1
|
Kamoshita M, Sugita H, Kageyama A, Kawata Y, Ito J, Kashiwazaki N. Recent advances of oocyte/embryo vitrification in mammals from rodents and large animals. Anim Sci J 2024; 95:e13931. [PMID: 38400795 DOI: 10.1111/asj.13931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/21/2024] [Accepted: 02/06/2024] [Indexed: 02/26/2024]
Abstract
Vitrification is a valuable technology that enables semipermanent preservation and long-distance or international transportation of genetically modified and native animals. In laboratory mice, vitrification maintains and transports embryos, and many institutions and companies sell vitrified embryos. In contrast, despite numerous papers reporting on vitrification in livestock over the past decade, practical implementation has yet to be achieved. However, with advances in genome editing technology, it is anticipated that the number of genetically modified domestic animals will increase, leading to a rise in demand for vitrification of oocytes and embryos. Here, we provide an objective overview of recent advancements in vitrification technology for livestock, drawing a comparison with the current developments in laboratory animals. Additionally, we explore the future prospects for vitrification in livestock, focusing on its potential benefits and drawbacks.
Collapse
Affiliation(s)
- Maki Kamoshita
- Laboratory of Animal Reproduction, Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Hibiki Sugita
- Laboratory of Animal Reproduction, Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan
| | - Atsuko Kageyama
- Laboratory of Animal Reproduction, Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan
| | - Yui Kawata
- Laboratory of Animal Reproduction, Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan
| | - Junya Ito
- Laboratory of Animal Reproduction, Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Naomi Kashiwazaki
- Laboratory of Animal Reproduction, Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| |
Collapse
|
2
|
Okamoto K, Matsunari H, Nakano K, Umeyama K, Hasegawa K, Uchikura A, Takayanagi S, Watanabe M, Ohgane J, Stirm M, Kurome M, Klymiuk N, Nagaya M, Wolf E, Nagashima H. Phenotypic features of genetically modified DMD-X KOX WT pigs. Regen Ther 2023; 24:451-458. [PMID: 37772130 PMCID: PMC10523442 DOI: 10.1016/j.reth.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction Duchenne muscular dystrophy (DMD) is a hereditary neuromuscular disorder caused by mutation in the dystrophin gene (DMD) on the X chromosome. Female DMD carriers occasionally exhibit symptoms such as muscle weakness and heart failure. Here, we investigated the characteristics and representativeness of female DMD carrier (DMD-XKOXWT) pigs as a suitable disease model. Methods In vitro fertilization using sperm from a DMD-XKOY↔XWTXWT chimeric boar yielded DMD-XKOXWT females, which were used to generate F2 and F3 progeny, including DMD-XKOXWT females. F1-F3 piglets were genotyped and subjected to biochemical analysis for blood creatine kinase (CK), aspartate aminotransferase, and lactate dehydrogenase. Skeletal muscle and myocardial tissue were analyzed for the expression of dystrophin and utrophin, as well as for lymphocyte and macrophage infiltration. Results DMD-XKOXWT pigs exhibited various characteristics common to human DMD carrier patients, namely, asymptomatic hyperCKemia, dystrophin expression patterns in the skeletal and cardiac muscles, histopathological features of skeletal muscle degeneration, myocardial lesions in adulthood, and sporadic death. Pathological abnormalities observed in the skeletal muscles in DMD-XKOXWT pigs point to a frequent incidence of pathological abnormalities in the musculoskeletal tissues of latent DMD carriers. Our findings suggest a higher risk of myocardial abnormalities in DMD carrier women than previously believed. Conclusions We demonstrated that DMD-XKOXWT pigs could serve as a suitable large animal model for understanding the pathogenic mechanism in DMD carriers and developing therapies for female DMD carriers.
Collapse
Affiliation(s)
- Kazutoshi Okamoto
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kazuaki Nakano
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Koki Hasegawa
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Ayuko Uchikura
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Shuko Takayanagi
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Jun Ohgane
- Laboratory of Genomic Function Engineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Michael Stirm
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Mayuko Kurome
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Nikolai Klymiuk
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Eckhard Wolf
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Hiroshi Nagashima
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
3
|
Hochi S. Cryodevices developed for minimum volume cooling vitrification of bovine oocytes. Anim Sci J 2022; 93:e13683. [PMID: 35075717 PMCID: PMC9286375 DOI: 10.1111/asj.13683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
Unfertilized bovine oocytes can be efficiently cryopreserved only when an extremely rapid cooling rate (>20,000°C/min) is applied to oocytes with a very limited amount of surrounding vitrification solution. This protocol is defined as minimum volume cooling (MVC) vitrification. Various types of cryodevices, such as open pulled straw, Cryoloop, and Cryotop, have been developed to accelerate the cooling efficacy. Furthermore, hollow fibers with nano-scale pores, triangle nylon mesh sheets, and multilayer silk fibroin sheets have been optimized for the loading of large quantities of oocytes and/or the subsequent removal of excess vitrification solution, without requiring skillful operation to transfer individual oocytes using fine capillaries. This article provides an up-to-date review of cryodevices suitable for the MVC vitrification of bovine oocytes at the immature (germinal vesicle-) and mature (metaphase II-) stages.
