions and sheds new insights into underlying molecular mechanism(s) through transcriptional repression regulation.
Collapse
Affiliation(s)
- Fenghua Bian
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA.,Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Fei Gao
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA.,Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrey V Kartashov
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA.,Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Anil G Jegga
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA.,Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA.,Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sanjoy K Das
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 49267, USA.,Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
15
|
Gargett CE, Schwab KE, Deane JA. Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update 2015; 22:137-63. [PMID: 26552890 PMCID: PMC4755439 DOI: 10.1093/humupd/dmv051] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The existence of stem/progenitor cells in the endometrium was postulated many years ago, but the first functional evidence was only published in 2004. The identification of rare epithelial and stromal populations of clonogenic cells in human endometrium has opened an active area of research on endometrial stem/progenitor cells in the subsequent 10 years. METHODS The published literature was searched using the PubMed database with the search terms ‘endometrial stem cells and menstrual blood stem cells' until December 2014. RESULTS Endometrial epithelial stem/progenitor cells have been identified as clonogenic cells in human and as label-retaining or CD44+ cells in mouse endometrium, but their characterization has been modest. In contrast, endometrial mesenchymal stem/stromal cells (MSCs) have been well characterized and show similar properties to bone marrow MSCs. Specific markers for their enrichment have been identified, CD146+PDGFRβ+ (platelet-derived growth factor receptor beta) and SUSD2+ (sushi domain containing-2), which detected their perivascular location and likely pericyte identity in endometrial basalis and functionalis vessels. Transcriptomics and secretomics of SUSD2+ cells confirm their perivascular phenotype. Stromal fibroblasts cultured from endometrial tissue or menstrual blood also have some MSC characteristics and demonstrate broad multilineage differentiation potential for mesodermal, endodermal and ectodermal lineages, indicating their plasticity. Side population (SP) cells are a mixed population, although predominantly vascular cells, which exhibit adult stem cell properties, including tissue reconstitution. There is some evidence that bone marrow cells contribute a small population of endometrial epithelial and stromal cells. The discovery of specific markers for endometrial stem/progenitor cells has enabled the examination of their role in endometrial proliferative disorders, including endometriosis, adenomyosis and Asherman's syndrome. Endometrial MSCs (eMSCs) and menstrual blood stromal fibroblasts are an attractive source of MSCs for regenerative medicine because of their relative ease of acquisition with minimal morbidity. Their homologous and non-homologous use as autologous and allogeneic cells for therapeutic purposes is currently being assessed in preclinical animal models of pelvic organ prolapse and phase I/II clinical trials for cardiac failure. eMSCs and stromal fibroblasts also exhibit non-stem cell-associated immunomodulatory and anti-inflammatory properties, further emphasizing their desirable properties for cell-based therapies. CONCLUSIONS Much has been learnt about endometrial stem/progenitor cells in the 10 years since their discovery, although several unresolved issues remain. These include rationalizing the terminology and diagnostic characteristics used for distinguishing perivascular stem/progenitor cells from stromal fibroblasts, which also have considerable differentiation potential. The hierarchical relationship between clonogenic epithelial progenitor cells, endometrial and decidual SP cells, CD146+PDGFR-β+ and SUSD2+ cells and menstrual blood stromal fibroblasts still needs to be resolved. Developing more genetic animal models for investigating the role of endometrial stem/progenitor cells in endometrial disorders is required, as well as elucidating which bone marrow cells contribute to endometrial tissue. Deep sequencing and epigenetic profiling of enriched populations of endometrial stem/progenitor cells and their differentiated progeny at the population and single-cell level will shed new light on the regulation and function of endometrial stem/progenitor cells.
Collapse
Affiliation(s)
- Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Victoria, Australia Department of Obstetrics and Gynaecology, Monash University, Monash Medical Centre, 246 Clayton Road, Clayton 3168, Victoria, Australia
| | - Kjiana E Schwab
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Victoria, Australia
| | - James A Deane
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Victoria, Australia Department of Obstetrics and Gynaecology, Monash University, Monash Medical Centre, 246 Clayton Road, Clayton 3168, Victoria, Australia
| |
Collapse
|
16
|
Mutlu L, Hufnagel D, Taylor HS. The endometrium as a source of mesenchymal stem cells for regenerative medicine. Biol Reprod 2015; 92:138. [PMID: 25904012 DOI: 10.1095/biolreprod.114.126771] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/09/2015] [Indexed: 12/21/2022] Open
Abstract
Stem cell therapies have opened new frontiers in medicine with the possibility of regenerating lost or damaged cells. Embryonic stem cells, induced pluripotent stem cells, hematopoietic stem cells, and mesenchymal stem cells have been used to derive mature cell types for tissue regeneration and repair. However, the endometrium has emerged as an attractive, novel source of adult stem cells that are easily accessed and demonstrate remarkable differentiation capacity. In this review, we summarize our current understanding of endometrial stem cells and their therapeutic potential in regenerative medicine.
