1
|
Park S, Myeong IS, Wee G, Kim E. Industrialization possibilities of purified pig sperm hyaluronidase. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:1205-1213. [PMID: 38616879 PMCID: PMC11007301 DOI: 10.5187/jast.2023.e53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 04/16/2024]
Abstract
The goals of the present study were to develop a simple method for obtain highly purified pig sperm hyaluronidase (pHyase) and to assess its activity, function, and safety. In mammals, sperm-specific glycophosphatidylinositol (GPI)-anchored Hyase assists sperm penetration through the cumulus mass surrounding the egg and aids in the dispersal of the cumulus-oocyte complex. Recently, Purified bovine sperm hyaluronidase (bHyase) has been shown to enhance therapeutic drug transport by breaking down the hyaluronan barrier to the lymphatic and capillary vessels, thereby facilitating tissue absorption. Commercially available Hyase is typically isolated from bovine or ovine; which have several disadvantages, including the risk of bovine spongiform encephalopathy, low homology with human Hyase, and the requirement for relatively complex isolation procedures. This study successfully isolated highly purified pHyase in only two steps, using ammonium sulfate precipitation and fast protein liquid chromatography. The isolated Hyase had activity equal to that of commercial bHyase, facilitated in vitro fertilization, and effectively dissolved high molecule hyaluronic acid. This simple, effective isolation method could improve the availability of pHyase for research and clinical applications.
Collapse
Affiliation(s)
- Soojin Park
- College of Pharmacy, Catholic University
of Daegu, Gyeongsan 38430, Korea
| | - In-Soo Myeong
- College of Pharmacy, Catholic University
of Daegu, Gyeongsan 38430, Korea
| | - Gabbine Wee
- Laboratory Animal Center, Daegu-Gyeongbuk
Medical Innovation Foundation (DGMIF), Daegu 41061,
Korea
| | - Ekyune Kim
- College of Pharmacy, Catholic University
of Daegu, Gyeongsan 38430, Korea
| |
Collapse
|
2
|
Li KL, Nakashima K, Hisata K, Satoh N. Expression and possible functions of a horizontally transferred glycosyl hydrolase gene, GH6-1, in Ciona embryogenesis. EvoDevo 2023; 14:11. [PMID: 37434168 DOI: 10.1186/s13227-023-00215-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The Tunicata or Urochordata is the only animal group with the ability to synthesize cellulose directly and cellulose is a component of the tunic that covers the entire tunicate body. The genome of Ciona intestinalis type A contains a cellulose synthase gene, CesA, that it acquired via an ancient, horizontal gene transfer. CesA is expressed in embryonic epidermal cells and functions in cellulose production. Ciona CesA is composed of both a glycosyltransferase domain, GT2, and a glycosyl hydrolase domain, GH6, which shows a mutation at a key position and seems functionless. Interestingly, the Ciona genome contains a glycosyl hydrolase gene, GH6-1, in which the GH6 domain seems intact. This suggests expression and possible functions of GH6-1 during Ciona embryogenesis. Is GH6-1 expressed during embryogenesis? If so, in what tissues is the gene expressed? Does GH6-1 serve a function? If so, what is it? Answers to these questions may advance our understanding of evolution of this unique animal group. RESULTS Quantitative reverse transcription PCR and in situ hybridization revealed that GH6-1 is expressed in epidermis of tailbud embryos and in early swimming larvae, a pattern similar to that of CesA. Expression is downregulated at later stages and becomes undetectable in metamorphosed juveniles. The GH6-1 expression level is higher in the anterior-trunk region and caudal-tip regions of late embryos. Single-cell RNA sequencing analysis of the late tailbud stage showed that cells of three clusters with epidermal identity express GH6-1, and that some of them co-express CesA. TALEN-mediated genome editing was used to generate GH6-1 knockout Ciona larvae. Around half of TALEN-electroporated larvae showed abnormal development of adhesive papillae and altered distribution of surface cellulose. In addition, three-fourths of TALEN-electroporated animals failed to complete larval metamorphosis. CONCLUSIONS This study showed that tunicate GH6-1, a gene that originated by horizontal gene transfer of a prokaryote gene, is recruited into the ascidian genome, and that it is expressed and functions in epidermal cells of ascidian embryos. Although further research is required, this observation demonstrates that both CesA and GH6-1 are involved in tunicate cellulose metabolism, impacting tunicate morphology and ecology.
