1
|
Blengini CS, Schindler K. Genetic interaction mapping of Aurora protein kinases in mouse oocytes. Front Cell Dev Biol 2024; 12:1455280. [PMID: 39386021 PMCID: PMC11461192 DOI: 10.3389/fcell.2024.1455280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
The Aurora Kinases (AURKs) are a family of serine-threonine protein kinases critical for cell division. Somatic cells express only AURKA and AURKB. However, mammalian germ cells and some cancer cells express all three isoforms. A major question in the field has been determining the molecular and cellular changes when cells express three instead of two aurora kinases. Using a systematic genetic approach involving different Aurora kinase oocyte-specific knockout combinations, we completed an oocyte-AURK genetic interaction map and show that one genomic copy of Aurka is necessary and sufficient to support female fertility and oocyte meiosis. We further confirm that AURKB and AURKC alone cannot compensate for AURKA. These results highlight the importance of AURKA in mouse oocytes, demonstrating that it is required for spindle formation and proper chromosome segregation. Surprisingly, a percentage of oocytes that lack AURKB can complete meiosis I, but the quality of those eggs is compromised, suggesting a role in AURKB to regulate spindle assembly checkpoint or control the cell cycle. Together with our previous studies, we wholly define the genetic interplay among the Aurora kinases and reinforce the importance of AURKA expression in oocyte meiosis.
Collapse
Affiliation(s)
- Cecilia S. Blengini
- Department of Genetics, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Human Genetics Institute of New Jersey, New Brunswick, NJ, United States
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Human Genetics Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
2
|
Blengini CS, Vaskovicova M, Schier J, Drutovic D, Schindler K. Spatio-temporal requirements of Aurora kinase A in mouse oocyte meiotic spindle building. iScience 2024; 27:110451. [PMID: 39081293 PMCID: PMC11284559 DOI: 10.1016/j.isci.2024.110451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/30/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Meiotic spindles are critical to ensure chromosome segregation during gamete formation. Oocytes lack centrosomes and use alternative microtubule-nucleation mechanisms for spindle building. How these mechanisms are regulated is still unknown. Aurora kinase A (AURKA) is essential for mouse oocyte meiosis because in pro-metaphase I it triggers microtubule organizing-center fragmentation and its expression compensates for the loss of the two other Aurora kinases (AURKB/AURKC). Although knockout mouse models were useful for foundational studies, AURK spatial and temporal functions are not yet resolved. We provide high-resolution analyses of AURKA/AURKC requirements during meiotic spindle-building and identify the subcellular populations that carry out these functions: 1) AURKA is required in early spindle assembly and later for spindle stability, whereas 2) AURKC is required in late pro-metaphase, and 3) Targeted AURKA constructs expressed in triple AURK knockout oocytes reveal that spindle pole-localized AURKA is the most important population controlling spindle building and stability mechanisms.
Collapse
Affiliation(s)
- Cecilia S. Blengini
- Department of Genetics, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| | - Michaela Vaskovicova
- Laboratory of DNA Integrity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Schier
- The Czech Academy of Sciences, Institute of Information Theory and Automation, Piscataway, NJ 08854, USA
| | - David Drutovic
- Laboratory of DNA Integrity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
Ju JQ, Zhang HL, Wang Y, Hu LL, Sun SC. Kinesin KIFC3 is essential for microtubule stability and cytokinesis in oocyte meiosis. Cell Commun Signal 2024; 22:199. [PMID: 38553728 PMCID: PMC10979585 DOI: 10.1186/s12964-024-01589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/23/2024] [Indexed: 04/02/2024] Open
Abstract
KIFC3 is a member of Kinesin-14 family motor proteins, which play a variety of roles such as centrosome cohesion, cytokinesis, vesicles transportation and cell proliferation in mitosis. Here, we investigated the functional roles of KIFC3 in meiosis. Our findings demonstrated that KIFC3 exhibited expression and localization at centromeres during metaphase I, followed by translocation to the midbody at telophase I throughout mouse oocyte meiosis. Disruption of KIFC3 activity resulted in defective polar body extrusion. We observed aberrant meiotic spindles and misaligned chromosomes, accompanied by the loss of kinetochore-microtubule attachment, which might be due to the failed recruitment of BubR1/Bub3. Coimmunoprecipitation data revealed that KIFC3 plays a crucial role in maintaining the acetylated tubulin level mediated by Sirt2, thereby influencing microtubule stability. Additionally, our findings demonstrated an interaction between KIFC3 and PRC1 in regulating midbody formation during telophase I, which is involved in cytokinesis regulation. Collectively, these results underscore the essential contribution of KIFC3 to spindle assembly and cytokinesis during mouse oocyte meiosis.
Collapse
Affiliation(s)
- Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin-Lin Hu
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Biswas L, Schindler K. Predicting Infertility: How Genetic Variants in Oocyte Spindle Genes Affect Egg Quality. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:1-22. [PMID: 39030352 DOI: 10.1007/978-3-031-55163-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Successful reproduction relies on the union of a single chromosomally normal egg and sperm. Chromosomally normal eggs develop from precursor cells, called oocytes, that have undergone accurate chromosome segregation. The process of chromosome segregation is governed by the oocyte spindle, a unique cytoskeletal machine that splits chromatin content of the meiotically dividing oocyte. The oocyte spindle develops and functions in an idiosyncratic process, which is vulnerable to genetic variation in spindle-associated proteins. Human genetic variants in several spindle-associated proteins are associated with poor clinical fertility outcomes, suggesting that heritable etiologies for oocyte dysfunction leading to infertility exist and that the spindle is a crux for female fertility. This chapter examines the mammalian oocyte spindle through the lens of human genetic variation, covering the genes TUBB8, TACC3, CEP120, AURKA, AURKC, AURKB, BUB1B, and CDC20. Specifically, it explores how patient-identified variants perturb spindle development and function, and it links these molecular changes in the oocyte to their cognate clinical consequences, such as oocyte maturation arrest, elevated egg aneuploidy, primary ovarian insufficiency, and recurrent pregnancy loss. This discussion demonstrates that small genetic errors in oocyte meiosis can result in remarkably far-ranging embryonic consequences, and thus reveals the importance of the oocyte's fine machinery in sustaining life.
Collapse
Affiliation(s)
- Leelabati Biswas
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Karen Schindler
- Department of Genetics, Rutgers University, Piscataway, NJ, USA.
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
5
|
Rajabi-Toustani R, Hu Q, Wang S, Qiao H. How Do Environmental Toxicants Affect Oocyte Maturation Via Oxidative Stress? ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:69-95. [PMID: 39030355 DOI: 10.1007/978-3-031-55163-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
In mammals, oogenesis initiates before birth and pauses at the dictyate stage of meiotic prophase I until luteinizing hormone (LH) surges to resume meiosis. Oocyte maturation refers to the resumption of meiosis that directs oocytes to advance from prophase I to metaphase II of meiosis. This process is carefully modulated to ensure a normal ovulation and successful fertilization. By generating excessive amounts of oxidative stress, environmental toxicants can disrupt the oocyte maturation. In this review, we categorized these environmental toxicants that induce mitochondrial dysfunction and abnormal spindle formation. Further, we discussed the underlying mechanisms that hinder oocyte maturation, including mitochondrial function, spindle formation, and DNA damage response.
Collapse
Affiliation(s)
- Reza Rajabi-Toustani
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Qinan Hu
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shuangqi Wang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA.
| |
Collapse
|
6
|
Guo Y, Sun H, Chen H, Yang G, Wang J, Qi Z, Pang W, Chu G, Gao L. Vitrification induces a focused spindle pole in mouse MI oocytes. Theriogenology 2023; 211:232-240. [PMID: 37660475 DOI: 10.1016/j.theriogenology.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Immature oocyte (germinal vesicle stage, GV) vitrification can avoid a cycle of ovarian stimulation, which is friendly to patients with hormone-sensitive tumors. However, the in vitro maturation of vitrification-thawed GV oocyte usually results in aneuploidy, and the underlying mechanism remains unclear. Stable spindle poles are important for accurate chromosome segregation. Acentriolar microtubule-organizing centers (aMTOCs) undergo fragmentation and reaggregation to form spindle poles. Microtubule nucleation is facilitated via the perichromosome Ran after GVBD, which plays an important role in aMTOCs fragmentation. This study showed that vitrification may reduce microtubule density by decreasing perichromosomal Ran levels, which reduced the localization of pKIF11, thereby decreased the fragmentation of aMTOCs and formed a more focused spindle pole, ultimately resulted in aneuploidy. This study revealed the mechanism of abnormal spindle pole formation in vitrified oocytes and offered a theoretical support to further improve the quality of vitrified oocytes.
