1
|
A 35-bp Conserved Region Is Crucial for Insl3 Promoter Activity in Mouse MA-10 Leydig Cells. Int J Mol Sci 2022; 23:ijms232315060. [PMID: 36499388 PMCID: PMC9738330 DOI: 10.3390/ijms232315060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
The peptide hormone insulin-like 3 (INSL3) is produced almost exclusively by Leydig cells of the male gonad. INSL3 has several functions such as fetal testis descent and bone metabolism in adults. Insl3 gene expression in Leydig cells is not hormonally regulated but rather is constitutively expressed. The regulatory region of the Insl3 gene has been described in various species; moreover, functional studies have revealed that the Insl3 promoter is regulated by various transcription factors that include the nuclear receptors AR, NUR77, COUP-TFII, LRH1, and SF1, as well as the Krüppel-like factor KLF6. However, these transcription factors are also found in several tissues that do not express Insl3, indicating that other, yet unidentified factors, must be involved to drive Insl3 expression specifically in Leydig cells. Through a fine functional promoter analysis, we have identified a 35-bp region that is responsible for conferring 70% of the activity of the mouse Insl3 promoter in Leydig cells. All tri- and dinucleotide mutations introduced dramatically reduced Insl3 promoter activity, indicating that the entire 35-bp sequence is required. Nuclear proteins from MA-10 Leydig cells bound specifically to the 35-bp region. The 35-bp sequence contains GC- and GA-rich motifs as well as potential binding elements for members of the CREB, C/EBP, AP1, AP2, and NF-κB families. The Insl3 promoter was indeed activated 2-fold by NF-κB p50 but not by other transcription factors tested. These results help to further define the regulation of Insl3 gene transcription in Leydig cells.
Collapse
|
2
|
Differential Response of Transcription Factors to Activated Kinases in Steroidogenic and Non-Steroidogenic Cells. Int J Mol Sci 2022; 23:ijms232113153. [DOI: 10.3390/ijms232113153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Hormone-induced Leydig cell steroidogenesis requires rapid changes in gene expression in response to various hormones, cytokines, and growth factors. These proteins act by binding to their receptors on the surface of Leydig cells leading to activation of multiple intracellular signaling cascades, downstream of which are several kinases, including protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase I (CAMKI), and extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). These kinases participate in hormone-induced steroidogenesis by phosphorylating numerous proteins including transcription factors leading to increased steroidogenic gene expression. How these various kinases and transcription factors come together to appropriately induce steroidogenic gene expression in response to specific stimuli remains poorly understood. In the present work, we compared the effect of PKA, CAMKI and ERK1/2 on the transactivation potential of 15 transcription factors belonging to 5 distinct families on the activity of the Star gene promoter. We not only validated known cooperation between kinases and transcription factors, but we also identified novel cooperations that have not yet been before reported. Some transcription factors were found to respond to all three kinases, whereas others were only activated by one specific kinase. Differential responses were also observed within a family of transcription factors. The diverse response to kinases provides flexibility to ensure proper genomic response of steroidogenic cells to different stimuli.
Collapse
|
3
|
The Urokinase-Type Plasminogen Activator Contributes to cAMP-Induced Steroidogenesis in MA-10 Leydig Cells. ENDOCRINES 2022. [DOI: 10.3390/endocrines3030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Leydig cells produce androgens which are essential for male sex differentiation and reproductive functions. Steroidogenesis, as well as expression of several genes in Leydig cells, are stimulated by LH/cAMP and repressed by AMP/AMPK. One of those genes is Plau, which codes for the urokinase-type plasminogen activator (uPA), a secreted serine protease. The role of uPA and the regulation of Plau expression in Leydig cells remain unknown. Using siRNA-mediated knockdown, uPA was required for maximal cAMP-induced STAR and steroid hormone production in MA-10 Leydig cells. Analysis of Plau mRNA levels and promoter activity revealed that its expression is strongly induced by cAMP; this induction is blunted by AMPK. The cAMP-responsive region was located, in part, in the proximal Plau promoter that contains a species-conserved GC box at −56 bp. The transcription factor Krüppel-like factor 6 (KLF6) activated the Plau promoter. Mutation of the GC box at −56 bp abolished KLF6-mediated activation and significantly reduced cAMP-induced Plau promoter activity. These data define a role for uPA in Leydig cell steroidogenesis and provide insights into the regulation of Plau gene expression in these cells.