Collapse
Affiliation(s)
- Kun-Lung Li
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei City, 115, Taiwan.
| | - Keisuke Nakashima
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| |
Collapse
|
3
|
Soria-Tiedemann M, Michel G, Urban I, Aldrovandi M, O’Donnell VB, Stehling S, Kuhn H, Borchert A. Unbalanced Expression of Glutathione Peroxidase 4 and Arachidonate 15-Lipoxygenase Affects Acrosome Reaction and In Vitro Fertilization. Int J Mol Sci 2022; 23:ijms23179907. [PMID: 36077303 PMCID: PMC9456195 DOI: 10.3390/ijms23179907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 11/25/2022] Open
Abstract
Glutathione peroxidase 4 (Gpx4) and arachidonic acid 15 lipoxygenase (Alox15) are counterplayers in oxidative lipid metabolism and both enzymes have been implicated in spermatogenesis. However, the roles of the two proteins in acrosomal exocytosis have not been explored in detail. Here we characterized Gpx4 distribution in mouse sperm and detected the enzyme not only in the midpiece of the resting sperm but also at the anterior region of the head, where the acrosome is localized. During sperm capacitation, Gpx4 translocated to the post-acrosomal compartment. Sperm from Gpx4+/Sec46Ala mice heterozygously expressing a catalytically silent enzyme displayed an increased expression of phosphotyrosyl proteins, impaired acrosomal exocytosis after in vitro capacitation and were not suitable for in vitro fertilization. Alox15-deficient sperm showed normal acrosome reactions but when crossed into a Gpx4-deficient background spontaneous acrosomal exocytosis was observed during capacitation and these cells were even less suitable for in vitro fertilization. Taken together, our data indicate that heterozygous expression of a catalytically silent Gpx4 variant impairs acrosomal exocytosis and in vitro fertilization. Alox15 deficiency hardly impacted the acrosome reaction but when crossed into the Gpx4-deficient background spontaneous acrosomal exocytosis was induced. The detailed molecular mechanisms for the observed effects may be related to the compromised redox homeostasis.
Collapse
Affiliation(s)
- Mariana Soria-Tiedemann
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Geert Michel
- Department of Transgenic Technologies, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, D-13125 Berlin, Germany
| | - Iris Urban
- Department of Transgenic Technologies, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, D-13125 Berlin, Germany
| | - Maceler Aldrovandi
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Valerie B. O’Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Sabine Stehling
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Hartmut Kuhn
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Astrid Borchert
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, D-10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-528-034
| |
Collapse
|
4
|
Gahlay GK, Rajput N. The enigmatic sperm proteins in mammalian fertilization: an overview†. Biol Reprod 2020; 103:1171-1185. [PMID: 32761117 DOI: 10.1093/biolre/ioaa140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 11/14/2022] Open
Abstract
Mammalian fertilization involves a physical interaction between a sperm and an egg followed by molecular interactions amongst their various cell surface molecules. These interactions are initially mediated on the egg's outermost matrix, zona pellucida (ZP), and then its plasma membrane. To better understand this process, it is pertinent to find the corresponding molecules on sperm that interact with ZP or the egg's plasma membrane. Although currently, we have some knowledge about the binding partners for egg's plasma membrane on sperm, yet the ones involved in an interaction with ZP have remained remarkably elusive. This review provides comprehensive knowledge about the various sperm proteins participating in mammalian fertilization and discusses the possible reasons for not being able to identify the strong sperm surface candidate (s) for ZP adhesion. It also hypothesizes the existence of a multi-protein complex(s), members of which participate in oviduct transport, cumulus penetration, zona adhesion, and adhesion/fusion with the egg's plasma membrane; with some protein(s) having multiple roles during this process. Identification of these proteins is crucial as it improves our understanding of the process and allows us to successfully treat infertility, develop contraceptives, and improve artificial reproductive technologies.