Collapse
Affiliation(s)
- Yaoyao Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Haowei Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Hui Chen
- Animal Husbandry Industry Test and Demonstration Center of Shaanxi Province, Jingyang, 713708, Shaanxi, China.
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jialun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Zhengjun Qi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Weijun Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Guiyan Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Lei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
7
|
Ju J, Pan Z, Zhang K, Ji Y, Liu J, Sun S. Mcrs1 regulates G2/M transition and spindle assembly during mouse oocyte meiosis. EMBO Rep 2023; 24:e56273. [PMID: 36951681 PMCID: PMC10157313 DOI: 10.15252/embr.202256273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/24/2023] Open
Abstract
Microspherule protein 1 (Mcrs1) is a component of the nonspecific lethal (NSL) complex and the chromatin remodeling INO80 complex, which participates in transcriptional regulation during mitosis. Here, we investigate the roles of Mcrs1 during female meiosis in mice. We demonstrate that Mcrs1 is a novel regulator of the meiotic G2/M transition and spindle assembly in mouse oocytes. Mcrs1 is present in the nucleus and associates with spindle poles and chromosomes of oocytes during meiosis I. Depletion of Mcrs1 alters HDAC2-mediated H4K16ac, H3K4me2, and H3K9me2 levels in nonsurrounded nucleolus (NSN)-type oocytes, and reduces CDK1 activity and cyclin B1 accumulation, leading to G2/M transition delay. Furthermore, Mcrs1 depletion results in abnormal spindle assembly due to reduced Aurora kinase (Aurka and Aurkc) and Kif2A activities, suggesting that Mcrs1 also plays a transcription-independent role in regulation of metaphase I oocytes. Taken together, our results demonstrate that the transcription factor Mcrs1 has important roles in cell cycle regulation and spindle assembly in mouse oocyte meiosis.
Collapse
Affiliation(s)
- Jia‐Qian Ju
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Zhen‐Nan Pan
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Kun‐Huan Zhang
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Yi‐Ming Ji
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Jing‐Cai Liu
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Shao‐Chen Sun
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
8
|
Effects of Ran-GTP/importin β inhibition on the meiotic division of porcine oocytes. Histochem Cell Biol 2022; 158:571-582. [PMID: 35930054 DOI: 10.1007/s00418-022-02134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 12/13/2022]
Abstract
The Ran-GTP/importin β pathway has been implicated in a diverse array of mitotic functions in somatic mitosis; however, the possible meiotic roles of Ran-GTP/importin β in mammalian oocyte meiosis are still not fully understood. In the present study, importazole (IPZ), a small molecule inhibitor of the interaction between Ran and importin β was used to explore the potential meiotic roles of Ran-GTP/importin β in porcine oocytes undergoing meiosis. After IPZ treatment, the extrusion rate of the first polar body (PB1) was significantly decreased, and a higher proportion of the oocytes were arrested at the germinal vesicle breakdown (GVBD) stage. Moreover, IPZ treatment led to severe defects in metaphase I (MI) spindle assembly and chromosome alignment during the germinal vesicle (GV)-to-MI stage, as well as failure of metaphase II (MII) spindle reassembly and homologous chromosome segregation during the MI-to-MII stage. Notably, IPZ treatment decreased TPX2 expression and abnormal subcellular localization. Furthermore, the expression levels of aurora kinase A (AURKA) and transforming acidic coiled-coil 3 (TACC3) were significantly reduced after IPZ treatment. Collectively, these data indicate that the interaction of Ran-GTP and importin β is essential for proper spindle assembly and successful chromosome segregation during two consecutive meiotic divisions in porcine oocytes, and regulation of this complex might be related to its effect on the TPX2 signaling cascades.
Collapse
|
9
|
Sun S, Miller M, Wang Y, Tyc KM, Cao X, Scott RT, Tao X, Bromberg Y, Schindler K, Xing J. Predicting embryonic aneuploidy rate in IVF patients using whole-exome sequencing. Hum Genet 2022; 141:1615-1627. [PMID: 35347416 PMCID: PMC10095970 DOI: 10.1007/s00439-022-02450-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/16/2022] [Indexed: 01/13/2023]
Abstract
Infertility is a major reproductive health issue that affects about 12% of women of reproductive age in the United States. Aneuploidy in eggs accounts for a significant proportion of early miscarriage and in vitro fertilization failure. Recent studies have shown that genetic variants in several genes affect chromosome segregation fidelity and predispose women to a higher incidence of egg aneuploidy. However, the exact genetic causes of aneuploid egg production remain unclear, making it difficult to diagnose infertility based on individual genetic variants in mother's genome. In this study, we evaluated machine learning-based classifiers for predicting the embryonic aneuploidy risk in female IVF patients using whole-exome sequencing data. Using two exome datasets, we obtained an area under the receiver operating curve of 0.77 and 0.68, respectively. High precision could be traded off for high specificity in classifying patients by selecting different prediction score cutoffs. For example, a strict prediction score cutoff of 0.7 identified 29% of patients as high-risk with 94% precision. In addition, we identified MCM5, FGGY, and DDX60L as potential aneuploidy risk genes that contribute the most to the predictive power of the model. These candidate genes and their molecular interaction partners are enriched for meiotic-related gene ontology categories and pathways, such as microtubule organizing center and DNA recombination. In summary, we demonstrate that sequencing data can be mined to predict patients' aneuploidy risk thus improving clinical diagnosis. The candidate genes and pathways we identified are promising targets for future aneuploidy studies.
Collapse
Affiliation(s)
- Siqi Sun
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Maximilian Miller
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Yanran Wang
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Katarzyna M Tyc
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Current address: Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Xiaolong Cao
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Richard T Scott
- Reproductive Medicine Associates of New Jersey, Basking Ridge, NJ, USA
| | - Xin Tao
- Foundation for Embryonic Competence, Basking Ridge, NJ, USA
| | - Yana Bromberg
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
10
|
Londoño-Vásquez D, Rodriguez-Lukey K, Behura SK, Balboula AZ. Microtubule organizing centers regulate spindle positioning in mouse oocytes. Dev Cell 2022; 57:197-211.e3. [PMID: 35030327 PMCID: PMC8792338 DOI: 10.1016/j.devcel.2021.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/18/2021] [Accepted: 12/10/2021] [Indexed: 01/26/2023]
Abstract
During female meiosis I (MI), spindle positioning must be tightly regulated to ensure the fidelity of the first asymmetric division and faithful chromosome segregation. Although the role of F-actin in regulating these critical processes has been studied extensively, little is known about whether microtubules (MTs) participate in regulating these processes. Using mouse oocytes as a model system, we characterize a subset of MT organizing centers that do not contribute directly to spindle assembly, termed mcMTOCs. Using laser ablation, STED super-resolution microscopy, and chemical manipulation, we show that mcMTOCs are required to regulate spindle positioning and faithful chromosome segregation during MI. We discuss how forces exerted by F-actin on the spindle are balanced by mcMTOC-nucleated MTs to anchor the spindle centrally and to regulate its timely migration. Our findings provide a model for asymmetric cell division, complementing the current F-actin-based models, and implicate mcMTOCs as a major player in regulating spindle positioning.