Collapse
|
4
|
Mechanism of Action of an Environmentally Relevant Organochlorine Mixture in Repressing Steroid Hormone Biosynthesis in Leydig Cells. Int J Mol Sci 2022; 23:ijms23073997. [PMID: 35409357 PMCID: PMC8999779 DOI: 10.3390/ijms23073997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Within Leydig cells, steroidogenesis is induced by the pituitary luteinizing hormone (LH). The binding of LH to its receptor increases cAMP production, which then activates the expression of genes involved in testosterone biosynthesis. One of these genes codes for the steroidogenic acute regulatory (STAR) protein. STAR is part of a complex that shuttles cholesterol, the precursor of all steroid hormones, through the mitochondrial membrane where steroidogenesis is initiated. Organochlorine chemicals (OCs) are environmental persistent organic pollutants that are found at high concentrations in Arctic areas. OCs are known to affect male reproductive health by decreasing semen quality in different species, including humans. We previously showed that an environmentally relevant mixture of OCs found in Northern Quebec disrupts steroidogenesis by decreasing STAR protein levels without affecting the transcription of the gene. We hypothesized that OCs might affect STAR protein stability. To test this, MA-10 Leydig cell lines were incubated for 6 h with vehicle or the OCs mixture in the presence or absence of 8Br-cAMP with or without MG132, an inhibitor of protein degradation. We found that MG132 prevented the OC-mediated decrease in STAR protein levels following 8Br-cAMP stimulation. However, progesterone production was still decreased by the OC mixture, even in the presence of MG132. This suggested that proteins involved in steroid hormone production in addition to STAR are also affected by the OC mixture. To identify these proteins, a whole cell approach was used and total proteins from MA-10 Leydig cells exposed to the OC mixture with or without stimulation with 8Br-cAMP were analyzed by 2D SDS-PAGE and LC-MS/MS. Bioinformatics analyses revealed that several proteins involved in numerous biological processes are affected by the OC mixture, including proteins involved in mitochondrial transport, lipid metabolism, and steroidogenesis.
Collapse
|
5
|
Enangue Njembele AN, Tremblay JJ. Mechanisms of MEHP Inhibitory Action and Analysis of Potential Replacement Plasticizers on Leydig Cell Steroidogenesis. Int J Mol Sci 2021; 22:ijms222111456. [PMID: 34768887 PMCID: PMC8584274 DOI: 10.3390/ijms222111456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Steroid production in Leydig cells is stimulated mainly by the pituitary luteinizing hormone, which leads to increased expression of genes involved in steroidogenesis, including the gene encoding the steroidogenic acute regulatory (STAR) protein. Mono(2-ethylhexyl)phthalate (MEHP), the active metabolite of the widely used plasticizer DEHP, is known to disrupt Leydig steroidogenesis but its mechanisms of action remain poorly understood. We found that MEHP caused a significant reduction in hormone-induced steroid hormone production in two Leydig cell lines, MA-10 and MLTC-1. Consistent with disrupted cholesterol transport, we found that MEHP represses cAMP-induced Star promoter activity. MEHP responsiveness was mapped to the proximal Star promoter, which contains multiple binding sites for several transcription factors. In addition to STAR, we found that MEHP also reduced the levels of ferredoxin reductase, a protein essential for electron transport during steroidogenesis. Finally, we tested new plasticizers as alternatives to phthalates. Two plasticizers, dioctyl succinate and 1,6-hexanediol dibenzoate, had no significant effect on hormone-induced steroidogenesis. Our current findings reveal that MEHP represses steroidogenesis by affecting cholesterol transport and its conversion into pregnenolone. We also found that two novel molecules with desirable plasticizer properties have no impact on Leydig cell steroidogenesis and could be suitable phthalate replacements.