Collapse
Affiliation(s)
- Gagandeep Kaur Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Neha Rajput
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India
| |
Collapse
|
5
|
Nakamura T, Fahmi M, Tanaka J, Seki K, Kubota Y, Ito M. Genome-Wide Analysis of Whole Human Glycoside Hydrolases by Data-Driven Analysis in Silico. Int J Mol Sci 2019; 20:E6290. [PMID: 31847093 PMCID: PMC6940844 DOI: 10.3390/ijms20246290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
Glycans are involved in various metabolic processes via the functions of glycosyltransferases and glycoside hydrolases. Analysing the evolution of these enzymes is essential for improving the understanding of glycan metabolism and function. Based on our previous study of glycosyltransferases, we performed a genome-wide analysis of whole human glycoside hydrolases using the UniProt, BRENDA, CAZy and KEGG databases. Using cluster analysis, 319 human glycoside hydrolases were classified into four clusters based on their similarity to enzymes conserved in chordates or metazoans (Class 1), metazoans (Class 2), metazoans and plants (Class 3) and eukaryotes (Class 4). The eukaryote and metazoan clusters included N- and O-glycoside hydrolases, respectively. The significant abundance of disordered regions within the most conserved cluster indicated a role for disordered regions in the evolution of glycoside hydrolases. These results suggest that the biological diversity of multicellular organisms is related to the acquisition of N- and O-linked glycans.
Collapse
Affiliation(s)
- Takahiro Nakamura
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (T.N.); (M.F.); (J.T.); (K.S.)
| | - Muhamad Fahmi
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (T.N.); (M.F.); (J.T.); (K.S.)
| | - Jun Tanaka
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (T.N.); (M.F.); (J.T.); (K.S.)
| | - Kaito Seki
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (T.N.); (M.F.); (J.T.); (K.S.)
| | - Yukihiro Kubota
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan;
| | - Masahiro Ito
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (T.N.); (M.F.); (J.T.); (K.S.)
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan;
| |
Collapse
|
6
|
The U3 and Env Proteins of Jaagsiekte Sheep Retrovirus and Enzootic Nasal Tumor Virus Both Contribute to Tissue Tropism. Viruses 2019; 11:v11111061. [PMID: 31739606 PMCID: PMC6893448 DOI: 10.3390/v11111061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Jaagsiekte sheep retrovirus (JSRV) and enzootic nasal tumor virus (ENTV) are small-ruminant betaretroviruses that share high nucleotide and amino acid identity, utilize the same cellular receptor, hyaluronoglucosaminidase 2 (Hyal2) for entry, and transform tissues with their envelope (Env) glycoprotein; yet, they target discrete regions of the respiratory tract—the lung and nose, respectively. This distinct tissue selectivity makes them ideal tools with which to study the pathogenesis of betaretroviruses. To uncover the genetic determinants of tropism, we constructed JSRV–ENTV chimeric viruses and produced lentivectors pseudotyped with the Env proteins from JSRV (Jenv) and ENTV (Eenv). Through the transduction and infection of lung and nasal turbinate tissue slices, we observed that Hyal2 expression levels strongly influence ENTV entry, but that the long terminal repeat (LTR) promoters of these viruses are likely responsible for tissue-specificity. Furthermore, we show evidence of ENTV Env expression in chondrocytes within ENTV-infected nasal turbinate tissue, where Hyal2 is highly expressed. Our work suggests that the unique tissue tropism of JSRV and ENTV stems from the combined effort of the envelope glycoprotein-receptor interactions and the LTR and provides new insight into the pathogenesis of ENTV.