Collapse
Affiliation(s)
- Shinichi Hochi
- Faculty of Textile Science and TechnologyShinshu UniversityUedaNaganoJapan
| |
Collapse
|
4
|
Xingzhu D, Qingrui Z, Keren C, Yuxi L, Yunpeng H, Shien Z, Xiangwei F. Cryopreservation of Porcine Embryos: Recent Updates and Progress. Biopreserv Biobank 2021; 19:210-218. [PMID: 33625892 DOI: 10.1089/bio.2020.0074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cryopreservation of embryos is important for long-distance embryo transfer and conservation of genetic resources. Porcine research is important for animal husbandry and biomedical research. However, porcine embryos are difficult to cryopreserve because of their high cytoplasmic lipid content and sensitivity to chilling stress. Vitrification is more efficient than slow freezing, and vitrification is mostly used in embryo cryopreservation. So far, the vitrification process of porcine embryos has been continuously improved, resulting in improved survival rates of warmed embryos and farrowing rates after the transplant procedure. It is worth noting that automatic vitrification has made great progress, which is expected to promote the standardization and application of vitrification. In this article, the vitrification process of porcine embryos at the blastula stage and early development stages is reviewed in detail. In addition, the efficiency of different vitrification systems was compared. In addition, we summarize technology that can improve the survival rate of cryopreserved porcine embryos, such as delipidation methods (including physical delipidation and chemical delipidation) and medium improvements (including chemically defined media and adding antioxidants). Meanwhile, gene expression changes during cryopreservation are also elaborated.
Collapse
Affiliation(s)
- Du Xingzhu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhuan Qingrui
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cheng Keren
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Luo Yuxi
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hou Yunpeng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhu Shien
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fu Xiangwei
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Casillas F, Ducolomb Y, López A, Betancourt M. Effect of porcine immature oocyte vitrification on oocyte-cumulus cell gap junctional intercellular communication. Porcine Health Manag 2020; 6:37. [PMID: 33292603 PMCID: PMC7687833 DOI: 10.1186/s40813-020-00175-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/06/2020] [Indexed: 01/27/2023] Open
Abstract
Vitrification may severely affect cumulus cells and oocyte morphology and viability, limiting their maturation and developmental potential. The aim of this study was to evaluate the gap junction intercellular communication (GJIC) integrity after the vitrification of porcine immature cumulus-oocyte complexes (COCs). Fresh COCs were randomly distributed in three groups: untreated (control), toxicity (cryoprotectants exposure), and vitrification, then subjected to in vitro maturation (IVM). Oocyte viability and IVM were measured in all groups. The evaluation of GJIC was expressed as relative fluorescence intensity (RFI). Vitrification significantly decreased oocyte viability and maturation after 44 h of culture compared to control. Also, significantly reduced RFI was observed in vitrified COCs during the first hours of culture (4-8 h) compared to control. This study demonstrates that porcine oocyte viability and maturation after 44 h of culture decreased after vitrification. GJIC was also affected during the first hours of culture after the vitrification of immature oocytes, being one of the possible mechanisms by which oocyte maturation decreased.
Collapse
Affiliation(s)
- Fahiel Casillas
- Departamento de Biología de la Reproducción, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, CDMX, México.
| | - Yvonne Ducolomb
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, CDMX, México
| | - Alma López
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, CDMX, México
| | - Miguel Betancourt
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, 09340, CDMX, México
| |
Collapse
|
6
|
Uchikura A, Matsunari H, Maehara M, Yonamine S, Wakayama S, Wakayama T, Nagashima H. Hollow fiber vitrification allows cryopreservation of embryos with compromised cryotolerance. Reprod Med Biol 2020; 19:142-150. [PMID: 32273819 PMCID: PMC7138943 DOI: 10.1002/rmb2.12312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 11/12/2022] Open
Abstract
PURPOSE This study aims to demonstrate vitrification methods that provide reliable cryopreservation for embryos with compromised cryotolerance. METHODS Two-cell stage mouse embryos and in vitro produced porcine embryos were vitrified using the hollow fiber vitrification (HFV) and Cryotop (CT) methods. The performance of these two methods was compared by the viability of the vitrified-rewarmed embryos. RESULTS Regardless of the method used, 100% of the mouse 2-cell embryos developed successfully after vitrification-rewarming into the blastocyst stage, whereas vitrification tests using porcine morulae with the HFV method produced significantly better results. The developmental rates of vitrified porcine morula into the blastocyst stage, as well as blastocyst cell number, were 90.3% and 112.3 ± 6.9 in the HFV group compared with 63.4% and 89.5 ± 8.1 in the CT group (P < .05). Vitrification tests using 4- to 8-cell porcine embryos resulted in development into the blastocyst stage (45.5%) in the HFV group alone, demonstrating its better efficacy. The HFV method did not impair embryo viability, even after spontaneous rewarming at room temperature for vitrified embryos, which is generally considered a contraindication. CONCLUSION Vitrification test using embryos with compromised cryotolerance allows for more precise determining of effective cryopreservation methods and devices.