Collapse
Affiliation(s)
- Annick N. Enangue Njembele
- Reproduction, Mother and Child Health, Room T3-67, Centre de Recherche du CHU de Québec–Université Laval CHUL 2705 Laurier Blvd., Québec City, QC G1V 4G2, Canada;
| | - Jacques J. Tremblay
- Reproduction, Mother and Child Health, Room T3-67, Centre de Recherche du CHU de Québec–Université Laval CHUL 2705 Laurier Blvd., Québec City, QC G1V 4G2, Canada;
- Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 46254)
| |
Collapse
|
6
|
Walker C, Garza S, Papadopoulos V, Culty M. Impact of endocrine-disrupting chemicals on steroidogenesis and consequences on testicular function. Mol Cell Endocrinol 2021; 527:111215. [PMID: 33657436 DOI: 10.1016/j.mce.2021.111215] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/26/2022]
Abstract
Testicular steroidogenesis is a tightly regulated process that produces the androgens important for the development, maintenance and function of the male reproductive system. These androgens are also essential for overall health, and well-being. Disruptions in the ability of the testis to form steroids can result in developmental abnormalities, dysfunction, and infertility. Endocrine-disrupting chemicals (EDCs) can interfere with the intricate signaling and metabolizing networks that produce androgens and promote their dysfunction. These chemicals are found ubiquitously in our environment, as they are integral components of products that are used every day. The effects of EDCs, such as bisphenols, phthalates, and alkyl chemicals, have been studied independently, revealing deleterious effects; but the combined influence of these structures on steroidogenesis has yet to be completely elucidated. This manuscript presents an updated review on EDC mixtures and their impact on testicular function and fertility, highlighting new findings that illustrate the anti-androgenic capabilities of EDC mixtures.
Collapse
Affiliation(s)
- Casandra Walker
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Samuel Garza
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Warner GR, Mourikes VE, Neff AM, Brehm E, Flaws JA. Mechanisms of action of agrochemicals acting as endocrine disrupting chemicals. Mol Cell Endocrinol 2020; 502:110680. [PMID: 31838026 PMCID: PMC6942667 DOI: 10.1016/j.mce.2019.110680] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Agrochemicals represent a significant class of endocrine disrupting chemicals that humans and animals around the world are exposed to constantly. Agrochemicals can act as endocrine disrupting chemicals through a variety of mechanisms. Recent studies have shown that several mechanisms of action involve the ability of agrochemicals to mimic the interaction of endogenous hormones with nuclear receptors such as estrogen receptors, androgen receptors, peroxisome proliferator activated receptors, the aryl hydrocarbon receptor, and thyroid hormone receptors. Further, studies indicate that agrochemicals can exert toxicity through non-nuclear receptor-mediated mechanisms of action. Such non-genomic mechanisms of action include interference with peptide, steroid, or amino acid hormone response, synthesis and degradation as well as epigenetic changes (DNA methylation and histone modifications). This review summarizes the major mechanisms of action by which agrochemicals target the endocrine system.
Collapse
Affiliation(s)
- Genoa R Warner
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Vasiliki E Mourikes
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Alison M Neff
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Emily Brehm
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States.
| |
Collapse
|
8
|
Samardzija Nenadov D, Pogrmic-Majkic K, Fa S, Stanic B, Tubic A, Andric N. Environmental mixture with estrogenic activity increases Hsd3b1 expression through estrogen receptors in immature rat granulosa cells. J Appl Toxicol 2018; 38:879-887. [DOI: 10.1002/jat.3596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/27/2017] [Accepted: 12/27/2017] [Indexed: 01/31/2023]
Affiliation(s)
| | | | - Svetlana Fa
- Department of Biology and Ecology; Faculty of Sciences, University of Novi Sad; Serbia
| | - Bojana Stanic
- Department of Environmental Engineering and Occupational Safety and Health, Faculty of Technical Sciences; University of Novi Sad; Serbia
| | - Aleksandra Tubic
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences; University of Novi Sad; Serbia
| | - Nebojsa Andric
- Department of Biology and Ecology; Faculty of Sciences, University of Novi Sad; Serbia