Collapse
|
7
|
Park S, Kim YH, Jeong PS, Park C, Lee JW, Kim JS, Wee G, Song BS, Park BJ, Kim SH, Sim BW, Kim SU, Triggs-Raine B, Baba T, Lee SR, Kim E. SPAM1/HYAL5 double deficiency in male mice leads to severe male subfertility caused by a cumulus-oocyte complex penetration defect. FASEB J 2019; 33:14440-14449. [PMID: 31670981 DOI: 10.1096/fj.201900889rrr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The glycosylphosphatidylinositol-anchored sperm hyaluronidases (Hyals), sperm adhesion molecule 1 (SPAM1) and HYAL5, have long been believed to assist in sperm penetration through the cumulus-oocyte complex (COC), but their role in mammalian fertilization remains unclear. Previously, we have shown that mouse sperm devoid of either Spam1 or Hyal5 are still capable of penetrating the COC and that the loss of either Spam1 or Hyal5 alone does not cause male infertility in mice. In the present study, we found that Spam1/Hyal5 double knockout (dKO) mice produced significantly fewer offspring compared with wild-type (WT) mice, and this was due to defective COC dispersal. A comparative analysis between WT and Spam1/Hyal5 dKO epididymal sperm revealed that the absence of these 2 sperm Hyals resulted in a marked accumulation of sperm on the outside of the COC. This impaired sperm activity is likely due to the deficiency in the sperm Hyals, even though other somatic Hyals are expressed normally in the dKO mice. The fertilization ability of the Spam1/Hyal5 dKO sperm was restored by adding purified human sperm Hyal to the in vitro fertilization medium. Our results suggest that Hyal deficiency in sperm may be a significant risk factor for male sterility.-Park, S., Kim, Y.-H., Jeong, P.-S., Park, C., Lee, J.-W., Kim, J.-S., Wee, G., Song, B.-S., Park, B.-J., Kim, S.-H., Sim, B.-W., Kim, S.-U., Triggs-Raine, B., Baba, T., Lee, S.-R., Kim, E. SPAM1/HYAL5 double deficiency in male mice leads to severe male subfertility caused by a cumulus-oocyte complex penetration defect.
Collapse
Affiliation(s)
- Soojin Park
- College of Pharmacy, Catholic University of Daegu, Gyeongsan-si, South Korea
| | - Young-Hyun Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, South Korea
| | - Pil-Soo Jeong
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, South Korea
| | - Chaeri Park
- College of Pharmacy, Catholic University of Daegu, Gyeongsan-si, South Korea
| | - Jeong-Woong Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Deajeon, South Korea
| | - Ju-Sung Kim
- College of Applied Life Sciences, Research Institute for Subtropical Agriculture and Biotechnology, Jeju National University, Jeju, South Korea
| | - Gabin Wee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Bong-Seok Song
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, South Korea
| | - Boon-Joo Park
- College of Pharmacy, Catholic University of Daegu, Gyeongsan-si, South Korea
| | - Sang-Hyun Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Bo-Woong Sim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, South Korea
| | - Sun-Uk Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, South Korea.,Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, South Korea
| | - Barbara Triggs-Raine
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Tadashi Baba
- Faculty of Life and Environmental Sciences- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, Japan
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, South Korea
| | - Ekyune Kim
- College of Pharmacy, Catholic University of Daegu, Gyeongsan-si, South Korea
| |
Collapse
|
8
|
Ortega-Ferrusola C, Gil MC, Rodríguez-Martínez H, Anel L, Peña FJ, Martín-Muñoz P. Flow cytometry in Spermatology: A bright future ahead. Reprod Domest Anim 2017; 52:921-931. [DOI: 10.1111/rda.13043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022]
Affiliation(s)
- C Ortega-Ferrusola
- Reproduction and Obstetrics Department of Animal Medicine and Surgery; University of León; León Spain
| | - MC Gil
- Laboratory of Equine Reproduction and Equine Spermatology; Veterinary Teaching Hospital; University of Extremadura; Cáceres Spain
| | - H Rodríguez-Martínez
- Department of Clinical and Experimental Medicine; Faculty of Health Sciences Linköping University; Linköping Sweden
| | - L Anel
- Reproduction and Obstetrics Department of Animal Medicine and Surgery; University of León; León Spain