Collapse
Affiliation(s)
- Ayuko Uchikura
- Laboratory of Developmental EngineeringDepartment of Life SciencesSchool of AgricultureMeiji UniversityKawasakiJapan
| | - Hitomi Matsunari
- Laboratory of Developmental EngineeringDepartment of Life SciencesSchool of AgricultureMeiji UniversityKawasakiJapan
- Meiji University International Institute for Bio‐Resource Research (MUIIBR)KawasakiJapan
| | - Miki Maehara
- Department of Orthopaedic SurgerySurgical ScienceTokai University School of MedicineIseharaJapan
| | - Shiori Yonamine
- Laboratory of Developmental EngineeringDepartment of Life SciencesSchool of AgricultureMeiji UniversityKawasakiJapan
| | - Sayaka Wakayama
- Department of BiotechnologyFaculty of Life and Environmental SciencesUniversity of YamanashiKohuJapan
| | - Teruhiko Wakayama
- Department of BiotechnologyFaculty of Life and Environmental SciencesUniversity of YamanashiKohuJapan
| | - Hiroshi Nagashima
- Laboratory of Developmental EngineeringDepartment of Life SciencesSchool of AgricultureMeiji UniversityKawasakiJapan
- Meiji University International Institute for Bio‐Resource Research (MUIIBR)KawasakiJapan
| |
Collapse
|
7
|
Matsunari H, Watanabe M, Hasegawa K, Uchikura A, Nakano K, Umeyama K, Masaki H, Hamanaka S, Yamaguchi T, Nagaya M, Nishinakamura R, Nakauchi H, Nagashima H. Compensation of Disabled Organogeneses in Genetically Modified Pig Fetuses by Blastocyst Complementation. Stem Cell Reports 2020; 14:21-33. [PMID: 31883918 PMCID: PMC6962638 DOI: 10.1016/j.stemcr.2019.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/26/2022] Open
Abstract
We have previously established a concept of developing exogenic pancreas in a genetically modified pig fetus with an apancreatic trait, thereby proposing the possibility of in vivo generation of functional human organs in xenogenic large animals. In this study, we aimed to demonstrate a further proof-of-concept of the compensation for disabled organogeneses in pig, including pancreatogenesis, nephrogenesis, hepatogenesis, and vasculogenesis. These dysorganogenetic phenotypes could be efficiently induced via genome editing of the cloned pigs. Induced dysorganogenetic traits could also be compensated by allogenic blastocyst complementation, thereby proving the extended concept of organ regeneration from exogenous pluripotent cells in empty niches during various organogeneses. These results suggest that the feasibility of blastocyst complementation using genome-edited cloned embryos permits experimentation toward the in vivo organ generation in pigs from xenogenic pluripotent cells.
Collapse
Affiliation(s)
- Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Koki Hasegawa
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Ayuko Uchikura
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kazuaki Nakano
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Hideki Masaki
- Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Sanae Hamanaka
- Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomoyuki Yamaguchi
- Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Kumamoto 860-0811, Japan
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA; Division of Stem Cell Therapy, Distinguished Professor Unit, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan; Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
| |
Collapse
|
8
|
Nakayama K, Yamanaka T, Tamada Y, Hirabayashi M, Hochi S. Supplementary cryoprotective effect of carboxylated ε-poly-l-lysine during vitrification of rat pancreatic islets. Cryobiology 2019; 88:70-74. [PMID: 30922739 DOI: 10.1016/j.cryobiol.2019.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/17/2019] [Accepted: 03/20/2019] [Indexed: 11/18/2022]
Abstract
This study was designed to investigate whether cryosurvival of rat pancreatic islets can be improved by carboxylated ε-poly-l-lysine (CPLL). Islets isolated from Wistar × Brown-Norway F1 rats (101-200 μm in diameter) were cryopreserved in three vitrification solutions containing ethylene glycol (EG; 30%, v/v) and CPLL (0%, 10%, or 20%, v/v) by Cryotop® protocol (10 islets per device). The post-warm survival rate of the islets vitrified in the presence of 20% CPLL (74%), assessed by FDA/PI double staining, was higher than those in 0% and 10% CPLL (65% and 66%, respectively). Decreased EG concentrations (10% and 20%) in the presence of 20% CPLL resulted in impaired post-warm islet survival rates (50% and 64%, respectively). Value of stimulus index (SI) for 20 mM/3 mM glucose-stimulated insulin secretion was 4.1 in islets vitrified-warmed in the presence of 30% EG and 20% CPLL, which was comparable with those in fresh control islets and vitrified islets in 30% EG alone (4.1 and 4.4, respectively). A large number of islets (50 islets per device) could be cryopreserved in the presence of 30% EG and 20% CPLL by using nylon mesh as the device, without considerable loss of post-warm survival (68%) and SI value (3.7). In conclusion, supplementation of antifreeze 20% CPLL was effective in improving the post-warm survival of isolated rat pancreatic islets when vitrification solution containing 30% EG was used.