| |
Collapse
|
9
|
Araki A, Miyashita C, Mitsui T, Goudarzi H, Mizutani F, Chisaki Y, Itoh S, Sasaki S, Cho K, Moriya K, Shinohara N, Nonomura K, Kishi R. Prenatal organochlorine pesticide exposure and the disruption of steroids and reproductive hormones in cord blood: The Hokkaido study. ENVIRONMENT INTERNATIONAL 2018; 110:1-13. [PMID: 29055783 DOI: 10.1016/j.envint.2017.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
Certain organochlorine pesticides (OCPs) are designated as persistent organic pollutants and are regulated in many countries. The effects of OCPs on pediatric endocrinology are a concern; however, only limited data exist from human studies on maternal OCP exposure and its effects on infants' hormone levels. This study was conducted as part of the Hokkaido Study Sapporo Cohort, a prospective birth cohort study in Japan. Participants included 514 women who enrolled at 23-35weeks of gestation between 2002 and 2005; maternal blood samples were collected in late pregnancy, and 29 OCPs were measured. Reproductive and steroid hormone levels in cord blood were also determined. Characteristics of mothers and their infants were obtained from self-administered questionnaires and medical records. Ultimately, 232 samples with both OCP and hormone data were analyzed. Fifteen of 29 investigated OCPs were detected in over 80% of the samples, with p,p'-dichlorodiphenyldichloroethylene showing the highest concentration (median value: 619pg/g-wet). The association between OCPs and sex hormone levels varied by sex. Linear regression models after sex stratification showed that chlordanes, cis-hexachlorobenzene, heptachlor epoxide, Mirex, and toxaphenes in maternal blood were inversely associated with testosterone, cortisol, cortisone, sex hormone-binding globin, prolactin, and androstenedione-dehydroepiandrosterone (DHEA) and testosterone-androstenediones ratios among boys. Furthermore, these OCPs were positively correlated with DHEA, follicle stimulating hormone (FSH), and adrenal androgen-glucocorticoid and FSH-inhibin B ratios among boys. In categorical quartile models, testosterone and DHEA were inversely and positively associated with OCPs, respectively. Estradiol-testosterone and adrenal androgen-glucocorticoid ratios tended to increase with increasing OCP concentrations in the higher quartile, while the testosterone-androstenedione ratio tended to decrease. Sex hormone-binding globulin and prolactin showed an inverse association with OCPs. Among girls, the linear regression model showed that only p,p'-dichlorodiphenyltrichloroethane was inversely associated with the level of DHEA and the adrenal androgen-glucocorticoid ratio, but was positively associated with cortisone levels. However, no associations were observed using the quartile categorical model. These results suggest that prenatal exposure to OCPs disrupt reproductive hormones of fetuses in utero among boys, even at relatively low levels.
Collapse
Affiliation(s)
- Atsuko Araki
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Sapporo, Hokkaido, Japan
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Sapporo, Hokkaido, Japan
| | - Takahiko Mitsui
- Department of Urology, Hokkaido University Hospital, Kita 15, Nishi 7, Sapporo, Hokkaido, Japan; Yamanashi University, 1110, Shimogato, Chuo, Yamanashi, Japan
| | - Houman Goudarzi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Sapporo, Hokkaido, Japan; Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Sapporo, Hokkaido, Japan
| | - Futoshi Mizutani
- Institute of Environmental Ecology, IDEA Consultants, Inc., 1334-5 Riemon, Yaizu, Shizuoka, Japan
| | - Youichi Chisaki
- Institute of Environmental Ecology, IDEA Consultants, Inc., 1334-5 Riemon, Yaizu, Shizuoka, Japan
| | - Sachiko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Sapporo, Hokkaido, Japan
| | - Seiko Sasaki
- Department of Public Health, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Sapporo, Hokkaido, Japan
| | - Kazutoshi Cho
- Maternity and Perinatal Care Center, Hokkaido University Hospital, Kita 15, Nishi 7, Sapporo, Hokkaido, Japan
| | - Kimihiko Moriya
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Sapporo, Hokkaido, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Sapporo, Hokkaido, Japan
| | - Katsuya Nonomura
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Sapporo, Hokkaido, Japan; Kushiro Rosai Hospital, 13-23, Nakazono-cho, Kushiro, Hokkaido, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12, Nishi 7, Sapporo, Hokkaido, Japan.