| | - FJ Peña
- Laboratory of Equine Reproduction and Equine Spermatology; Veterinary Teaching Hospital; University of Extremadura; Cáceres Spain
| | - P Martín-Muñoz
- Laboratory of Equine Reproduction and Equine Spermatology; Veterinary Teaching Hospital; University of Extremadura; Cáceres Spain
| |
Collapse
|
9
|
Olli KE, Li K, Galileo DS, Martin-DeLeon PA. Plasma membrane calcium ATPase 4 (PMCA4) co-ordinates calcium and nitric oxide signaling in regulating murine sperm functional activity. J Cell Physiol 2017; 233:11-22. [PMID: 28247940 DOI: 10.1002/jcp.25882] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 02/27/2017] [Indexed: 12/18/2022]
Abstract
Reduced sperm motility (asthenospermia) and resulting infertility arise from deletion of the Plasma Membrane Ca2+ -ATPase 4 (Pmca4) gene which encodes the highly conserved Ca2+ efflux pump, PMCA4. This is the major Ca2+ clearance protein in murine sperm. Since the mechanism underlying asthenospermia in PMCA4's absence or reduced activity is unknown, we investigated if sperm PMCA4 negatively regulates nitric oxide synthases (NOSs) and when absent NO, peroxynitrite, and oxidative stress levels are increased. Using co-immunoprecipitation (Co-IP) and Fluorescence Resonance Energy Transfer (FRET), we show an association of PMCA4 with the NOSs in elevated cytosolic [Ca2+ ] in capacitated and Ca2+ ionophore-treated sperm and with neuronal (nNOS) at basal [Ca2+ ] (ucapacitated sperm). FRET efficiencies for PMCA4-eNOS were 35% and 23% in capacitated and uncapacitated sperm, significantly (p < 0.01) different, with the molecules being <10 nm apart. For PMCA4-nNOS, this interaction was seen only for capacitated sperm where FRET efficiency was 24%, significantly (p < 0.05) higher than in uncapacitated sperm (6%). PMCA4 and the NOSs were identified as interacting partners in a quaternary complex that includes Caveolin1, which co-immunoprecipitated with eNOS in a Ca2+ -dependent manner. In Pmca4-/- sperm NOS activity was elevated twofold in capacitated/uncapacitated sperm (vs. wild-type), accompanied by a twofold increase in peroxynitrite levels and significantly (p < 0.001) increased numbers of apoptotic germ cells. The data support a quaternary complex model in which PMCA4 co-ordinates Ca2+ and NO signaling to maintain motility, with increased NO levels resulting in asthenospermia in Pmca4-/- males. They suggest the involvement of PMCA4 mutations in human asthenospermia, with diagnostic relevance.
Collapse
Affiliation(s)
- Kristine E Olli
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Kun Li
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Deni S Galileo
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | | |
Collapse
|
10
|
Fouladi-Nashta AA, Raheem KA, Marei WF, Ghafari F, Hartshorne GM. Regulation and roles of the hyaluronan system in mammalian reproduction. Reproduction 2017; 153:R43-R58. [PMID: 27799626 DOI: 10.1530/rep-16-0240] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/14/2016] [Accepted: 10/26/2016] [Indexed: 01/04/2025]
Abstract
Hyaluronan (HA) is a non-sulphated glycosaminoglycan polymer naturally occurring in many tissues and fluids of mammals, including the reproductive system. Its biosynthesis by HA synthase (HAS1-3) and catabolism by hyaluronidases (HYALs) are affected by ovarian steroid hormones. Depending upon its molecular size, HA functions both as a structural component of tissues in the form of high-molecular-weight HA or as a signalling molecule in the form of small HA molecules or HA fragments with effects mediated through interaction with its specific cell-membrane receptors. HA is produced by oocytes and embryos and in various segments of the reproductive system. This review provides information about the expression and function of members of the HA system, including HAS, HYALs and HA receptors. We examine their role in various processes from folliculogenesis through oocyte maturation, fertilisation and early embryo development, to pregnancy and cervical dilation, as well as its application in assisted reproduction technologies. Particular emphasis has been placed upon the role of the HA system in pre-implantation embryo development and embryo implantation, for which we propose a hypothetical sequential model.