Collapse
Affiliation(s)
- Kenyu Nakayama
- Graduate School of Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan
| | - Takahiro Yamanaka
- Graduate School of Medicine, Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan
| | - Yasushi Tamada
- Graduate School of Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan; Graduate School of Medicine, Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan; Faculty of Textile Science and Technology, Shinshu University, Nagano, 386-8567, Japan
| | - Masumi Hirabayashi
- National Institute for Physiological Sciences, Okazaki, Aichi, 444-8787, Japan; School of Life Science, The Graduate University for Advanced Studies, Okazaki, Aichi, 444-8787, Japan
| | - Shinichi Hochi
- Graduate School of Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan; Graduate School of Medicine, Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan; Faculty of Textile Science and Technology, Shinshu University, Nagano, 386-8567, Japan.
| |
Collapse
|
9
|
Nguyen VK, Vu HTT, Nguyen HT, Quan HX, Pham LD, Kikuchi K, Nguyen ST, Somfai T. Comparison of the microdrop and minimum volume cooling methods for vitrification of porcine in vitro-produced zygotes and blastocysts after equilibration in low concentrations of cryoprotectant agents. J Reprod Dev 2018; 64:457-462. [PMID: 30101829 PMCID: PMC6189571 DOI: 10.1262/jrd.2018-047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We compared the efficacy of the microdrop and minimum volume cooling (MVC) methods for the vitrification of in vitro-produced porcine zygotes and blastocysts after
equilibration in low concentrations of cryoprotectant agents. Zygotes and blastocysts were equilibrated in 2% (v/v) ethylene glycol and 2% (v/v) propylene glycol for 13–15 min. Then, they
were vitrified in a medium comprised of 17.5% ethylene glycol, 17.5% propylene glycol, 0.3 M sucrose, and 50 mg/ml polyvinylpyrrolidone either by either dropping them directly into liquid
nitrogen (microdrop method) or placing them on Cryotop sheets in a minimum volume of medium and plunging into liquid nitrogen (MVC method). Both zygotes and blastocysts were successfully
vitrified. For the vitrification of zygotes, the MVC and microdrop methods were equally effective; however, for blastocyst vitrification, MVC was superior. For both methods, the
vitrification of zygotes produced higher-quality embryos than the vitrification of blastocysts.
Collapse
Affiliation(s)
- Van Khanh Nguyen
- Key Lab of Animal Cell Biotechnology, National Institute of Animal Science, Hanoi, Vietnam
| | - Huong Thi Thu Vu
- Key Lab of Animal Cell Biotechnology, National Institute of Animal Science, Hanoi, Vietnam
| | - Huong Thi Nguyen
- Key Lab of Animal Cell Biotechnology, National Institute of Animal Science, Hanoi, Vietnam
| | - Huu Xuan Quan
- Key Lab of Animal Cell Biotechnology, National Institute of Animal Science, Hanoi, Vietnam
| | - Lan Doan Pham
- Key Lab of Animal Cell Biotechnology, National Institute of Animal Science, Hanoi, Vietnam
| | - Kazuhiro Kikuchi
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8602, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Son Thanh Nguyen
- Key Lab of Animal Cell Biotechnology, National Institute of Animal Science, Hanoi, Vietnam
| | - Tamas Somfai
- Animal Breeding and Reproduction Research Division, Institute of Livestock and Grassland Science, NARO, Ibaraki 305-0901, Japan
| |
Collapse
|
10
|
Bartolac LK, Lowe JL, Koustas G, Grupen CG, Sjöblom C. Effect of different penetrating and non-penetrating cryoprotectants and media temperature on the cryosurvival of vitrified in vitro produced porcine blastocysts. Anim Sci J 2018; 89:1230-1239. [PMID: 29968319 DOI: 10.1111/asj.12996] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/09/2018] [Indexed: 02/02/2023]
Abstract
The aim of this study was to determine the most efficient vitrification protocol for the cryopreservation of day 7 in vitro produced (IVP) porcine blastocysts. The post-warm survival rate of blastocysts vitrified in control (17% dimethyl sulfoxide + 17% ethylene glycol [EG] + 0.4 mol/L sucrose) and commercial media did not differ, nor did the post-warm survival rate of blastocysts vitrified in medium containing 1,2-propandiol in place of EG. However, vitrifying embryos in EG alone decreased the cryosurvival rate (55.6% and 33.6%, respectively, p < .05). Furthermore, the post-warm survival rates of blastocysts vitrified with either trehalose or sucrose as the non-penetrating cryoprotectant did not differ. There was also no significant difference in post-warm survival of blastocysts vitrified in control (38°C) media and room temperature (22°C) media with extended equilibration times, although when blastocysts were vitrified using control media at room temperature, the post-warm survival rate increased (56.8%, 57.3%, 72.5%, respectively, p < .05). The findings show that most cryoprotectant combinations examined proved equally effective at supporting the post-warm survival of IVP porcine blastocysts. The improved post-warm survival rate of blastocysts vitrified using media held at room temperature suggests that the cryoprotectant toxicity exerted in 22°C media was reduced.