Collapse
Affiliation(s)
| | | | - Susanta K Behura
- Animal Sciences Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Ahmed Z Balboula
- Animal Sciences Research Center, University of Missouri, Columbia, MO 65211, USA; University of Cambridge, Department of Genetics, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
11
|
Blengini CS, Schindler K. Acentriolar spindle assembly in mammalian female meiosis and the consequences of its perturbations on human reproduction. Biol Reprod 2021; 106:253-263. [PMID: 34791041 DOI: 10.1093/biolre/ioab210] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 12/18/2022] Open
Abstract
The purpose of meiosis is to generate developmentally competent, haploid gametes with the correct number of chromosomes. For reasons not completely understood, female meiosis is more prone to chromosome segregation errors than meiosis in males, leading to an abnormal number of chromosomes, or aneuploidy, in gametes. Meiotic spindles are the cellular machinery essential for the proper segregation of chromosomes. One unique feature of spindle structures in female meiosis is spindles poles that lack centrioles. The process of building a meiotic spindle without centrioles is complex and requires precise coordination of different structural components, assembly factors, motor proteins, and signaling molecules at specific times and locations to regulate each step. In this review, we discuss the basics of spindle formation during oocyte meiotic maturation focusing on mouse and human studies. Finally, we review different factors that could alter the process of spindle formation and its stability. We conclude with a discussion of how different assisted reproductive technologies (ART) could affect spindles and the consequences these perturbations may have for subsequent embryo development.
Collapse
Affiliation(s)
- Cecilia S Blengini
- Rutgers University, Human Genetics Institute of New Jersey, Piscataway, NJ 08854 USA
| | - Karen Schindler
- Rutgers University, Human Genetics Institute of New Jersey, Piscataway, NJ 08854 USA
| |
Collapse
|
12
|
Wang X, Baumann C, De La Fuente R, Viveiros MM. Loss of acentriolar MTOCs disrupts spindle pole Aurora A and assembly of the liquid-like meiotic spindle domain in oocytes. J Cell Sci 2021; 134:jcs256297. [PMID: 34152366 PMCID: PMC8325960 DOI: 10.1242/jcs.256297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/14/2021] [Indexed: 11/20/2022] Open
Abstract
Oocyte-specific knockdown of pericentrin (PCNT) in transgenic (Tg) mice disrupts acentriolar microtubule-organizing center (aMTOC) formation, leading to spindle instability and error-prone meiotic division. Here, we show that PCNT-depleted oocytes lack phosphorylated Aurora A (pAURKA) at spindle poles, while overall levels are unaltered. To test aMTOC-associated AURKA function, metaphase II (MII) control (WT) and Tg oocytes were briefly exposed to a specific AURKA inhibitor (MLN8237). Similar defects were observed in Tg and MLN8237-treated WT oocytes, including altered spindle structure, increased chromosome misalignment and impaired microtubule regrowth. Yet, AURKA inhibition had a limited effect on Tg oocytes, revealing a critical role for aMTOC-associated AURKA in regulating spindle stability. Notably, spindle instability was associated with disrupted γ-tubulin and lack of the liquid-like meiotic spindle domain (LISD) in Tg oocytes. Analysis of this Tg model provides the first evidence that LISD assembly depends expressly on aMTOC-associated AURKA, and that Ran-mediated spindle formation ensues without the LISD. These data support that loss of aMTOC-associated AURKA and failure of LISD assembly contribute to error-prone meiotic division in PCNT-depleted oocytes, underscoring the essential role of aMTOCs for spindle stability.
Collapse
Affiliation(s)
- Xiaotian Wang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia,Athens, GA 30602, USA
| | - Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia,Athens, GA 30602, USA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia,Athens, GA 30602, USA
- Regenerative Biosciences Center (RBC), University of Georgia,Athens, GA 30602, USA
| | - Maria M. Viveiros
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia,Athens, GA 30602, USA
- Regenerative Biosciences Center (RBC), University of Georgia,Athens, GA 30602, USA
| |
Collapse
|
13
|
Yang L, Baumann C, De La Fuente R, Viveiros MM. Mechanisms underlying disruption of oocyte spindle stability by bisphenol compounds. Reproduction 2021; 159:383-396. [PMID: 31990668 DOI: 10.1530/rep-19-0494] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/17/2020] [Indexed: 12/17/2022]
Abstract
Accurate chromosome segregation relies on correct chromosome-microtubule interactions within a stable bipolar spindle apparatus. Thus, exposure to spindle disrupting compounds can impair meiotic division and genomic stability in oocytes. The endocrine disrupting activity of bisphenols such as bisphenol A (BPA) is well recognized, yet their damaging effects on spindle microtubules (MTs) is poorly understood. Here, we tested the effect(s) of acute exposure to BPA and bisphenol F (BPF) on assembled spindle stability in ovulated oocytes. Brief (4 h) exposure to increasing concentrations (5, 25, and 50 µg/mL) of BPA or BPF disrupted spindle organization in a dose-dependent manner, resulting in significantly shorter spindles with highly unfocused poles and fragmented pericentrin. The chromosomes remained congressed in an abnormally elongated metaphase-like configuration, yet normal end-on chromosome-MT attachments were reduced in BPF-treated oocytes. Live-cell imaging revealed a rapid onset of bisphenol-mediated spindle MT disruption that was reversed upon compound removal. Moreover, MT stability and regrowth were impaired in BPA-exposed oocytes, with few cold-stable MTs and formation of multipolar spindles upon MT regrowth. MT-associated kinesin-14 motor protein (HSET/KIFC1) labeling along the spindle was also lower in BPA-treated oocytes. Conversely, cold stable MTs and HSET labeling persisted after BPF exposure. Notably, inhibition of Aurora Kinase A limited bisphenol-mediated spindle pole widening, revealing a potential interaction. These results demonstrate rapid MT disrupting activity by bisphenols, which is highly detrimental to meiotic spindle stability and organization. Moreover, we identify an important link between these defects and altered distribution of key spindle associated factors as well as Aurora Kinase A activity.
Collapse
Affiliation(s)
- Luhan Yang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Rabindranth De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA.,Regenerative Biosciences Center (RBC), University of Georgia, Athens, Georgia, USA
| | - Maria M Viveiros
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA.,Regenerative Biosciences Center (RBC), University of Georgia, Athens, Georgia, USA
| |
Collapse
|
14
|
Wang X, Baumann C, De La Fuente R, Viveiros MM. CEP215 and AURKA regulate spindle pole focusing and aMTOC organization in mouse oocytes. Reproduction 2021; 159:261-274. [PMID: 31895686 DOI: 10.1530/rep-19-0263] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/02/2020] [Indexed: 01/28/2023]
Abstract
Acentriolar microtubule-organizing centers (aMTOCs) play a critical role in stable meiotic spindle assembly in oocytes, necessary for accurate chromosome segregation. Yet, there is a limited understanding of the essential regulatory components of these unique MTOCs. In somatic cells, CEP215 (Centrosomal Protein 215) serves as an important regulator of centrosome maturation and spindle organization. Here, we assessed whether it has a similar function in mouse oocytes. CEP215 was detected in oocyte lysates and specifically localized to aMTOCs throughout the progression of meiosis in a pericentrin-dependent manner. Super-resolution microscopy revealed CEP215 co-localization with pericentrin and a unique pore/ring-like structural organization of aMTOCs. Interestingly, inhibition of Aurora Kinase A in either MI or MII-stage oocytes resulted in a striking loss of the ring-like aMTOC organization and pronounced CEP215 clustering at spindle poles, as well as shorter spindles with highly focused poles. In vitro siRNA-mediated transcript knockdown effectively reduced CEP215 in approximately 85% of the oocytes. Maturation rates to MII were similar in the Cep215 siRNA and injected controls; however, a high percentage (~40%) of the Cep215-knockdown oocytes showed notable variations in spindle pole focusing. Surprisingly, pericentrin and γ-tubulin localization and fluorescence intensity at aMTOCs were unaltered in knockdown oocytes, contrasting with mitotic cells where CEP215 depletion reduced γ-tubulin at centrosomes. Our results demonstrate that CEP215 is a functional component of oocyte aMTOCs and participates in the regulation of meiotic spindle pole focusing. Moreover, these studies reveal a vital role for Aurora Kinase A activity in the maintenance of aMTOC organization in oocytes.