Collapse
Affiliation(s)
- Levent Mutlu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Demetra Hufnagel
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
17
|
Cao M, Chan RWS, Yeung WSB. Label-retaining stromal cells in mouse endometrium awaken for expansion and repair after parturition. Stem Cells Dev 2014; 24:768-80. [PMID: 25386902 DOI: 10.1089/scd.2014.0225] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human and mouse endometrium undergo dramatic cellular reorganization during pregnancy and postpartum. Somatic stem cells maintain homeostasis of the tissue by providing a cell reservoir for regeneration. We hypothesized that endometrial cells with quiescent properties (stem/progenitor cells) were involved in the regeneration of the endometrial tissue. Given that stem cells divide infrequently, they can retain the DNA synthesis label [bromodeoxyuridine (BrdU)] after a prolonged chase period. In this study, prepubertal mice were pulsed with BrdU and after a 6-week chase a small population of label-retaining stromal cells (LRSC) was located primarily beneath the luminal epithelium, adjacent to blood vessels, and near the endometrial-myometrial junction. Marker analyses suggested that they were of mesenchymal origin expressing CD44(+), CD90(+), CD140b(+), CD146(+), and Sca-1(+). During pregnancy, nonproliferating LRSC predominately resided at the interimplantation/placental loci of the gestational endometrium. Immediately after parturition, a significant portion of the LRSC underwent proliferation (BrdU(+)/Ki-67(+)) and expressed total and active β-catenin. The β-catenin expression in the LRSC was transiently elevated at postpartum day (PPD) 1. The proliferation of LRSC resulted in a significant decline in the proportion of LRSC in the postpartum uterus. The LRSC returned to dormancy at PPD7, and the percentage of LRSC remained stable thereafter until 11 weeks. This study demonstrated that LRSC can respond efficiently to physiological stimuli upon initiation of uterine involution and return to its quiescent state after postpartum repair.
Collapse
Affiliation(s)
- Mingzhu Cao
- 1 Department of Obstetrics and Gynaecology, University of Hong Kong , Pokfulam, Hong Kong, SAR, China
| | | | | |
Collapse
|
18
|
Xiang L, Chan RWS, Ng EHY, Yeung WSB. Nanoparticle labeling identifies slow cycling human endometrial stromal cells. Stem Cell Res Ther 2014; 5:84. [PMID: 24996487 PMCID: PMC4230801 DOI: 10.1186/scrt473] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/27/2014] [Indexed: 02/06/2023] Open
Abstract
Introduction Evidence suggests that the human endometrium contains stem or progenitor cells that are responsible for its remarkable regenerative capability. A common property of somatic stem cells is their quiescent state. It remains unclear whether slow-cycling cells exist in the human endometrium. We hypothesized that the human endometrium contains a subset of slow-cycling cells with somatic stem cell properties. Here, we established an in vitro stem cell assay to isolate human endometrial-derived mesenchymal stem-like cells (eMSC). Methods Single-cell stromal cultures were initially labeled with fluorescent nanoparticles and a small population of fluorescent persistent cells (FPC) remained after culture of 21 days. Two populations of stromal cells, namely FPC and non-FPC were sorted. Results Quantitative analysis of functional assays demonstrated that the FPC had higher colony forming ability, underwent more rounds of self-renewal and had greater enrichment of phenotypically defined prospective eMSC markers: CD146+/CD140b+ and W5C5+ than the non-FPC. They also differentiate into multiple mesenchymal lineages and the expression of lineage specific markers was lower than that of non-FPC. The FPC exhibit low proliferation activities. A proliferation dynamics study revealed that more FPC had a prolonged G1 phase. Conclusions With this study we present an efficient method to label and isolate slow-proliferating cells obtained from human endometrial stromal cultures without genetic modifications. The FPC population could be easily maintained in vitro and are of interest for tissue-repair and engineering perspectives. In summary, nanoparticle labeling is a promising tool for the identification of putative somatic stem or progenitor cells when their surface markers are undefined.