Collapse
Affiliation(s)
- Louise Katherine Bartolac
- Faculty of Veterinary Science, The University of Sydney, Camden, NSW, Australia.,Westmead Fertility Centre, Westmead Hospital, Westmead, NSW, Australia
| | - Jenna Louise Lowe
- Faculty of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | - George Koustas
- Westmead Fertility Centre, Westmead Hospital, Westmead, NSW, Australia
| | | | - Cecilia Sjöblom
- Westmead Fertility Centre, Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
11
|
Yamanaka T, Goto T, Hirabayashi M, Hochi S. Nylon Mesh Device for Vitrification of Large Quantities of Rat Pancreatic Islets. Biopreserv Biobank 2017; 15:457-462. [PMID: 28872901 DOI: 10.1089/bio.2017.0044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The practical requirements of islet transplantation necessitate that a large quantity of pancreatic islets be cryopreserved for a long period of time in a simple and convenient manner. We cryopreserved rat islets (size range 101-150 μm in mean diameter) by vitrification with either a Cryotop® device or a ø = 57-μm nylon mesh device in units of 10 islets, or by conventional freezing with a Bicell® vessel in units of 50 islets. Postwarm/thaw survival rates of the islets were 68.1% ± 5.9%, 64.1% ± 3.5%, and 47.7 ± 1.2% following Cryotop vitrification, nylon mesh vitrification, and Bicell freezing, respectively (p < 0.05). Glucose-stimulated insulin secretion in the two vitrification groups (stimulus index [SI] = 3.1-3.9) was superior to that in the freezing group (SI = 0.8). Additional experiments involved scaling-up the cryopreservation process using the nylon mesh device in units of 10, 50, or 100 islets. Increased numbers of islets per device had no adverse effects on cryosurvival (58.6%-68.5%) or insulin secretion potential (SI = 2.8-4.2). As the nylon mesh device does not require the handling of individual islets with glass pipettes, pre- and postvitrification islet treatment is less complicated. Therefore, nylon mesh can serve as a simple cryodevice for the vitrification of large quantities of rat pancreatic islets.
Collapse
Affiliation(s)
- Takahiro Yamanaka
- 1 Department of Textile Science and Technology, Graduate School of Science and Technology, Shinshu University , Ueda, Japan
| | - Teppei Goto
- 2 Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences , Okazaki, Japan
| | - Masumi Hirabayashi
- 2 Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences , Okazaki, Japan .,3 Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies , Okazaki, Japan
| | - Shinichi Hochi
- 1 Department of Textile Science and Technology, Graduate School of Science and Technology, Shinshu University , Ueda, Japan .,4 Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University , Ueda, Japan
| |
Collapse
|
12
|
Expression of the T85A mutant of zebrafish aquaporin 3b improves post-thaw survival of cryopreserved early mammalian embryos. ZYGOTE 2016; 24:839-847. [DOI: 10.1017/s0967199416000174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryWhile vitrification has become the method of choice for preservation of human oocytes and embryos, cryopreservation of complex tissues and of large yolk-containing cells, remains largely unsuccessful. One critical step in such instances is appropriate permeation while avoiding potentially toxic concentrations of cryoprotectants. Permeation of water and small non-charged solutes, such as those used as cryoprotectants, occurs largely through membrane channel proteins termed aquaporins (AQPs). Substitution of a Thr by an Ala residue in the pore-forming motif of the zebrafish (Dario rerio) Aqp3b paralog resulted in a mutant (DrAqp3b-T85A) that when expressed in Xenopus or porcine oocytes increased their permeability to ethylene glycol at pH 7.5 and 8.5. The main objective of this study was to test whether ectopic expression of DrAqp3b-T85A also conferred higher resistance to cryoinjury. For this, DrAqp3b-T85A + eGFP (reporter) cRNA, or eGFP cRNA alone, was microinjected into in vivo fertilized 1-cell mouse zygotes. Following culture to the 2-cell stage, appropriate membrane expression of DrAqp3b-T85A was confirmed by immunofluorescence microscopy using a primary specific antibody directed against the C-terminus of DrAqp3b. Microinjected 2-cell embryos were then cryopreserved using a fast-freezing rate and low concentration (1.5 M) of ethylene glycol in order to highlight any benefits from DrAqp3b-T85A expression. Notably, post-thaw survival rates were higher (P<0.05) for T85A–eGFP-injected than for -uninjected or eGFP-injected embryos (73±7.3 vs. 28±7.3 or 14±6.7, respectively). We propose that ectopic expression of mutant AQPs may provide an avenue to improve cryopreservation results of large cells and tissues in which current vitrification protocols yield low survival.