| |
Collapse
|
10
|
Milon A, Opydo-Chanek M, Tworzydlo W, Galas J, Pardyak L, Kaminska A, Ptak A, Kotula-Balak M. Chlorinated biphenyls effect on estrogen-related receptor expression, steroid secretion, mitochondria ultrastructure but not on mitochondrial membrane potential in Leydig cells. Cell Tissue Res 2017; 369:429-444. [PMID: 28315012 PMCID: PMC5552843 DOI: 10.1007/s00441-017-2596-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/22/2017] [Indexed: 12/16/2022]
Abstract
To characterize polychlorinated biphenyls (PCBs) action on Leydig cells, PCBs congeners, low-chlorinated (delor 103; d103) and high-chlorinated ones (delor 106; d106) were selected. The cells were treated according to PCBs dose (d103 or d106 0.2 ng/ml in low doses:, or 2 ng/ml in high doses) and type (d103 + d106 in low doses or 103 + 106 in high doses). After 24 h treatment with PCBs, a distinct increase in estrogen-related receptors (ERRs type α, β and γ) expression was revealed. However, the dose- and type-dependent PCBs effect was mostly exerted on ERRα expression. A similar increase in ERRs expression was demonstrated by estradiol but not testosterone, which was without an effect on ERRs. PCBs caused no decrease in the membrane potential status of Leydig cells (either in dose or type schedule) but had severe effects on the mitochondria number and structure. Moreover, PCBs markedly increased calcium (Ca2+) concentration and sex steroid secretion (both androgens and estrogens were elevated). These findings suggest a similar estrogenic action of PCBs congeners (d103 and d106) on Leydig cell function. We report dose- and type-specific effects of PCBs only on Leydig cell ERRs expression. Both delors showed common effects on the mitochondria ultrastructural and functional status. Based on our results, ERRα seems to be the most sensitive to hormonal modulation. The increases in Ca2+ and sex steroid secretion may be due to the activation of ERRs by PCBs binding and/or direct effect of PCBs on ERRs mRNA/protein expression. Nevertheless, to confirm the existence of possible relationships between ERRs signaling (including PCBs as ligands) and mitochondria function in Leydig cells, further intensive studies are needed.
Collapse
Affiliation(s)
- Agnieszka Milon
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - Malgorzata Opydo-Chanek
- Department of Experimental Hematology, Institute of Zoology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - Jerzy Galas
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - Laura Pardyak
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - Alicja Kaminska
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - Anna Ptak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland
| | - Malgorzata Kotula-Balak
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Krakow, Poland.
| |
Collapse
|
11
|
Sidorkiewicz I, Zaręba K, Wołczyński S, Czerniecki J. Endocrine-disrupting chemicals-Mechanisms of action on male reproductive system. Toxicol Ind Health 2017; 33:601-609. [PMID: 28464759 DOI: 10.1177/0748233717695160] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous compounds that can cause disturbances in the endocrine system and have multiple harmful effects on health by targeting different organs and systems in the human body. Mass industrial production and widespread use of EDCs have resulted in worldwide contamination. Accumulating evidence suggest that human exposure to EDCs is related to the impairment of male reproductive function and can interrupt other hormonally regulated metabolic processes, particularly if exposure occurs during early development. Investigation of studies absent in previous reviews and meta-analysis of adverse effects of EDCs on functioning of the male reproductive system is the core of this work. Four main modes of action of EDCs on male fertility have been summarized in this review. First, studies describing estrogen- pathway disturbing chemicals are investigated. Second, androgen-signaling pathway alterations and influence on androgen sensitive tissues are examined. Third, evaluation of steroidogenesis dysfunction is discussed by focusing on the steroid hormone biosynthesis pathway, which is targeted by EDCs. Last, the reportedly destructive role of reactive oxygen species (ROS) on sperm function is discussed. Spermatogenesis is a remarkably complex process, hence multiple studies point out various dysfunctions depending on the development state at which the exposure occurred. Collected data show the need to account for critical windows of exposure such as fetal, perinatal and pubertal periods as well as effects of mixtures of several compounds in future research.
Collapse
Affiliation(s)
- Iwona Sidorkiewicz
- 1 Department of Reproduction and Gynecological Endocrinology, Medical University of Białystok, Białystok, Poland
| | - Kamil Zaręba
- 1 Department of Reproduction and Gynecological Endocrinology, Medical University of Białystok, Białystok, Poland
| | - Sławomir Wołczyński
- 1 Department of Reproduction and Gynecological Endocrinology, Medical University of Białystok, Białystok, Poland.,2 Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Jan Czerniecki
- 2 Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
12
|
Odermatt A, Strajhar P, Engeli RT. Disruption of steroidogenesis: Cell models for mechanistic investigations and as screening tools. J Steroid Biochem Mol Biol 2016; 158:9-21. [PMID: 26807866 DOI: 10.1016/j.jsbmb.2016.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/31/2015] [Accepted: 01/20/2016] [Indexed: 02/03/2023]
Abstract
In the modern world, humans are exposed during their whole life to a large number of synthetic chemicals. Some of these chemicals have the potential to disrupt endocrine functions and contribute to the development and/or progression of major diseases. Every year approximately 1000 novel chemicals, used in industrial production, agriculture, consumer products or as pharmaceuticals, are reaching the market, often with limited safety assessment regarding potential endocrine activities. Steroids are essential endocrine hormones, and the importance of the steroidogenesis pathway as a target for endocrine disrupting chemicals (EDCs) has been recognized by leading scientists and authorities. Cell lines have a prominent role in the initial stages of toxicity assessment, i.e. for mechanistic investigations and for the medium to high throughput analysis of chemicals for potential steroidogenesis disrupting activities. Nevertheless, the users have to be aware of the limitations of the existing cell models in order to apply them properly, and there is a great demand for improved cell-based testing systems and protocols. This review intends to provide an overview of the available cell lines for studying effects of chemicals on gonadal and adrenal steroidogenesis, their use and limitations, as well as the need for future improvements of cell-based testing systems and protocols.