Collapse
|
19
|
Patterson AL, Pru JK. Long-term label retaining cells localize to distinct regions within the female reproductive epithelium. Cell Cycle 2014; 12:2888-98. [PMID: 24018418 DOI: 10.4161/cc.25917] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The uterus is an extremely plastic organ that undergoes cyclical remodeling including endometrial regeneration during the menstrual cycle. Endometrial remodeling and regeneration also occur during pregnancy and following parturition, particularly in hemochorial implanting species. The mechanisms of endometrial regeneration are not well understood. Endometrial stem/progenitor cells are proposed to contribute to endometrial regeneration in both humans and mice. BrdU label retention has been used to identify potential stem/progenitor cells in mouse endometrium. However, methods are not available to isolate BrdU label-retaining cells (LRC) for functional analyses. Therefore, we employed a transgenic mouse model to identify H2B-GFP LRCs throughout the female reproductive tract with particular interest on the endometrium. We hypothesized that the female reproductive tract contains a population of long-term LRCs that persist even following pregnancy and endometrial regeneration. Endometrial cells were labeled (pulsed) either transplacentally/translactationally or peripubertally. When mice were pulsed transplacentally/translactationally, the label was not retained in the uterus. However, LRCs were concentrated to the distal oviduct and endocervical transition zone (TZ) following natural (i.e., pregnancy/parturition induced) and mechanically induced endometrial regeneration. LRCs in the distal oviduct and endocervical TZ expressed stem cell markers and did not express ERα or PGR, implying the undifferentiated phenotype of these cells. Oviduct and endocervical TZ LRCs did not proliferate during endometrial re-epithelialization, suggesting that they do not contribute to the endometrium in a stem/progenitor cell capacity. In contrast, when mice were pulsed peripubertally long-term LRCs were identified in the endometrial glandular compartment in mice as far out as 9 months post-pulse. These findings suggest that epithelial tissue of the female reproductive tract contains 3 distinct populations of epithelial cells that exhibit stem/progenitor cell qualities. Distinct stem/progenitor-like cells localize to the oviduct, endometrium, and cervix.
Collapse
Affiliation(s)
- Amanda L Patterson
- Center for Reproductive Biology; Department of Animal Sciences; Washington State University; Pullman, WA USA
| | | |
Collapse
|
20
|
Janzen DM, Cheng D, Schafenacker AM, Paik DY, Goldstein AS, Witte ON, Jaroszewicz A, Pellegrini M, Memarzadeh S. Estrogen and progesterone together expand murine endometrial epithelial progenitor cells. Stem Cells 2013; 31:808-22. [PMID: 23341289 PMCID: PMC3774116 DOI: 10.1002/stem.1337] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/17/2012] [Indexed: 01/27/2023]
Abstract
Synchronous with massive shifts in reproductive hormones, the uterus and its lining the endometrium expand to accommodate a growing fetus during pregnancy. In the absence of an embryo the endometrium, composed of epithelium and stroma, undergoes numerous hormonally regulated cycles of breakdown and regeneration. The hormonally mediated regenerative capacity of the endometrium suggests that signals that govern the growth of endometrial progenitors must be regulated by estrogen and progesterone. Here, we report an antigenic profile for isolation of mouse endometrial epithelial progenitors. These cells are EpCAM(+) CD44(+) ITGA6(hi) Thy1(-) PECAM1(-) PTPRC(-) Ter119(-), comprise a minor subpopulation of total endometrial epithelia and possess a gene expression profile that is unique and different from other cells of the endometrium. The epithelial progenitors of the endometrium could regenerate in vivo, undergo multilineage differentiation and proliferate. We show that the number of endometrial epithelial progenitors is regulated by reproductive hormones. Coadministration of estrogen and progesterone dramatically expanded the endometrial epithelial progenitor cell pool. This effect was not observed when estrogen or progesterone was administered alone. Despite the remarkable sensitivity to hormonal signals, endometrial epithelial progenitors do not express estrogen or progesterone receptors. Therefore, their hormonal regulation must be mediated through paracrine signals resulting from binding of steroid hormones to the progenitor cell niche. Discovery of signaling defects in endometrial epithelial progenitors or their niche can lead to development of better therapies in diseases of the endometrium.