Collapse
|
13
|
Matsumura K, Kawamoto K, Takeuchi M, Yoshimura S, Tanaka D, Hyon SH. Cryopreservation of a Two-Dimensional Monolayer Using a Slow Vitrification Method with Polyampholyte to Inhibit Ice Crystal Formation. ACS Biomater Sci Eng 2016; 2:1023-1029. [DOI: 10.1021/acsbiomaterials.6b00150] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kazuaki Matsumura
- School
of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Keiko Kawamoto
- School
of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Masahiro Takeuchi
- Taiyo Nippon Sanso Corp., Toyo
Building, 1-3-26 Koyama, Shinagawa-ku, Tokyo 142-8558, Japan
| | - Shigehiro Yoshimura
- Taiyo Nippon Sanso Corp., Toyo
Building, 1-3-26 Koyama, Shinagawa-ku, Tokyo 142-8558, Japan
| | - Daisuke Tanaka
- Genetic
Resources Center, National Agriculture and Food Research Ogranization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Suong-Hyu Hyon
- Center
for Fiber and Textile Science, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
| |
Collapse
|
14
|
Kikuchi K, Kaneko H, Nakai M, Somfai T, Kashiwazaki N, Nagai T. Contribution of in vitro systems to preservation and utilization of porcine genetic resources. Theriogenology 2016; 86:170-5. [PMID: 27142488 DOI: 10.1016/j.theriogenology.2016.04.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/15/2016] [Accepted: 03/14/2016] [Indexed: 10/21/2022]
Abstract
Historically, the conservation or preservation of mammalian genetic resources, especially farm animals, has been conducted under in situ conditions by maintaining living individuals as "livestock." However, systems for laboratory in vitro embryo production using gametes such as spermatozoa and oocytes are now available, in addition to ex situ preservation methods for mammalian genetic resources. One of these methods is the cryopreservation of gametes, embryos, and gonadal tissues. In pigs, freezing of sperm is the most reliable and well-established method for this purpose. On the other hand, cryopreservation of female gametes (oocytes) and gonadal tissues-usually by vitrification-has been associated with very low efficacies. Recently, in our laboratory, some research themes related to this issue have been pursued. We have been focusing on advances in porcine in vitro embryo production systems, and here, we introduce recent data on the vitrification of porcine immature oocytes and gonadal tissues followed by their xenografting into host mice to produce gametes.
Collapse
Affiliation(s)
- Kazuhiro Kikuchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan; The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Yamaguchi, Japan.
| | - Hiroyuki Kaneko
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Michiko Nakai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Tamas Somfai
- Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| | - Naomi Kashiwazaki
- Graduate School of Veterinary Science, Azabu University, Sagamihara, Kanagawa, Japan
| | - Takashi Nagai
- National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
15
|
Uchikura A, Matsunari H, Nakano K, Hatae S, Nagashima H. Application of hollow fiber vitrification for cryopreservation of bovine early cleavage stage embryos and porcine morula-blastomeres. J Reprod Dev 2016; 62:219-23. [PMID: 26875691 PMCID: PMC4848581 DOI: 10.1262/jrd.2015-162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A novel hollow fiber vitrification (HFV) method was applied to materials that have previously been difficult
to cryopreserve, thereby expanding the potential application of this method. The results showed that zona-free
porcine morulae and their isolated blastomeres remained viable even after vitrification. The rate of
development to blastocysts after vitrification was similar for zona-free and zona-intact morulae (21/23, 91.3%
for both). Vitrified blastomeres had a developmental potential equal to that of non-vitrified blastomeres
(blastocyst formation rate after reaggregation: 16/17, 94.1% for both). The HFV method was also effective for
the cryopreservation of in vitro matured/fertilized bovine embryos at the 2- to 4-cell, 8- to
16-cell and morula stages. The blastocyst formation rates of vitrified embryos (66.1–82.5%) were similar to
those of non-vitrified embryos (74.5–82.5%). These results indicate that this novel HFV method is an effective
tool for embryo cryopreservation that can enhance current practices in reproductive biology.
Collapse
Affiliation(s)
- Ayuko Uchikura
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | | | | | | | | |
Collapse
|
16
|
Sakagami N, Nishida K, Misumi K, Hirayama Y, Yamashita S, Hoshi H, Misawa H, Akiyama K, Suzuki C, Yoshioka K. The relationship between oxygen consumption rate and viability of in vivo-derived pig embryos vitrified by the micro volume air cooling method. Anim Reprod Sci 2016; 164:40-6. [DOI: 10.1016/j.anireprosci.2015.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 11/26/2022]
|
17
|
Mito T, Yoshioka K, Noguchi M, Yamashita S, Misumi K, Hoshi T, Hoshi H. Birth of piglets from in vitro–produced porcine blastocysts vitrified and warmed in a chemically defined medium. Theriogenology 2015; 84:1314-20. [DOI: 10.1016/j.theriogenology.2015.06.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 06/13/2015] [Accepted: 06/13/2015] [Indexed: 10/23/2022]
|
18
|
Bartolac LK, Lowe JL, Koustas G, Sjöblom C, Grupen CG. A comparison of different vitrification devices and the effect of blastocoele collapse on the cryosurvival of in vitro produced porcine embryos. J Reprod Dev 2015. [PMID: 26211782 PMCID: PMC4685218 DOI: 10.1262/jrd.2015-065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to determine the optimum conditions for vitrifying in vitro
produced day 7 porcine embryos using different vitrification devices and blastocoele collapse methods. Firstly
embryos were collapsed by micro-pipetting, needle puncture and sucrose with and without conducting
vitrification. In the next experiment, non-collapsed embryos were vitrified in an open device using either
superfine open-pulled straws (SOPS) or the CryoLoopTM system, or vitrified in a closed device using
either the CryoTipTM or Cryo BioTM’s high security vitrification system (HSV). The
post-thaw survival of embryos vitrified in the open devices did not differ significantly (SOPS: 37.3%;
CryoLoopTM: 37.3%) nor did the post-thaw survival of embryos vitrified in the closed devices
(CryoTip™: 38.5%; HSV: 42.5%). The re-expansion rate of embryos that were collapsed via micro-pipetting
(76.0%) did not differ from those that were punctured (75.0%) or collapsed via sucrose (79.6%) when
vitrification was not performed. However, embryos collapsed via sucrose solutions (24.5%) and needle puncture
(16.0%) prior to vitrification were significantly less likely to survive vitrification than the control
(non-collapsed) embryos (53.6%, P < 0.05). The findings show that both open and closed vitrification
devices were equally effective for the vitrification of porcine blastocysts. Collapsing blastocysts prior to
vitrification did not improve survival, which is inconsistent with the findings of studies in other species.