Collapse
Affiliation(s)
- Xiaotian Wang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Maria M Viveiros
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
15
|
Llonch S, Barragán M, Nieto P, Mallol A, Elosua‐Bayes M, Lorden P, Ruiz S, Zambelli F, Heyn H, Vassena R, Payer B. Single human oocyte transcriptome analysis reveals distinct maturation stage-dependent pathways impacted by age. Aging Cell 2021; 20:e13360. [PMID: 33908703 PMCID: PMC8135014 DOI: 10.1111/acel.13360] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Female fertility is inversely correlated with maternal age due to a depletion of the oocyte pool and a reduction in oocyte developmental competence. Few studies have addressed the effect of maternal age on the human mature oocyte (MII) transcriptome, which is established during oocyte growth and maturation, however, the pathways involved remain unclear. Here, we characterize and compare the transcriptomes of a large cohort of fully grown germinal vesicle stage (GV) and in vitro matured (IVM‐MII) oocytes from women of varying reproductive age. First, we identified two clusters of cells reflecting the oocyte maturation stage (GV and IVM‐MII) with 4445 and 324 putative marker genes, respectively. Furthermore, we identified genes for which transcript representation either progressively increased or decreased with age. Our results indicate that the transcriptome is more affected by age in IVM‐MII oocytes (1219 genes) than in GV oocytes (596 genes). In particular, we found that transcripts of genes involved in chromosome segregation and RNA splicing significantly increased representation with age, while genes related to mitochondrial activity showed a lower representation. Gene regulatory network analysis facilitated the identification of potential upstream master regulators of the genes involved in those biological functions. Our analysis suggests that advanced maternal age does not globally affect the oocyte transcriptome at GV or IVM‐MII stages. Nonetheless, hundreds of genes displayed altered transcript representation, particularly in IVM‐MII oocytes, which might contribute to the age‐related quality decline in human oocytes.
Collapse
Affiliation(s)
- Sílvia Llonch
- Centre for Genomic Regulation (CRG) The Barcelona Institute of Science and Technology Barcelona Spain
| | | | - Paula Nieto
- CNAG‐CRG Centre for Genomic Regulation (CRG) The Barcelona Institute of Science and Technology Barcelona Spain
| | - Anna Mallol
- Centre for Genomic Regulation (CRG) The Barcelona Institute of Science and Technology Barcelona Spain
| | - Marc Elosua‐Bayes
- CNAG‐CRG Centre for Genomic Regulation (CRG) The Barcelona Institute of Science and Technology Barcelona Spain
| | - Patricia Lorden
- CNAG‐CRG Centre for Genomic Regulation (CRG) The Barcelona Institute of Science and Technology Barcelona Spain
| | - Sara Ruiz
- CNAG‐CRG Centre for Genomic Regulation (CRG) The Barcelona Institute of Science and Technology Barcelona Spain
| | | | - Holger Heyn
- CNAG‐CRG Centre for Genomic Regulation (CRG) The Barcelona Institute of Science and Technology Barcelona Spain
| | | | - Bernhard Payer
- Centre for Genomic Regulation (CRG) The Barcelona Institute of Science and Technology Barcelona Spain
- Universitat Pompeu Fabra (UPF) Barcelona Spain
| |
Collapse
|
16
|
Blengini CS, Ibrahimian P, Vaskovicova M, Drutovic D, Solc P, Schindler K. Aurora kinase A is essential for meiosis in mouse oocytes. PLoS Genet 2021; 17:e1009327. [PMID: 33901174 PMCID: PMC8102010 DOI: 10.1371/journal.pgen.1009327] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/06/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
The Aurora protein kinases are well-established regulators of spindle building and chromosome segregation in mitotic and meiotic cells. In mouse oocytes, there is significant Aurora kinase A (AURKA) compensatory abilities when the other Aurora kinase homologs are deleted. Whether the other homologs, AURKB or AURKC can compensate for loss of AURKA is not known. Using a conditional mouse oocyte knockout model, we demonstrate that this compensation is not reciprocal because female oocyte-specific knockout mice are sterile, and their oocytes fail to complete meiosis I. In determining AURKA-specific functions, we demonstrate that its first meiotic requirement is to activate Polo-like kinase 1 at acentriolar microtubule organizing centers (aMTOCs; meiotic spindle poles). This activation induces fragmentation of the aMTOCs, a step essential for building a bipolar spindle. We also show that AURKA is required for regulating localization of TACC3, another protein required for spindle building. We conclude that AURKA has multiple functions essential to completing MI that are distinct from AURKB and AURKC.
Collapse
Affiliation(s)
- Cecilia S. Blengini
- Department of Genetics; Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- Human Genetics Institute of New Jersey; Piscataway, New Jersey, United States of America
| | - Patricia Ibrahimian
- Department of Genetics; Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Michaela Vaskovicova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - David Drutovic
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Petr Solc
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Karen Schindler
- Department of Genetics; Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- Human Genetics Institute of New Jersey; Piscataway, New Jersey, United States of America
| |
Collapse
|
17
|
Virnicchi G, Bora P, Gahurova L, Šušor A, Bruce AW. Wwc2 Is a Novel Cell Division Regulator During Preimplantation Mouse Embryo Lineage Formation and Oogenesis. Front Cell Dev Biol 2020; 8:857. [PMID: 33042987 PMCID: PMC7527741 DOI: 10.3389/fcell.2020.00857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
Formation of the hatching mouse blastocyst marks the end of preimplantation development, whereby previous cell cleavages culminate in the formation of three distinct cell lineages (trophectoderm, primitive endoderm and epiblast). We report that dysregulated expression of Wwc2, a genetic paralog of Kibra/Wwc1 (a known activator of Hippo-signaling, a key pathway during preimplantation development), is specifically associated with cell autonomous deficits in embryo cell number and cell division abnormalities. Division phenotypes are also observed during mouse oocyte meiotic maturation, as Wwc2 dysregulation blocks progression to the stage of meiosis II metaphase (MII) arrest and is associated with spindle defects and failed Aurora-A kinase (AURKA) activation. Oocyte and embryo cell division defects, each occurring in the absence of centrosomes, are fully reversible by expression of recombinant HA-epitope tagged WWC2, restoring activated oocyte AURKA levels. Additionally, clonal embryonic dysregulation implicates Wwc2 in maintaining the pluripotent epiblast lineage. Thus, Wwc2 is a novel regulator of meiotic and early mitotic cell divisions, and mouse blastocyst cell fate.
Collapse
Affiliation(s)
- Giorgio Virnicchi
- Laboratory of Early Mammalian Developmental Biology, Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Pablo Bora
- Laboratory of Early Mammalian Developmental Biology, Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Lenka Gahurova
- Laboratory of Early Mammalian Developmental Biology, Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czechia
| | - Andrej Šušor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czechia
| | - Alexander W. Bruce
- Laboratory of Early Mammalian Developmental Biology, Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
18
|
So C, Seres KB, Steyer AM, Mönnich E, Clift D, Pejkovska A, Möbius W, Schuh M. A liquid-like spindle domain promotes acentrosomal spindle assembly in mammalian oocytes. Science 2020; 364:364/6447/eaat9557. [PMID: 31249032 DOI: 10.1126/science.aat9557] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/02/2019] [Indexed: 12/22/2022]
Abstract
Mammalian oocytes segregate chromosomes with a microtubule spindle that lacks centrosomes, but the mechanisms by which acentrosomal spindles are organized and function are largely unclear. In this study, we identify a conserved subcellular structure in mammalian oocytes that forms by phase separation. This structure, which we term the liquid-like meiotic spindle domain (LISD), permeates the spindle poles and forms dynamic protrusions that extend well beyond the spindle. The LISD selectively concentrates multiple microtubule regulatory factors and allows them to diffuse rapidly within the spindle volume. Disruption of the LISD via different means disperses these factors and leads to severe spindle assembly defects. Our data suggest a model whereby the LISD promotes meiotic spindle assembly by serving as a reservoir that sequesters and mobilizes microtubule regulatory factors in proximity to spindle microtubules.
