1
|
Xu Y, Chen W, Wu X, Zhao K, Liu C, Zhang H. The Role of Cells and Cytokines in Male Infertility Induced by Orchitis. World J Mens Health 2024; 42:681-693. [PMID: 38449458 PMCID: PMC11439807 DOI: 10.5534/wjmh.230270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/05/2023] [Accepted: 11/19/2023] [Indexed: 03/08/2024] Open
Abstract
Recent studies on male infertility reveal a growing worry: more infertile men are dealing with inflammation in the testis. Analyzing testicular biopsies from infertile men highlights a significant presence of inflammation. This connection, supported by clinical and pathological evidence, emphasizes that testicular inflammation hampers sperm production, leading to lasting declines in sperm count and quality. However, the exact reasons behind male infertility due to orchitis, a type of testicular inflammation, are still uncertain. Understanding these fundamental aspects of molecular signals and cellular mechanisms in testicular inflammation is crucial. Our review delves into recent literature with a dual objective: elucidating potential mechanisms involving immune cells, non-immune cells, and cytokines that link orchitis to male infertility, while also paving the way for precise interventions and solutions to address the challenges of male infertility.
Collapse
Affiliation(s)
- Ying Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanyi Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Wu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
CXADR: From an Essential Structural Component to a Vital Signaling Mediator in Spermatogenesis. Int J Mol Sci 2023; 24:ijms24021288. [PMID: 36674801 PMCID: PMC9865082 DOI: 10.3390/ijms24021288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Canonical coxsackievirus and adenovirus receptor (CXADR) is a transmembrane component of cell junctions that is crucial for cardiac and testicular functions via its homophilic and heterophilic interaction. CXADR is expressed in both Sertoli cells and germ cells and is localized mainly at the interface between Sertoli-Sertoli cells and Sertoli-germ cells. Knockout of CXADR in mouse Sertoli cells specifically impairs male reproductive functions, including a compromised blood-testis barrier, apoptosis of germ cells, and premature loss of spermatids. Apart from serving as an important component for cell junctions, recent progress has showed the potential roles of CXADR as a signaling mediator in spermatogenesis. This review summarizes current research progress related to the regulation and role of CXADR in spermatogenesis as well as in pathological conditions. We hope this review provides some future directions and a blueprint to promote the further study on the roles of CXADR.
Collapse
|
3
|
Coxsackievirus and Adenovirus Receptor (CXADR): Recent Findings and Its Role and Regulation in Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:95-109. [PMID: 34453733 DOI: 10.1007/978-3-030-77779-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Coxsackievirus and adenovirus receptor (CXADR) belongs to immunoglobulin superfamily of cell adhesion molecules. It expresses in most tissues, but displays unique and indispensable functions in some tissues such as heart and testis. CXADR is a multifunctional protein that can serve as a viral receptor, a junction structural protein and a signalling molecule. Thus, it exerts a wide range of functions such as facilitating leukocyte transmigration, regulating barrier function and cell adhesion, promoting EMT transition, and mediating spermatogenesis. This review aims to provide an overview and highlights some recent findings on CXADR in the field with emphasis on studies in the testis, upon which future studies can be designed to delineate the roles and regulation of CXADR in spermatogenesis.
Collapse
|
4
|
|
5
|
Abstract
The purpose of this review is to describe the endocrine and local testicular factors that contribute to the regulation of the blood-testis barrier (BTB), using information gained from in vivo and in vitro models of BTB formation during/after puberty, and from the maintenance of BTB function during adulthood. In vivo the BTB, in part comprised of tight junctions between adjacent somatic Sertoli cells, compartmentalizes meiotic spermatocytes and post-meiotic spermatids away from the vasculature, and therefore prevents autoantibody production by the immune system against these immunogenic germ cells. This adluminal compartment also features a unique biochemical milieu required for the completion of germ cell development. During the normal process of spermatogenesis, earlier germ cells continually cross into the adluminal compartment, but the regulatory mechanisms and changes in junctional proteins that allow this translocation step without causing a 'leak' remain poorly understood. Recent data describing the roles of FSH and androgen on the regulation of Sertoli cell tight junctions and tight junction proteins will be discussed, followed by an examination of the role of paracrine factors, including members of the TGFβ superfamily (TGFβ3, activin A) and retinoid signalling, as potential mediators of junction assembly and disassembly during the translocation process.