This may be due to the extremely sensitive nature of porcine embryos, and/or the invasiveness of the
collapsing procedures.
Collapse
|
19
|
Grupen CG. The evolution of porcine embryo in vitro production. Theriogenology 2014; 81:24-37. [PMID: 24274407 DOI: 10.1016/j.theriogenology.2013.09.022] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/14/2013] [Accepted: 09/14/2013] [Indexed: 12/23/2022]
Abstract
The in vitro production of porcine embryos has presented numerous challenges to researchers over the past four decades. Some of the problems encountered were specific to porcine gametes and embryos and needed the concerted efforts of many to overcome. Gradually, porcine embryo in vitro production systems became more reliable and acceptable rates of blastocyst formation were achieved. Despite the significant improvements, the problem of polyspermic fertilization has still not been adequately resolved and the embryo in vitro culture conditions are still considered to be suboptimal. Whereas early studies focused on increasing our understanding of the reproductive processes involved, the technology evolved to the point where in vitro-matured oocytes and in vitro-produced embryos could be used as research material for developing associated reproductive technologies, such as SCNT and embryo cryopreservation. Today, the in vitro procedures used to mature oocytes and culture embryos are integral to the production of transgenic pigs by SCNT. This review discusses the major achievements, advances, and knowledge gained from porcine embryo in vitro production studies and highlights the future research perspectives of this important technology.
Collapse
Affiliation(s)
- Christopher G Grupen
- Faculty of Veterinary Science, The University of Sydney, Camden, New South Wales, Australia.
| |
Collapse
|
20
|
Shibao Y, Fujiwara K, Kawasaki Y, Matsumura K, Hyon SH, Ito J, Kashiwazaki N. The effect of a novel cryoprotective agent, carboxylated ε-poly-l-lysine, on the developmental ability of re-vitrified mouse embryos at the pronuclear stage. Cryobiology 2014; 68:200-4. [DOI: 10.1016/j.cryobiol.2014.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/14/2014] [Indexed: 12/28/2022]
|
21
|
Umeyama K, Honda K, Matsunari H, Nakano K, Hidaka T, Sekiguchi K, Mochizuki H, Takeuchi Y, Fujiwara T, Watanabe M, Nagaya M, Nagashima H. Production of diabetic offspring using cryopreserved epididymal sperm by in vitro fertilization and intrafallopian insemination techniques in transgenic pigs. J Reprod Dev 2013; 59:599-603. [PMID: 23979397 PMCID: PMC3934148 DOI: 10.1262/jrd.2013-069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Somatic cell nuclear transfer (SCNT) is a useful technique for creating pig strains
that model human diseases. However, production of numerous cloned disease model pigs
by SCNT for large-scale experiments is impractical due to its complexity and
inefficiency. In the present study, we aimed to establish an efficient procedure for
proliferating the diabetes model pig carrying the mutant human hepatocyte nuclear
factor-1α gene. A founder diabetes transgenic cloned pig was generated by SCNT and
treated with insulin to allow for normal growth to maturity, at which point
epididymal sperm could be collected for cryopreservation. In vitro
fertilization and intrafallopian insemination using the cryopreserved epididymal
sperm resulted in diabetes model transgenic offspring. These results suggest that
artificial reproductive technology using cryopreserved epididymal sperm could be a
practical option for proliferation of genetically modified disease model pigs.