Collapse
Affiliation(s)
- Alex Odermatt
- Swiss Center for Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Petra Strajhar
- Swiss Center for Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Roger T Engeli
- Swiss Center for Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
13
|
Potter SJ, Kumar DL, DeFalco T. Origin and Differentiation of Androgen-Producing Cells in the Gonads. Results Probl Cell Differ 2016; 58:101-134. [PMID: 27300177 DOI: 10.1007/978-3-319-31973-5_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Sexual reproduction is dependent on the activity of androgenic steroid hormones to promote gonadal development and gametogenesis. Leydig cells of the testis and theca cells of the ovary are critical cell types in the gonadal interstitium that carry out steroidogenesis and provide key androgens for reproductive organ function. In this chapter, we will discuss important aspects of interstitial androgenic cell development in the gonad, including: the potential cellular origins of interstitial steroidogenic cells and their progenitors; the molecular mechanisms involved in Leydig cell specification and differentiation (including Sertoli-cell-derived signaling pathways and Leydig-cell-related transcription factors and nuclear receptors); the interactions of Leydig cells with other cell types in the adult testis, such as Sertoli cells, germ cells, peritubular myoid cells, macrophages, and vascular endothelial cells; the process of steroidogenesis and its systemic regulation; and a brief discussion of the development of theca cells in the ovary relative to Leydig cells in the testis. Finally, we will describe the dynamics of steroidogenic cells in seasonal breeders and highlight unique aspects of steroidogenesis in diverse vertebrate species. Understanding the cellular origins of interstitial steroidogenic cells and the pathways directing their specification and differentiation has implications for the study of multiple aspects of development and will help us gain insights into the etiology of reproductive system birth defects and infertility.
Collapse
Affiliation(s)
- Sarah J Potter
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Deepti Lava Kumar
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
14
|
Di-Luoffo M, Brousseau C, Bergeron F, Tremblay JJ. The Transcription Factor MEF2 Is a Novel Regulator of Gsta Gene Class in Mouse MA-10 Leydig Cells. Endocrinology 2015; 156:4695-706. [PMID: 26393304 DOI: 10.1210/en.2015-1500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Testosterone is essential for spermatogenesis and the development of male sexual characteristics. However, steroidogenesis produces a significant amount of reactive oxygen species (ROS), which can disrupt testosterone production. The myocyte enhancer factor 2 (MEF2) is an important regulator of organogenesis and cell differentiation in various tissues. In the testis, MEF2 is present in Sertoli and Leydig cells throughout fetal and adult life. MEF2-deficient MA-10 Leydig cells exhibit a significant decrease in steroidogenesis concomitant with a reduction in glutathione S-transferase (GST) activity and in the expression of the 4 Gsta members (GST) that encode ROS inactivating enzymes. Here, we report a novel role for MEF2 in ROS detoxification by directly regulating Gsta expression in Leydig cells. Endogenous Gsta1-4 mRNA levels were decreased in MEF2-deficient MA-10 Leydig cells. Conversely, overexpression of MEF2 increased endogenous Gsta1 levels. MEF2 recruitment to the proximal Gsta1 promoter and direct binding on the -506-bp MEF2 element were confirmed by chromatin immunoprecipitation and DNA precipitation assays. In MA-10 Leydig cells, MEF2 activates the Gsta1 promoter and cooperates with Ca(2+)/calmodulin-dependent kinases I to further enhance Gsta1 promoter activity. These effects were lost when the -506-bp MEF2 element was mutated or when a MEF2-Engrailed dominant negative protein was used. Similar results were obtained on the Gsta2, Gsta3, and Gsta4 promoters, suggesting a global role for MEF2 factors in the regulation of all 4 Gsta genes. Altogether, our results identify a novel role for MEF2 in the expression of genes involved in ROS detoxification, a process essential for adequate testosterone production in Leydig cells.