Collapse
Affiliation(s)
- Chun So
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - K Bianka Seres
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.,Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.,Bourn Hall Clinic, Cambridge CB23 2TN, UK
| | - Anna M Steyer
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.,Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany
| | - Eike Mönnich
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Dean Clift
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Anastasija Pejkovska
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.,Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany. .,Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
19
|
Drutovic D, Duan X, Li R, Kalab P, Solc P. RanGTP and importin β regulate meiosis I spindle assembly and function in mouse oocytes. EMBO J 2020; 39:e101689. [PMID: 31617608 PMCID: PMC6939199 DOI: 10.15252/embj.2019101689] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/21/2022] Open
Abstract
Homologous chromosome segregation during meiosis I (MI) in mammalian oocytes is carried out by the acentrosomal MI spindles. Whereas studies in human oocytes identified Ran GTPase as a crucial regulator of the MI spindle function, experiments in mouse oocytes questioned the generality of this notion. Here, we use live-cell imaging with fluorescent probes and Förster resonance energy transfer (FRET) biosensors to monitor the changes in Ran and importin β signaling induced by perturbations of Ran in mouse oocytes while examining the MI spindle dynamics. We show that unlike RanT24N employed in previous studies, a RanT24N, T42A double mutant inhibits RanGEF without perturbing cargo binding to importin β and disrupts MI spindle function in chromosome segregation. Roles of Ran and importin β in the coalescence of microtubule organizing centers (MTOCs) and MI spindle assembly are further supported by the use of the chemical inhibitor importazole, whose effects are partially rescued by the GTP hydrolysis-resistant RanQ69L mutant. These results indicate that RanGTP is essential for MI spindle assembly and function both in humans and mice.
Collapse
Affiliation(s)
- David Drutovic
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Xing Duan
- Department of Chemical and Biomolecular EngineeringWhiting School of EngineeringBaltimoreMDUSA
- Center for Cell DynamicsDepartment of Cell BiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Rong Li
- Department of Chemical and Biomolecular EngineeringWhiting School of EngineeringBaltimoreMDUSA
- Center for Cell DynamicsDepartment of Cell BiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Petr Kalab
- Department of Chemical and Biomolecular EngineeringWhiting School of EngineeringBaltimoreMDUSA
| | - Petr Solc
- Institute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| |
Collapse
|
20
|
Nevoral J, Landsmann L, Stiavnicka M, Hosek P, Moravec J, Prokesova S, Rimnacova H, Koutna E, Klein P, Hoskova K, Zalmanova T, Fenclova T, Petr J, Kralickova M. Epigenetic and non-epigenetic mode of SIRT1 action during oocyte meiosis progression. J Anim Sci Biotechnol 2019; 10:67. [PMID: 31413827 PMCID: PMC6688279 DOI: 10.1186/s40104-019-0372-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022] Open
Abstract
Background SIRT1 histone deacetylase acts on many epigenetic and non-epigenetic targets. It is thought that SIRT1 is involved in oocyte maturation; therefore, the importance of the ooplasmic SIRT1 pool for the further fate of mature oocytes has been strongly suggested. We hypothesised that SIRT1 plays the role of a signalling molecule in mature oocytes through selected epigenetic and non-epigenetic regulation. Results We observed SIRT1 re-localisation in mature oocytes and its association with spindle microtubules. In mature oocytes, SIRT1 distribution shows a spindle-like pattern, and spindle-specific SIRT1 action decreases α-tubulin acetylation. Based on the observation of the histone code in immature and mature oocytes, we suggest that SIRT1 is mostly predestined for an epigenetic mode of action in the germinal vesicles (GVs) of immature oocytes. Accordingly, BML-278-driven trimethylation of lysine K9 in histone H3 in mature oocytes is considered to be a result of GV epigenetic transformation. Conclusions Taken together, our observations point out the dual spatiotemporal SIRT1 action in oocytes, which can be readily switched from the epigenetic to non-epigenetic mode of action depending on the progress of meiosis. Electronic supplementary material The online version of this article (10.1186/s40104-019-0372-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jan Nevoral
- 1Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Pilsen, Czech Republic.,2Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic
| | - Lukas Landsmann
- 1Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Pilsen, Czech Republic.,3Faculty of Science, Charles University, Albertov 2038/6, 128 00 Prague, Czech Republic
| | - Miriam Stiavnicka
- 1Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Pilsen, Czech Republic
| | - Petr Hosek
- 1Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Pilsen, Czech Republic
| | - Jiri Moravec
- 1Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Pilsen, Czech Republic
| | - Sarka Prokesova
- 1Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Pilsen, Czech Republic.,4Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences in Prague, Kamycka 129, 165 00 Praha-Suchdol, Czech Republic.,5Institute of Animal Science, Pratelstvi 815/107, 104 00, Prague 10-Uhrineves, Czech Republic
| | - Hedvika Rimnacova
- 1Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Pilsen, Czech Republic
| | - Eliska Koutna
- 1Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Pilsen, Czech Republic.,4Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences in Prague, Kamycka 129, 165 00 Praha-Suchdol, Czech Republic
| | - Pavel Klein
- 1Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Pilsen, Czech Republic
| | - Kristyna Hoskova
- 5Institute of Animal Science, Pratelstvi 815/107, 104 00, Prague 10-Uhrineves, Czech Republic
| | - Tereza Zalmanova
- 5Institute of Animal Science, Pratelstvi 815/107, 104 00, Prague 10-Uhrineves, Czech Republic
| | - Tereza Fenclova
- 1Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Pilsen, Czech Republic
| | - Jaroslav Petr
- 5Institute of Animal Science, Pratelstvi 815/107, 104 00, Prague 10-Uhrineves, Czech Republic
| | - Milena Kralickova
- 1Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Pilsen, Czech Republic.,2Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, 301 66 Pilsen, Czech Republic
| |
Collapse
|
21
|
Jin Z, Suk N, Kim N. TP53BP1 regulates chromosome alignment and spindle bipolarity in mouse oocytes. Mol Reprod Dev 2019; 86:1126-1137. [DOI: 10.1002/mrd.23228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/01/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Zhe‐Long Jin
- Department of Animal SciencesChungbuk National UniversityCheongju Korea
| | - Namgoong Suk
- Department of Animal SciencesChungbuk National UniversityCheongju Korea
| | - Nam‐Hyung Kim
- Department of Animal SciencesChungbuk National UniversityCheongju Korea
| |
Collapse
|
22
|
Bury L, Coelho PA, Simeone A, Ferries S, Eyers CE, Eyers PA, Zernicka-Goetz M, Glover DM. Plk4 and Aurora A cooperate in the initiation of acentriolar spindle assembly in mammalian oocytes. J Cell Biol 2017; 216:3571-3590. [PMID: 28972102 PMCID: PMC5674873 DOI: 10.1083/jcb.201606077] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 06/27/2017] [Accepted: 08/09/2017] [Indexed: 01/03/2023] Open
Abstract
Establishing the bipolar spindle in mammalian oocytes after their prolonged arrest is crucial for meiotic fidelity and subsequent development. In contrast to somatic cells, the first meiotic spindle assembles in the absence of centriole-containing centrosomes. Ran-GTP can promote microtubule nucleation near chromatin, but additional unidentified factors are postulated for the activity of multiple acentriolar microtubule organizing centers in the oocyte. We now demonstrate that partially overlapping, nonredundant functions of Aurora A and Plk4 kinases contribute to initiate acentriolar meiosis I spindle formation. Loss of microtubule nucleation after simultaneous chemical inhibition of both kinases can be significantly rescued by drug-resistant Aurora A alone. Drug-resistant Plk4 can enhance Aurora A-mediated rescue, and, accordingly, Plk4 can phosphorylate and potentiate the activity of Aurora A in vitro. Both kinases function distinctly from Ran, which amplifies microtubule growth. We conclude that Aurora A and Plk4 are rate-limiting factors contributing to microtubule growth as the acentriolar oocyte resumes meiosis.