Collapse
Affiliation(s)
- Kazuhiro Umeyama
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Maehara M, Sato M, Watanabe M, Matsunari H, Kokubo M, Kanai T, Sato M, Matsumura K, Hyon SH, Yokoyama M, Mochida J, Nagashima H. Development of a novel vitrification method for chondrocyte sheets. BMC Biotechnol 2013; 13:58. [PMID: 23886356 PMCID: PMC3726287 DOI: 10.1186/1472-6750-13-58] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/22/2013] [Indexed: 11/16/2022] Open
Abstract
Background There is considerable interest in using cell sheets for the treatment of various lesions as part of regenerative medicine therapy. Cell sheets can be prepared in temperature-responsive culture dishes and applied to injured tissue. For example, cartilage-derived cell sheets are currently under preclinical testing for use in treatment of knee cartilage injuries. The additional use of cryopreservation technology could increase the range and practicality of cell sheet therapies. To date, however, cryopreservation of cell sheets has proved impractical. Results Here we have developed a novel and effective method for cryopreserving fragile chondrocyte sheets. We modified the vitrification method previously developed for cryopreservation of mammalian embryos to vitrify a cell sheet through use of a minimum volume of vitrification solution containing 20% dimethyl sulfoxide, 20% ethylene glycol, 0.5 M sucrose, and 10% carboxylated poly-L-lysine. The principal feature of our method is the coating of the cell sheet with a viscous vitrification solution containing permeable and non-permeable cryoprotectants prior to vitrification in liquid nitrogen vapor. This method prevented fracturing of the fragile cell sheet even after vitrification and rewarming. Both the macro- and microstructures of the vitrified cell sheets were maintained without damage or loss of major components. Cell survival in the vitrified sheets was comparable to that in non-vitrified samples. Conclusions We have shown here that it is feasible to vitrify chondrocyte cell sheets and that these sheets retain their normal characteristics upon thawing. The availability of a practical cryopreservation method should make a significant contribution to the effectiveness and range of applications of cell sheet therapy.
Collapse
|
23
|
Generating porcine chimeras using inner cell mass cells and parthenogenetic preimplantation embryos. PLoS One 2013; 8:e61900. [PMID: 23626746 PMCID: PMC3633951 DOI: 10.1371/journal.pone.0061900] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 03/15/2013] [Indexed: 01/27/2023] Open
Abstract
Background The development and validation of stem cell therapies using induced pluripotent stem (iPS) cells can be optimized through translational research using pigs as large animal models, because pigs have the closest characteristics to humans among non-primate animals. As the recent investigations have been heading for establishment of the human iPS cells with naïve type characteristics, it is an indispensable challenge to develop naïve type porcine iPS cells. The pluripotency of the porcine iPS cells can be evaluated using their abilities to form chimeras. Here, we describe a simple aggregation method using parthenogenetic host embryos that offers a reliable and effective means of determining the chimera formation ability of pluripotent porcine cells. Methodology/Significant Principal Findings In this study, we show that a high yield of chimeric blastocysts can be achieved by aggregating the inner cell mass (ICM) from porcine blastocysts with parthenogenetic porcine embryos. ICMs cultured with morulae or 4–8 cell-stage parthenogenetic embryos derived from in vitro-matured (IVM) oocytes can aggregate to form chimeric blastocysts that can develop into chimeric fetuses after transfer. The rate of production of chimeric blastocysts after aggregation with host morulae (20/24, 83.3%) was similar to that after the injection of ICMs into morulae (24/29, 82.8%). We also found that 4–8 cell-stage embryos could be used; chimeric blastocysts were produced with a similar efficiency (17/26, 65.4%). After transfer into recipients, these blastocysts yielded chimeric fetuses at frequencies of 36.0% and 13.6%, respectively. Conclusion/Significance Our findings indicate that the aggregation method using parthenogenetic morulae or 4–8 cell-stage embryos offers a highly reproducible approach for producing chimeric fetuses from porcine pluripotent cells. This method provides a practical and highly accurate system for evaluating pluripotency of undifferentiated cells, such as iPS cells, based on their ability to form chimeras.
Collapse
|
24
|
Hirose M, Kamoshita M, Fujiwara K, Kato T, Nakamura A, Wojcikiewicz RJH, Parys JB, Ito J, Kashiwazaki N. Vitrification procedure decreases inositol 1,4,5-trisphophate receptor expression, resulting in low fertility of pig oocytes. Anim Sci J 2013; 84:693-701. [PMID: 23607492 DOI: 10.1111/asj.12061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 01/30/2013] [Indexed: 01/25/2023]
Abstract
Although cryopreservation of mammalian oocytes is an important technology, it is well known that unfertilized oocytes, especially in pigs, are highly sensitive to low temperature and that cryopreserved oocytes show low fertility and developmental ability. The aim of the present study was to clarify why porcine in vitro matured (IVM) oocytes at the metaphase II (MII) stage showed low fertility and developmental ability after vitrification. In vitro matured cumulus oocyte complexes (COCs) were vitrified with Cryotop and then evaluated for fertility through in vitro fertilization (IVF). Although sperm-penetrated oocytes were observed to some extent (30-40%), the rate of pronuclear formation was low (9%) and none of them progressed to the two-cell stage. The results suggest that activation ability of cryopreserved oocytes was decreased by vitrification. We examined the localization and expression level of the type 1 inositol 1,4,5 trisphosphate receptor (IP3 R1), the channel responsible for Ca(2+) release during IVF in porcine oocytes. Localization of IP3 R1 close to the plasma membrane and total expression level of IP3 R1 protein were both decreased by vitrification. In conclusion, our present study indicates that vitrified-warmed porcine COCs showed a high survival rate but low fertility after IVF. This low fertility seems to be due to the decrease in IP3 R1 by the vitrification procedure.
Collapse
Affiliation(s)
- Masahiko Hirose
- Laboratory of Animal Reproduction, Graduate School of Veterinary Sciences, Sagamihara, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|