Collapse
Affiliation(s)
- Mickaël Di-Luoffo
- Reproduction, Mother and Child Health (M.D.-L., C.B., F.B., J.J.T.), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada G1V 0A6
| | - Catherine Brousseau
- Reproduction, Mother and Child Health (M.D.-L., C.B., F.B., J.J.T.), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada G1V 0A6
| | - Francis Bergeron
- Reproduction, Mother and Child Health (M.D.-L., C.B., F.B., J.J.T.), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada G1V 0A6
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health (M.D.-L., C.B., F.B., J.J.T.), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada G1V 0A6
| |
Collapse
|
15
|
Schubert C. Pain Reliever Tamps Down on Testosterone. Biol Reprod 2015. [DOI: 10.1095/biolreprod.115.132084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
16
|
Fa S, Pogrmic-Majkic K, Samardzija D, Hrubik J, Glisic B, Kovacevic R, Andric N. HBCDD-induced sustained reduction in mitochondrial membrane potential, ATP and steroidogenesis in peripubertal rat Leydig cells. Toxicol Appl Pharmacol 2014; 282:20-9. [PMID: 25447410 DOI: 10.1016/j.taap.2014.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/14/2014] [Accepted: 11/02/2014] [Indexed: 12/01/2022]
Abstract
Hexabromocyclododecane (HBCDD), a brominated flame retardant added to various consumer products, is a ubiquitous environmental contaminant. We have previously shown that 6-hour exposure to HBCDD disturbs basal and human chorionic gonadotropin (hCG)-induced steroidogenesis in rat Leydig cells. Reduction in mitochondrial membrane potential (ΔΨm) and cAMP production was also observed. Here, we further expanded research on the effect of HBCDD on Leydig cells by using a prolonged exposure scenario. Cells were incubated in the presence of HBCDD during 24h and then treated with HBCDD+hCG for additional 2h. Results showed that HBCDD caused a sustained reduction in ATP level after 24h of exposure, which persisted after additional 2-hour treatment with HBCDD+hCG. cAMP and androgen accumulations measured after 2h of HBCDD+hCG treatment were also inhibited. Real-time PCR analysis showed significant inhibition in the expression of genes for steroidogenic enzymes, luteinizing hormone receptor, regulatory and transport proteins, and several transcription factors under both treatment conditions. Western blot analysis revealed a decreased level of 30kDa steroidogenic acute regulatory protein (StAR) after HBCDD+hCG treatment. In addition, HBCDD decreased the conversion of 22-OH cholesterol to pregnenolone and androstenedione to testosterone, indicating loss of the activity of cytochrome P450C11A1 (CYP11A1) and 17β-hydroxysteroid dehydrogenase (HSD17β). Cell survival was not affected, as confirmed by cytotoxicity and trypan blue tests or DNA fragmentation analysis. In summary, our data showed that HBCDD inhibits ATP supply, most likely through a decrease in ΔΨm, and targets multiple sites in the steroidogenic pathway in Leydig cells.
Collapse
Affiliation(s)
- Svetlana Fa
- Molecular and Reproductive Toxicology Unit, Laboratory for Ecotoxicology, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Kristina Pogrmic-Majkic
- Molecular and Reproductive Toxicology Unit, Laboratory for Ecotoxicology, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Dragana Samardzija
- Molecular and Reproductive Toxicology Unit, Laboratory for Ecotoxicology, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Jelena Hrubik
- Molecular and Reproductive Toxicology Unit, Laboratory for Ecotoxicology, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Branka Glisic
- Molecular and Reproductive Toxicology Unit, Laboratory for Ecotoxicology, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Radmila Kovacevic
- Molecular and Reproductive Toxicology Unit, Laboratory for Ecotoxicology, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Nebojsa Andric
- Molecular and Reproductive Toxicology Unit, Laboratory for Ecotoxicology, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia.
| |
Collapse
|