Collapse
Affiliation(s)
- DM Janzen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - D Cheng
- The Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, USA
| | - AM Schafenacker
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - DY Paik
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - AS Goldstein
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - ON Witte
- The Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - A Jaroszewicz
- Department of Molecular, Cell and Developmental Biology
| | - M Pellegrini
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology
| | - S Memarzadeh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
- The VA Greater Los Angeles Health Care System, Los Angeles, CA, 90073, USA
| |
Collapse
|
21
|
Patterson AL, Zhang L, Arango NA, Teixeira J, Pru JK. Mesenchymal-to-epithelial transition contributes to endometrial regeneration following natural and artificial decidualization. Stem Cells Dev 2013; 22:964-74. [PMID: 23216285 DOI: 10.1089/scd.2012.0435] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Despite being a histologically dynamic organ, mechanisms coordinating uterine regeneration during the menstrual/estrous cycle and following parturition are poorly understood. In the current study, we hypothesized that endometrial epithelial tissue regeneration is accomplished, in part, by mesenchymal-to-epithelial transition (MET). To test this hypothesis, fate mapping studies were completed using a double transgenic (Tg) reporter strain, Amhr2-Cre; Rosa26-Stop(fl/fl-EYFP) (i.e., flox-stop EYFP reporter). EYFP expression was observed in Müllerian duct mesenchyme-derived stroma and myometrium, but not epithelia in young and peripubertal double Tg female mice. However, mosaic EYFP expression was observed in epithelia of double Tg mice after parturition. To ensure the observed epithelial EYFP expression was not due to leaky Amhr2 promoter activity, resulting in aberrant Cre expression, transgenic mice expressing LacZ under the control of the Amhr2 promoter (Amhr2-LacZ) were used to monitor β-galactosidase (β-Gal) activity within the uterus. β-Gal activity was not detected in luminal or glandular epithelia regardless of age, reproductive status, or degree of damage incurred within the uterus. Lastly, a unique population of transitional cells was identified that expressed the epithelial cell marker, pan-cytokeratin, and the stromal cell marker, vimentin. These cells localized predominantly to the regeneration zone in the mesometrial region of the endometrium. These findings suggest a previously unappreciated role for MET in endometrial regeneration and have important implications for proliferative diseases of the endometrium such as endometriosis.
Collapse
Affiliation(s)
- Amanda L Patterson
- Department of Animal Science, Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | |
Collapse
|
22
|
Gao F, Ma X, Rusie A, Hemingway J, Ostmann AB, Chung D, Das SK. Epigenetic changes through DNA methylation contribute to uterine stromal cell decidualization. Endocrinology 2012; 153:6078-90. [PMID: 23033272 PMCID: PMC3512074 DOI: 10.1210/en.2012-1457] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Embryo-uterine interaction during early pregnancy critically depends on the coordinated expression of numerous genes at the site of implantation. The epigenetic mechanism through DNA methylation (DNM) plays a major role in the control of gene expression, although this regulatory event remains unknown in uterine implantation sites. Our analysis revealed the presence of DNA methyltransferase 1 (Dnmt1) in mouse endometrial cells on the receptive d 4 of pregnancy and early postattachment (d 5) phase, whereas Dnmt3a had lower abundant expression. Both Dnmt1 and Dnmt3a were coordinately expressed in decidual cells on d 6-8. 5-Methycytosine showed a similar expression pattern to that of Dnmt1. The preimplantation inhibition of DNM by 5-aza-2'-deoxycytodine was not antagonistic for embryonic attachment, although endometrial stromal cell proliferation at the site of implantation was down-regulated, indicating a disturbance with the postattachment decidualization event. Indeed, the peri- or postimplantation inhibition of DNM caused significant abrogation of decidualization, with concomitant loss of embryos. We next identified decidual genes undergoing alteration of DNM using methylation-sensitive restriction fingerprinting. One such gene, Chromobox homolog 4, an epigenetic regulator in the polycomb group protein family, exhibited hypomethylation in promoter DNA and increased expression with the onset of decidualization. Furthermore, inhibition of DNM resulted in enhanced expression of hypermethylated genes (Bcl3 and Slc16a3) in the decidual bed as compared with control, indicating aberration of gene expression may be associated with DNM-inhibition-induced decidual perturbation. Overall, these results suggest that uterine DNM plays a major role for successful decidualization and embryo development during early pregnancy.
Collapse
Affiliation(s)
- Fei Gao
- Division of Reproductive Sciences and Perinatal Institute, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|