Collapse
Affiliation(s)
- Peter G Stanton
- Hudson Institute of Medical Research, Clayton, Victoria, Australia; Dept. of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
6
|
Hodik M, Anagandula M, Fuxe J, Krogvold L, Dahl-Jørgensen K, Hyöty H, Sarmiento L, Frisk G. Coxsackie-adenovirus receptor expression is enhanced in pancreas from patients with type 1 diabetes. BMJ Open Diabetes Res Care 2016; 4:e000219. [PMID: 27933184 PMCID: PMC5129002 DOI: 10.1136/bmjdrc-2016-000219] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/08/2016] [Accepted: 07/09/2016] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES One of the theories connecting enterovirus (EV) infection of human islets with type 1 diabetes (T1D) is the development of a fertile field in the islets. This implies induction of appropriate proteins for the viral replication such as the coxsackie-adenovirus receptor (CAR). The aim of this study was to investigate to what extent CAR is expressed in human islets of Langerhans, and what conditions that would change the expression. DESIGN Immunohistochemistry for CAR was performed on paraffin-embedded pancreatic tissue from patients with T1D (n=9 recent onset T1D, n=4 long-standing T1D), islet autoantibody-positive individuals (n=14) and non-diabetic controls (n=24) individuals. The expression of CAR was also examined by reverse transcription PCR on microdissected islets (n=5), exocrine tissue (n=5) and on explanted islets infected with EV or exposed to chemokines produced by EV-infected islet cells. RESULTS An increased frequency of patients with T1D and autoantibody-positive individuals expressed CAR in the pancreas (p<0.039). CAR staining was detected more frequently in pancreatic islets from patients with T1D and autoantibody-positive subjects (15/27) compared with (6/24) non-diabetic controls (p<0.033). Also in explanted islets cultured in UV-treated culture medium from coxsackievirus B (CBV)-1-infected islets, the expression of the CAR gene was increased compared with controls. Laser microdissection of pancreatic tissue revealed that CAR expression was 10-fold higher in endocrine compared with exocrine cells of the pancreas. CAR was also expressed in explanted islets and the expression level decreased with time in culture. CBV-1 infection of explanted islets clearly decreased the expression of CAR (p<0.05). In contrast, infection with echovirus 6 did not affect the expression of CAR. CONCLUSIONS CAR is expressed in pancreatic islets of patients with T1D and the expression level of CAR is increased in explanted islets exposed to proinflammatory cytokines/chemokines produced by infected islets. T1D is associated with increased levels of certain chemokines/cytokines in the islets and this might be the mechanism behind the increased expression of CAR in TID islets.
Collapse
Affiliation(s)
- M Hodik
- Department of Immunology, Genetics and Pathology , Uppsala University, The Rudbeck Laboratory , Uppsala, Uppland , Sweden
| | - M Anagandula
- Department of Immunology, Genetics and Pathology , Uppsala University, The Rudbeck Laboratory , Uppsala, Uppland , Sweden
| | - J Fuxe
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - L Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - K Dahl-Jørgensen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - H Hyöty
- Department of Virology, University of Tampere, Tampere, Finland; FimlabLaboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - L Sarmiento
- Autoimmunity Unit, Department of Clinical Sciences , Skåne University Hospital, Lund University , Malmo , Sweden
| | - G Frisk
- Department of Immunology, Genetics and Pathology , Uppsala University, The Rudbeck Laboratory , Uppsala, Uppland , Sweden
| |
Collapse
|
7
|
Loustalot F, Kremer EJ, Salinas S. Membrane Dynamics and Signaling of the Coxsackievirus and Adenovirus Receptor. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 322:331-62. [PMID: 26940522 DOI: 10.1016/bs.ircmb.2015.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The coxsackievirus and adenovirus receptor (CAR) belongs to the immunoglobulin superfamily and acts as a receptor for some adenovirus types and group B coxsackieviruses. Its role is best described in epithelia where CAR participates to tight junction integrity and maintenance. Recently, several studies aimed to characterize its potential interaction with intracellular signaling pathways and highlighted several features linking CAR to gene expression. In addition, the molecular mechanisms leading to CAR-specific membrane targeting via the secretory pathway in polarized cells and its internalization are starting to be unraveled. This chapter discusses the interaction between membrane dynamics, intracellular trafficking, and signaling of CAR.
Collapse
Affiliation(s)
- Fabien Loustalot
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Montpellier, France
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Montpellier, France.
| | - Sara Salinas
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Montpellier, France.
| |
Collapse
|
8
|
Redgrove KA, McLaughlin EA. The Role of the Immune Response in Chlamydia trachomatis Infection of the Male Genital Tract: A Double-Edged Sword. Front Immunol 2014; 5:534. [PMID: 25386180 PMCID: PMC4209867 DOI: 10.3389/fimmu.2014.00534] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/09/2014] [Indexed: 01/16/2023] Open
Abstract
Chlamydia trachomatis (CT) is the most prevalent bacterial sexually transmitted infection in the world, with more than 100 million cases reported annually. While there have been extensive studies into the adverse effects that CT infection has on the female genital tract, and on the subsequent ability of these women to conceive, studies into the consequences on male fertility have been limited and controversial. This is in part due to the asymptomatic nature of the infection, where it is estimated that 50% of men with Chlamydia fail to show any symptoms. It is accepted, however, that acute and/or persistent CT infection is the causative agent for conditions such as urethritis, epididymitis, epididymo-orchitis, and potentially prostatitis. As with most infections, the immune system plays a fundamental role in the body’s attempts to eradicate the infection. The first and most important immune response to Chlamydia infection is a local one, whereby immune cells such as leukocytes are recruited to the site of infections, and subsequently secrete pro-inflammatory cytokines and chemokines such as interferon gamma. Immune cells also work to initiate and potentiate chronic inflammation through the production of reactive oxygen species (ROS), and the release of molecules with degradative properties including defensins, elastase, collagenase, cathespins, and lysozyme. This long-term inflammation can lead to cell proliferation (a possible precursor to cancer), tissue remodeling, and scarring, as well as being linked to the onset of autoimmune responses in genetically disposed individuals. This review will focus on the ability of the immune system to recognize and clear acute and persistent chlamydial infections in the male genital tract, and on the paradoxical damage that chronic inflammation resulting from the infection can cause on the reproductive health of the individual.
Collapse
Affiliation(s)
- Kate A Redgrove
- Priority Research Centre in Reproductive Biology and Chemical Biology, University of Newcastle , Callaghan, NSW , Australia ; School of Environmental and Life Science, University of Newcastle , Callaghan, NSW , Australia
| | - Eileen A McLaughlin
- Priority Research Centre in Reproductive Biology and Chemical Biology, University of Newcastle , Callaghan, NSW , Australia ; School of Environmental and Life Science, University of Newcastle , Callaghan, NSW , Australia
| |
Collapse
|