Collapse
Affiliation(s)
- Ali A Fouladi-Nashta
- Royal Veterinary CollegeReproduction Research Group, Hawkshead Campus, Hatfield, UK
| | - Kabir A Raheem
- Royal Veterinary CollegeReproduction Research Group, Hawkshead Campus, Hatfield, UK
- Department of Veterinary Surgery and TheriogenologyMichael Okpara University of Agriculture, Umudike, Nigeria
| | - Waleed F Marei
- Royal Veterinary CollegeReproduction Research Group, Hawkshead Campus, Hatfield, UK
- Department of TheriogenologyFaculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Fataneh Ghafari
- Royal Veterinary CollegeReproduction Research Group, Hawkshead Campus, Hatfield, UK
| | - Geraldine M Hartshorne
- Warwick Medical SchoolUniversity of Warwick, Coventry, UK and Centre for Reproductive Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| |
Collapse
|
11
|
Witt KD, Beresford L, Bhattacharya S, Brian K, Coomarasamy A, Cutting R, Hooper R, Kirkman-Brown J, Khalaf Y, Lewis SE, Pacey A, Pavitt S, West R, Miller D, Cutting R. Hyaluronic Acid Binding Sperm Selection for assisted reproduction treatment (HABSelect): study protocol for a multicentre randomised controlled trial. BMJ Open 2016; 6:e012609. [PMID: 27855103 PMCID: PMC5073628 DOI: 10.1136/bmjopen-2016-012609] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION The selection of a sperm with good genomic integrity is an important consideration for improving intracytoplasmic sperm injection (ICSI) outcome. Current convention selects sperm by vigour and morphology, but preliminary evidence suggests selection based on hyaluronic acid binding may be beneficial. The aim of the Hyaluronic Acid Binding Sperm Selection (HABSelect) trial is to determine the efficacy of hyaluronic acid (HA)-selection of sperm versus conventionally selected sperm prior to ICSI on live birth rate (LBR). The mechanistic aim is to assess whether and how the chromatin state of HA-selected sperm corresponds with clinical outcomes-clinical pregnancy rate (CPR), LBR and pregnancy loss (PL). METHODS AND ANALYSIS Couples attending UK Centres will be approached, eligibility screening performed and informed consent sought. Randomisation will occur within 24 hours prior to ICSI treatment. Participants will be randomly allocated 1:1 to the intervention arm (physiological intracytoplasmic sperm injection, PICSI) versus the control arm using conventional methods (ICSI). The primary clinical outcome is LBR ≥37 weeks' gestation with the mechanistic study determining LBR's relationship with sperm DNA integrity. Secondary outcomes will determine this for CPR and PL. Only embryologists performing the procedure will be aware of the treatment allocation. Steps will be taken to militate against biases arising from embryologists being non-blinded. Randomisation will use a minimisation algorithm to balance for key prognostic variables. The trial is powered to detect a 5% difference (24-29%: p=0.05) in LBR ≥37 weeks' gestation. Selected residual sperm samples will be tested by one or more assays of DNA integrity. ETHICS AND DISSEMINATION HABSelect is a UK NIHR-EME funded study (reg no 11/14/34; IRAS REF. 13/YH/0162). The trial was designed in partnership with patient and public involvement to help maximise patient benefits. Trial findings will be reported as per CONSORT guidelines and will be made available in lay language via the trial web site (http://www.habselect.org.uk/). TRIAL REGISTRATION NUMBER ISRCTN99214271; Pre-results.