Collapse
Affiliation(s)
- Leah Bury
- Department of Genetics, University of Cambridge, Cambridge, England, UK
| | - Paula A Coelho
- Department of Genetics, University of Cambridge, Cambridge, England, UK
| | - Angela Simeone
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, England, UK
| | - Samantha Ferries
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, England, UK
| | - Claire E Eyers
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, England, UK
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, England, UK
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, England, UK
| | - David M Glover
- Department of Genetics, University of Cambridge, Cambridge, England, UK
| |
Collapse
|
23
|
The Translation of Cyclin B1 and B2 is Differentially Regulated during Mouse Oocyte Reentry into the Meiotic Cell Cycle. Sci Rep 2017; 7:14077. [PMID: 29074977 PMCID: PMC5658433 DOI: 10.1038/s41598-017-13688-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/29/2017] [Indexed: 01/15/2023] Open
Abstract
Control of protein turnover is critical for meiotic progression. Using RiboTag immunoprecipitation, RNA binding protein immunoprecipitation, and luciferase reporter assay, we investigated how rates of mRNA translation, protein synthesis and degradation contribute to the steady state level of Cyclin B1 and B2 in mouse oocytes. Ribosome loading onto Ccnb1 and Mos mRNAs increases during cell cycle reentry, well after germinal vesicle breakdown (GVBD). This is followed by the translation of reporters containing 3′ untranslated region of Mos or Ccnb1 and the accumulation of Mos and Cyclin B1 proteins. Conversely, ribosome loading onto Ccnb2 mRNA and Cyclin B2 protein level undergo minimal changes during meiotic reentry. Degradation rates of Cyclin B1 or B2 protein at the GV stage are comparable. The translational activation of Mos and Ccnb1, but not Ccnb2, mRNAs is dependent on the RNA binding protein CPEB1. Inhibition of Cdk1 activity, but not Aurora A kinase activity, prevents the translation of Mos or Ccnb1 reporters, suggesting that MPF is required for their translation in mouse oocytes. Conversely, Ccnb2 translation is insensitive to Cdk1 inhibition. Thus, the poised state that allows rapid meiotic reentry in mouse GV oocytes may be determined by the differential translational control of two Cyclins.
Collapse
|
24
|
Wang H, Choe MH, Lee IW, Namgoong S, Kim JS, Kim NH, Oh JS. CIP2A acts as a scaffold for CEP192-mediated microtubule organizing center assembly by recruiting Plk1 and aurora A during meiotic maturation. Development 2017; 144:3829-3839. [PMID: 28935709 DOI: 10.1242/dev.158584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/06/2017] [Indexed: 12/16/2023]
Abstract
In somatic cells spindle microtubules are nucleated from centrosomes that act as major microtubule organizing centers (MTOCs), whereas oocytes form meiotic spindles by assembling multiple acentriolar MTOCs without canonical centrosomes. Aurora A and Plk1 are required for these events, but the underlying mechanisms remain largely unknown. Here we show that CIP2A regulates MTOC organization by recruiting aurora A and Plk1 at spindle poles during meiotic maturation. CIP2A colocalized with pericentrin at spindle poles with a few distinct cytoplasmic foci. Although CIP2A has been identified as an endogenous inhibitor of protein phosphatase 2A (PP2A), overexpression of CIP2A had no effect on meiotic maturation. Depletion of CIP2A perturbed normal spindle organization and chromosome alignment by impairing MTOC organization. Importantly, CIP2A was reciprocally associated with CEP192, promoting recruitment of aurora A and Plk1 at MTOCs. CIP2A was phosphorylated by Plk1 at S904, which targets CIP2A to MTOCs and facilitates MTOC organization with CEP192. Our results suggest that CIP2A acts as a scaffold for CEP192-mediated MTOC assembly by recruiting Plk1 and aurora A during meiotic maturation in mouse oocytes.
Collapse
Affiliation(s)
- HaiYang Wang
- Department of Animal Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Min Ho Choe
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea
- Department of Life Sciences and Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea
| | - In-Won Lee
- Department of Animal Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Suk Namgoong
- Department of Animal Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Jae-Sung Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Jeong Su Oh
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
25
|
Nguyen AL, Schindler K. Specialize and Divide (Twice): Functions of Three Aurora Kinase Homologs in Mammalian Oocyte Meiotic Maturation. Trends Genet 2017; 33:349-363. [PMID: 28359584 DOI: 10.1016/j.tig.2017.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/18/2022]
Abstract
The aurora kinases (AURKs) comprise an evolutionarily conserved family of serine/threonine kinases involved in mitosis and meiosis. While most mitotic cells express two AURK isoforms (AURKA and AURKB), mammalian germ cells also express a third, AURKC. Although much is known about the functions of the kinases in mitosis, less is known about how the three isoforms function to coordinate meiosis. This review is aimed at describing what is known about the three isoforms in female meiosis, the similarities and differences between kinase functions, and speculates as to why mammalian germ cells require expression of three AURKs instead of two.
Collapse
Affiliation(s)
- Alexandra L Nguyen
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Karen Schindler
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
26
|
Radford SJ, Nguyen AL, Schindler K, McKim KS. The chromosomal basis of meiotic acentrosomal spindle assembly and function in oocytes. Chromosoma 2016; 126:351-364. [PMID: 27837282 DOI: 10.1007/s00412-016-0618-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 12/20/2022]
Abstract
Several aspects of meiosis are impacted by the absence of centrosomes in oocytes. Here, we review four aspects of meiosis I that are significantly affected by the absence of centrosomes in oocyte spindles. One, microtubules tend to assemble around the chromosomes. Two, the organization of these microtubules into a bipolar spindle is directed by the chromosomes. Three, chromosome bi-orientation and attachment to microtubules from the correct pole require modification of the mechanisms used in mitotic cells. Four, chromosome movement to the poles at anaphase cannot rely on polar anchoring of spindle microtubules by centrosomes. Overall, the chromosomes are more active participants during acentrosomal spindle assembly in oocytes, compared to mitotic and male meiotic divisions where centrosomes are present. The chromosomes are endowed with information that can direct the meiotic divisions and dictate their own behavior in oocytes. Processes beyond those known from mitosis appear to be required for their bi-orientation at meiosis I. As mitosis occurs without centrosomes in many systems other than oocytes, including all plants, the concepts discussed here may not be limited to oocytes. The study of meiosis in oocytes has revealed mechanisms that are operating in mitosis and will probably continue to do so.
Collapse
Affiliation(s)
- Sarah J Radford
- Waksman Institute, 190 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | | | - Karen Schindler
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Kim S McKim
- Waksman Institute, 190 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
27
|
Lee SY, Kim EY, Kim KH, Lee KA. Bcl2l10, a new Tpx2 binding partner, is a master regulator of Aurora kinase A in mouse oocytes. Cell Cycle 2016; 15:3296-3305. [PMID: 27753540 DOI: 10.1080/15384101.2016.1243630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Previously, we demonstrated that Bcl-2-like 10 (Bcl2l10) is associated with meiotic spindle assembly and that the gene that is most strongly down-regulated by Bcl2l10 RNAi is targeting protein for Xklp2 (Tpx2). Tpx2 is a well-known cofactor that controls the activity and localization of Aurora kinase A (Aurka) during mitotic spindle assembly. Therefore, this study was conducted (1) to identify the associations among Bcl2l10, Tpx2, and Aurka and (2) to understand how Bcl2l10 regulates meiotic spindle assembly in mouse oocytes. Bcl2l10, Tpx2, and Aurka co-localized on the meiotic spindles, and Bcl2l10 was present in the same complex with Tpx2. Tpx2 and Aurka expression decreased whereas phospho-Aurka increased in Bcl2l10 RNAi-treated oocytes. Counterbalancing changes in the levels of these 2 activators, Tpx2 and phospho-Aurka, resulted in decreased Aurka catalytic activity after Bcl2l10 RNAi treatment. Bcl2l10 RNAi decreased the expression of microtubule organizing center (MTOC)-related proteins, disturbed MTOC formation and disrupted meiotic spindle assembly. Our data demonstrate that Bcl2l10 is a binding partner of Tpx2 and a new regulator of the complex controlling the organization of microtubules and MTOC biogenesis in meiotic spindle assembly. The discovery of Bcl2l10 as a new effector of Aurka suggests that Bcl2l10 may have diverse functions in mitotic cells.
Collapse
Affiliation(s)
- Su-Yeon Lee
- a Institute of Reproductive Medicine , Department of Biomedical Science , College of Life Science, CHA University , Pan-Gyo , Korea
| | - Eun-Young Kim
- a Institute of Reproductive Medicine , Department of Biomedical Science , College of Life Science, CHA University , Pan-Gyo , Korea
| | - Kyeoung-Hwa Kim
- a Institute of Reproductive Medicine , Department of Biomedical Science , College of Life Science, CHA University , Pan-Gyo , Korea
| | - Kyung-Ah Lee
- a Institute of Reproductive Medicine , Department of Biomedical Science , College of Life Science, CHA University , Pan-Gyo , Korea
| |
Collapse
|
28
|
Balboula AZ, Nguyen AL, Gentilello AS, Quartuccio SM, Drutovic D, Solc P, Schindler K. Haspin kinase regulates microtubule-organizing center clustering and stability through Aurora kinase C in mouse oocytes. J Cell Sci 2016; 129:3648-3660. [PMID: 27562071 DOI: 10.1242/jcs.189340] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/17/2016] [Indexed: 12/16/2022] Open
Abstract
Meiotic oocytes lack classic centrosomes and, therefore, bipolar spindle assembly depends on clustering of acentriolar microtubule-organizing centers (MTOCs) into two poles. However, the molecular mechanism regulating MTOC assembly into two poles is not fully understood. The kinase haspin (also known as GSG2) is required to regulate Aurora kinase C (AURKC) localization at chromosomes during meiosis I. Here, we show that inhibition of haspin perturbed MTOC clustering into two poles and the stability of the clustered MTOCs. Furthermore, we show that AURKC localizes to MTOCs in mouse oocytes. Inhibition of haspin perturbed the localization of AURKC at MTOCs, and overexpression of AURKC rescued the MTOC-clustering defects in haspin-inhibited oocytes. Taken together, our data uncover a role for haspin as a regulator of bipolar spindle assembly by regulating AURKC function at acentriolar MTOCs in oocytes.
Collapse
Affiliation(s)
- Ahmed Z Balboula
- Department of Genetics, 145 Bevier Road, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8082, USA Theriogenology Department, Faculty of Veterinary Medicine, Mansoura University, 60 Elgomhoria Street, 35516 Mansoura, Egypt
| | - Alexandra L Nguyen
- Department of Genetics, 145 Bevier Road, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8082, USA
| | - Amanda S Gentilello
- Department of Genetics, 145 Bevier Road, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8082, USA
| | - Suzanne M Quartuccio
- Department of Genetics, 145 Bevier Road, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8082, USA
| | - David Drutovic
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Petr Solc
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Karen Schindler
- Department of Genetics, 145 Bevier Road, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8082, USA
| |
Collapse
|
29
|
Wei H, Wang Q, DU J, Li X, Zhang N, Cao Y, Ma W. Unique subcellular distribution of RPB1 with a phosphorylated C-terminal domain (CTD) in mouse oocytes during meiotic division and its relationship with chromosome separation. J Reprod Dev 2015; 61:541-8. [PMID: 26346254 PMCID: PMC4685220 DOI: 10.1262/jrd.2015-051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Polymerase (RNA) II (DNA directed) polypeptide A (RPB1) is the largest subunit of RNA polymerase II
(RNAPII), and phosphorylation of its C-terminal domain (CTD) is required for transcription initiation,
elongation and RNA processing. Little is known about the CTD phosphorylation pattern and potential function
during cell division when transcription is silenced. In this study, we assessed the protein expression and
subcellular distribution of RPB1 during mouse oocyte meiotic division. Western blot analysis revealed that the
RPB1 CTD was highly phosphorylated on Ser2 (pRPB1Ser2), Ser5 (pRPB1Ser5) and Ser7
(pRPB1Ser7). High and stable expression of pRPB1Ser2 and pRPB1Ser5 was
detected from germinal vesicle (GV) to Metaphase II (MII) stage. In contrast, pRPB1Ser7 only
emerged after germinal vesicle breakdown (GVBD) and gradually increased to its peak level at metaphase I (MI)
and MII. Immunofluorescence demonstrated that pRPB1Ser2, pRPB1Ser5 and
pRPB1Ser7 were pronouncedly aggregated within the nucleus of GV oocytes with a non-surrounded
nucleolus (NSN) but very faintly labeled in oocytes with a surrounded nucleolus (SN). After meiotic
resumption, pRPB1Ser2 was again detected at spindle poles and co-localized with key microtubule
organizing center (MTOC) components, pericentrin and γ-tubulin. pRPB1Ser5 and pRPB1Ser7
were assembled as filamentous aggregates and co-localized with microtubules throughout the spindle structure,
responding to spindle-disturbing drugs, nocodazole or taxol, in pattern strongly similar to microtubules.
pRPB1Ser2 and pRPB1Ser5 were constantly localized on chromosomes, with a relatively
high concentration in centromere areas. Taken together, our data suggest that the CTD is highly phosphorylated
and may be required for accurate chromosome segregation in mouse oocytes during meiosis.
Collapse
Affiliation(s)
- HaoJie Wei
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
SummaryAurora-A kinase (AURKA), a member of the serine/threonine protein kinase family, is involved in multiple steps of mitotic progression. It regulates centrosome maturation, mitotic spindle formation, and cytokinesis. While studied extensively in somatic cells, little information is known about AURKA in the early cleavage mouse embryo with respect to acentrosomal spindle assembly. In vitro experiments in which AURKA was inactivated with specific inhibitor MLN8237 during the early stages of embryogenesis documented gradual arrest in the cleavage ability of the mouse embryo. In the AURKA-inhibited 1-cell embryos, spindle formation and anaphase onset were delayed and chromosome segregation was defective. AURKA inhibition increased apoptosis during early embryonic development. In conclusion these data suggest that AURKA is essential for the correct chromosome segregation in the first mitosis as a prerequisite for normal later development after first cleavage.
Collapse
|
31
|
Chmátal L, Yang K, Schultz RM, Lampson MA. Spatial Regulation of Kinetochore Microtubule Attachments by Destabilization at Spindle Poles in Meiosis I. Curr Biol 2015; 25:1835-41. [PMID: 26166779 DOI: 10.1016/j.cub.2015.05.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 05/08/2015] [Accepted: 05/08/2015] [Indexed: 12/27/2022]
Abstract
To ensure accurate chromosome segregation in cell division, erroneous kinetochore-microtubule (MT) attachments are recognized and destabilized . Improper attachments typically lack tension between kinetochores and are positioned off-center on the spindle. Low tension is a widely accepted mechanism for recognizing errors , but whether chromosome position regulates MT attachments has been difficult to test. We exploited a meiotic system in which kinetochores attached to opposite spindle poles differ in their interactions with MTs and therefore position and tension can be uncoupled. In this system, homologous chromosomes are positioned off-center on the spindle in oocytes in meiosis I, while under normal tension, as a result of crossing mouse strains with different centromere strengths, manifested by unequal kinetochore protein levels. We show that proximity to spindle poles destabilizes kinetochore-MTs and that stable attachments are restored by inhibition of Aurora A kinase at spindle poles. During the correction of attachment errors, kinetochore-MTs detach near spindle poles to allow formation of correct attachments. We propose that chromosome position on the spindle provides spatial cues for the fidelity of cell division.