Collapse
Affiliation(s)
- K D Witt
- Department: Centre for Primary Care & Public Health, Queen Mary University of London, London, UK
| | - L Beresford
- Department: Centre for Primary Care & Public Health, Queen Mary University of London, London, UK
| | - S Bhattacharya
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - K Brian
- Charity Registration No. 1099960 (InfertilityNetworkUK), London, UK
| | - A Coomarasamy
- Centre for Human Reproductive Science, University of Birmingham, Birmingham Women's Fertility Centre, Birmingham Women's NHS Foundation Trust, Birmingham, UK
| | - Rachel Cutting
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
| | - R Hooper
- Department: Centre for Primary Care & Public Health, Queen Mary University of London, London, UK
| | - J Kirkman-Brown
- Centre for Human Reproductive Science, University of Birmingham, Birmingham Women's Fertility Centre, Birmingham Women's NHS Foundation Trust, Birmingham, UK
| | - Y Khalaf
- Assisted Conception Unit, Guy's and St Thomas's Hospital, London, UK
| | - S E Lewis
- Queen's University Belfast, Institute of Pathology, Belfast, UK
| | - A Pacey
- Department of Human Metabolism, University of Sheffield, Sheffield, UK
| | - S Pavitt
- Dental Translational and Clinical Research Unit, School of Dentistry, University of Leeds, Leeds, UK
| | - R West
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - D Miller
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, UK
| | | |
Collapse
|
12
|
Martin-DeLeon PA. Epididymosomes: transfer of fertility-modulating proteins to the sperm surface. Asian J Androl 2016; 17:720-5. [PMID: 26112481 PMCID: PMC4577579 DOI: 10.4103/1008-682x.155538] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A variety of glycosylphosphatidylinositol (GPI)-linked proteins are acquired on spermatozoa from epididymal luminal fluids (ELF) during sperm maturation. These proteins serve roles in immunoprotection and in key steps of fertilization such as capacitation, acrosomal exocytosis and sperm-egg interactions. Their acquisition on sperm cells is mediated both by membrane vesicles (epididymosomes, EP) which were first reported to dock on the sperm surface, and by lipid carriers which facilitate the transfer of proteins associated with the membrane-free fraction of ELF. While the nonvesicular fraction is more efficient, both pathways are dependent on hydrophobic interactions between the GPI-anchor and the external lipid layer of the sperm surface. More recently proteomic and hypothesis-driven studies have shown that EP from several mammals carry transmembrane (TM) proteins, including plasma membrane Ca 2 + -ATPase 4 (PMCA4). Synthesized in the testis, PMCA4 is an essential protein and the major Ca 2 + efflux pump in murine spermatozoa. Delivery of PMCA4 to spermatozoa from bovine and mouse EP during epididymal maturation and in vitro suggests that the docking of EP on the sperm surface precedes fusion, and experimental evidence supports a fusogenic mechanism for TM proteins. Fusion is facilitated by CD9, which generates fusion-competent sites on membranes. On the basis of knowledge of PMCA4's interacting partners a number of TM and membrane-associated proteins have been identified or are predicted to be present, in the epididymosomal cargo deliverable to spermatozoa. These Ca 2 + -dependent proteins, undetected in proteomic studies, play essential roles in sperm motility and fertility, and their detection highlights the usefulness of the hypothesis-driven approach.
Collapse
|
13
|
Andrews RE, Galileo DS, Martin-DeLeon PA. Plasma membrane Ca2+-ATPase 4: interaction with constitutive nitric oxide synthases in human sperm and prostasomes which carry Ca2+/CaM-dependent serine kinase. Mol Hum Reprod 2015; 21:832-43. [PMID: 26345709 DOI: 10.1093/molehr/gav049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 08/31/2015] [Indexed: 11/12/2022] Open
Abstract