Collapse
Affiliation(s)
- Lukáš Chmátal
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA
| | - Karren Yang
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA.
| | - Michael A Lampson
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA.
| |
Collapse
|
32
|
Solc P, Kitajima TS, Yoshida S, Brzakova A, Kaido M, Baran V, Mayer A, Samalova P, Motlik J, Ellenberg J. Multiple requirements of PLK1 during mouse oocyte maturation. PLoS One 2015; 10:e0116783. [PMID: 25658810 PMCID: PMC4319955 DOI: 10.1371/journal.pone.0116783] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/12/2014] [Indexed: 11/19/2022] Open
Abstract
Polo-like kinase 1 (PLK1) orchestrates multiple events of cell division. Although PLK1 function has been intensively studied in centriole-containing and rapidly cycling somatic cells, much less is known about its function in the meiotic divisions of mammalian oocytes, which arrest for a long period of time in prophase before meiotic resumption and lack centrioles for spindle assembly. Here, using specific small molecule inhibition combined with live mouse oocyte imaging, we comprehensively characterize meiotic PLK1's functions. We show that PLK1 becomes activated at meiotic resumption on microtubule organizing centers (MTOCs) and later at kinetochores. PLK1 is required for efficient meiotic resumption by promoting nuclear envelope breakdown. PLK1 is also needed to recruit centrosomal proteins to acentriolar MTOCs to promote normal spindle formation, as well as for stable kinetochore-microtubule attachment. Consequently, PLK1 inhibition leads to metaphase I arrest with misaligned chromosomes activating the spindle assembly checkpoint (SAC). Unlike in mitosis, the metaphase I arrest is not bypassed by the inactivation of the SAC. We show that PLK1 is required for the full activation of the anaphase promoting complex/cyclosome (APC/C) by promoting the degradation of the APC/C inhibitor EMI1 and is therefore essential for entry into anaphase I. Moreover, our data suggest that PLK1 is required for proper chromosome segregation and the maintenance of chromosome condensation during the meiosis I-II transition, independently of the APC/C. Thus, our results define the meiotic roles of PLK1 in oocytes and reveal interesting differential requirements of PLK1 between mitosis and oocyte meiosis in mammals.
Collapse
Affiliation(s)
- Petr Solc
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Tomoya S. Kitajima
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Shuhei Yoshida
- Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Adela Brzakova
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Masako Kaido
- Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, Kobe, Japan
| | | | - Alexandra Mayer
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Pavlina Samalova
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
33
|
Komrskova P, Susor A, Malik R, Prochazkova B, Liskova L, Supolikova J, Hladky S, Kubelka M. Aurora kinase A is not involved in CPEB1 phosphorylation and cyclin B1 mRNA polyadenylation during meiotic maturation of porcine oocytes. PLoS One 2014; 9:e101222. [PMID: 24983972 PMCID: PMC4077738 DOI: 10.1371/journal.pone.0101222] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/04/2014] [Indexed: 11/18/2022] Open
Abstract
Regulation of mRNA translation by cytoplasmic polyadenylation is known to be important for oocyte maturation and further development. This process is generally controlled by phosphorylation of cytoplasmic polyadenylation element binding protein 1 (CPEB1). The aim of this study is to determine the role of Aurora kinase A in CPEB1 phosphorylation and the consequent CPEB1-dependent polyadenylation of maternal mRNAs during mammalian oocyte meiosis. For this purpose, we specifically inhibited Aurora kinase A with MLN8237 during meiotic maturation of porcine oocytes. Using poly(A)-test PCR method, we monitored the effect of Aurora kinase A inhibition on poly(A)-tail extension of long and short cyclin B1 encoding mRNAs as markers of CPEB1-dependent cytoplasmic polyadenylation. Our results show that inhibition of Aurora kinase A activity impairs neither cyclin B1 mRNA polyadenylation nor its translation and that Aurora kinase A is unlikely to be involved in CPEB1 activating phosphorylation.
Collapse
Affiliation(s)
- Pavla Komrskova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Andrej Susor
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Radek Malik
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Barbora Prochazkova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Lucie Liskova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Jaroslava Supolikova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Stepan Hladky
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Michal Kubelka
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
- * E-mail:
| |
Collapse
|
34
|
Wang L, Lu A, Zhou HX, Sun R, Zhao J, Zhou CJ, Shen JP, Wu SN, Liang CG. Casein kinase 1 alpha regulates chromosome congression and separation during mouse oocyte meiotic maturation and early embryo development. PLoS One 2013; 8:e63173. [PMID: 23690993 PMCID: PMC3655170 DOI: 10.1371/journal.pone.0063173] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/28/2013] [Indexed: 11/18/2022] Open
Abstract
Casein kinase I alpha (CK1α) is a member of serine/threonine protein kinase, generally present in all eukaryotes. In mammals, CK1α regulates the transition from interphase to metaphase in mitosis. However, little is known about its role in meiosis. Here we examined Ck1α mRNA and protein expression, as well as its subcellular localization in mouse oocytes from germinal vesicle to the late 1-cell stage. Our results showed that the expression level of CK1α was increased in metaphase. Immunostaining results showed that CK1α colocalized with condensed chromosomes during oocyte meiotic maturation and early embryo development. We used the loss-of-function approach by employing CK1α specific morpholino injection to block the function of CK1α. This functional blocking leads to failure of polar body 1 (PB1) extrusion, chromosome misalignment and MII plate incrassation. We further found that D4476, a specific and efficient CK1 inhibitor, decreased the rate of PB1 extrusion. Moreover, D4476 resulted in giant polar body extrusion, oocyte pro-MI arrest, chromosome congression failure and impairment of embryo developmental potential. In addition, we employed pyrvinium pamoate (PP), an allosteric activator of CK1α, to enhance CK1α activity in oocytes. Supplementation of PP induced oocyte meiotic maturation failure, severe congression abnormalities and misalignment of chromosomes. Taken together, our study for the first time demonstrates that CK1α is required for chromosome alignment and segregation during oocyte meiotic maturation and early embryo development.
Collapse
Affiliation(s)
- Lu Wang
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Angeleem Lu
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Hong-Xia Zhou
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Ran Sun
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Jie Zhao
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Cheng-Jie Zhou
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Jiang-Peng Shen
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Sha-Na Wu
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Cheng-Guang Liang
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
- * E-mail:
| |
Collapse
|
35
|
De S, Kline D. Evidence for the requirement of 14-3-3eta (YWHAH) in meiotic spindle assembly during mouse oocyte maturation. BMC DEVELOPMENTAL BIOLOGY 2013; 13:10. [PMID: 23547714 PMCID: PMC3620909 DOI: 10.1186/1471-213x-13-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/13/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND The 14-3-3 (YWHA) proteins are central mediators in various cellular signaling pathways regulating development and growth, including cell cycle regulation. We previously reported that all seven mammalian 14-3-3 isoforms are expressed in mouse oocytes and eggs and that, 14-3-3η (YWHAH) accumulates and co-localizes in the region of meiotic spindle in mouse eggs matured in vivo. Therefore, we investigated the role of 14-3-3η in spindle formation during mouse oocyte maturation. RESULTS Examination of oocytes matured in vitro demonstrated that 14-3-3η accumulates in both meiosis I and II spindles. To explore if 14-3-3η interacts directly with α-tubulin in meiotic spindles, we performed an in situ proximity ligation assay that can detect intracellular protein-protein interactions at the single molecule level and which allows visualization of the actual interaction sites. This assay revealed a marked interaction between 14-3-3η and α-tubulin at the metaphase II spindle. To demonstrate a functional role for 14-3-3η in oocyte maturation, mouse oocytes were microinjected with a translation-blocking morpholino oligonucleotide against 14-3-3η mRNA to reduce 14-3-3η protein synthesis during oocyte maturation. Meiotic spindles in those cells were examined by immunofluorescence staining of 14-3-3η and α-tubulin along with observation of DNA. In 76% of cells injected with the morpholino, meiotic spindles were found to be deformed or absent and there was reduced or no accumulation of 14-3-3η in the spindle region. Those cells contained clumped chromosomes, with no polar body formation. Immunofluorescence staining of 14-3-3η and α-tubulin in control eggs matured in vitro from uninjected oocytes and oocytes microinjected with the ineffective, inverted form of a morpholino against 14-3-3η, a morpholino against 14-3-3γ, or deionized water showed normal, bipolar spindles. CONCLUSIONS The results indicate that 14-3-3η is essential for normal meiotic spindle formation during in vitro maturation of mouse oocytes, in part by interacting with α-tubulin, to regulate the assembly of microtubules. These data add to our understanding of the roles of 14-3-3 proteins in mouse oocyte maturation and mammalian reproduction.
Collapse
Affiliation(s)
- Santanu De
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | | |
Collapse
|