Deletion of the gene encoding the widely conserved plasma membrane calcium ATPase 4 (PMCA4), a major Ca(2+) efflux pump, leads to loss of sperm motility and male infertility in mice. PMCA4's partners in sperm and how its absence exerts its effect on fertility are unknown. We hypothesize that in sperm PMCA4 interacts with endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) which are rapidly activated by Ca(2+), and that these fertility-modulating proteins are present in prostasomes, which deliver them to sperm. We show that in human sperm PMCA4 is present on the acrosome, inner acrosomal membrane, posterior head, neck, midpiece and the proximal principal piece. PMCA4 localization showed inter- and intra-individual variation and was most abundant at the posterior head/neck junction, co-localizing with NOSs. Co-immunoprecipitations (Co-IP) revealed a close association of PMCA4 and the NOSs in Ca(2+) ionophore-treated sperm but much less so in uncapacitated untreated sperm. Fluorescence resonance energy transfer (FRET) showed a similar Ca(2+)-related association: PMCA4 and the NOSs are within 10 nm apart, and preferentially so in capacitated, compared with uncapacitated, sperm. FRET efficiencies varied, being significantly (P < 0.001) higher at high cytosolic Ca(2+) concentration ([Ca(2+)]c) in capacitated sperm than at low [Ca(2+)]c in uncapacitated sperm for the PMCA4-eNOS complex. These dynamic interactions were not seen for PMCA4-nNOS complexes, which had the highest FRET efficiencies. Further, along with Ca(2+)/CaM-dependent serine kinase (CASK), PMCA4 and the NOSs are present in the seminal plasma, specifically in prostasomes where Co-IP showed complexes similar to those in sperm. Finally, flow cytometry demonstrated that following co-incubation of sperm and seminal plasma, PMCA4 and the NOSs can be delivered in vitro to sperm via prostasomes. Our findings indicate that PMCA4 interacts simultaneously with the NOSs preferentially at high [Ca(2+)]c in sperm to down-regulate them, and thus prevent elevated levels of NO, known to induce asthenozoospermia via oxidative stress. Our studies point to the potential underlying cause of infertility in PMCA4's absence, and suggest that inactivating mutations of PMCA4 could lead to asthenozoospermia and human infertility. Screening for these mutations may serve both diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Rachel E Andrews
- Department of Biological Sciences, University of Delaware, Newark, DE 17916, USA
| | - Deni S Galileo
- Department of Biological Sciences, University of Delaware, Newark, DE 17916, USA
| | | |
Collapse
|
14
|
Al-Dossary AA, Bathala P, Caplan JL, Martin-DeLeon PA. Oviductosome-Sperm Membrane Interaction in Cargo Delivery: DETECTION OF FUSION AND UNDERLYING MOLECULAR PLAYERS USING THREE-DIMENSIONAL SUPER-RESOLUTION STRUCTURED ILLUMINATION MICROSCOPY (SR-SIM). J Biol Chem 2015; 290:17710-17723. [PMID: 26023236 DOI: 10.1074/jbc.m114.633156] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Indexed: 11/06/2022] Open
Abstract
Oviductosomes ((OVS), exosomes/microvesicles), which deliver the Ca(2+) efflux pump, plasma membrane Ca(2+)ATPase 4 (PMCA4), to sperm are likely to play an important role in sperm fertilizing ability (Al-Dossary, A. A., Strehler, E. E., and Martin-DeLeon, P. A. (2013) PloS one 8, e80181). It is unknown how exosomes/microvesicles deliver transmembrane proteins such as PMCA4 to sperm. Here we define a novel experimental approach for the assessment of the interaction of OVS with sperm at a nanoscale level, using a lipophilic dye (FM4-64FX) and three-dimensional SR/SIM, which has an 8-fold increase in volumetric resolution, compared with conventional confocal microscopy. Coincubation assays detected fusion of prelabeled OVS with sperm, primarily over the head and midpiece. Immunofluorescence revealed oviductosomal delivery of PMCA4a to WT and Pmca4 KO sperm, and also endogenous PMCA4a on the inner acrosomal membrane. Fusion was confirmed by transmission immunoelectron microscopy, showing immunogold particles in OVS, and fusion stalks on sperm membrane. Immunofluorescence colocalized OVS with the αv integrin subunit which, along with CD9, resides primarily on the sperm head and midpiece. In capacitated and acrosome reacted sperm, fusion was significantly (p < 0.001) inhibited by blocking integrin/ligand interactions via antibodies, exogenous ligands (vitronectin and fibronectin), and their RGD recognition motif. Our results provide evidence that receptor/ligand interactions, involving αvβ3 and α5β1integrins on sperm and OVS, facilitate fusion of OVS in the delivery of transmembrane proteins to sperm. The mechanism uncovered is likely to be also involved in cargo delivery of prostasomes, epididymosomes, and uterosomes.
Collapse
Affiliation(s)
- Amal A Al-Dossary
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | - Pradeepthi Bathala
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | - Jeffrey L Caplan
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716; Delaware Biotechnology Institute, Newark, Delaware 19711
| | | |
Collapse
|
15
|
Schubert C. Polymer Protects Against Preterm Birth. Biol Reprod 2015. [DOI: 10.1095/biolreprod.114.127001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|