1
|
Li H, Chen H, Zhang X, Qi Y, Wang B, Cui Y, Ren J, Zhao Y, Chen Y, Zhu T, Wang Y, Yao L, Guo Y, Zhu H, Li Y, Situ C, Guo X. Global phosphoproteomic analysis identified key kinases regulating male meiosis in mouse. Cell Mol Life Sci 2022; 79:467. [PMID: 35930080 PMCID: PMC11071816 DOI: 10.1007/s00018-022-04507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
Abstract
Meiosis, a highly conserved process in organisms from fungi to mammals, is subjected to protein phosphorylation regulation. Due to the low abundance of phosphorylation, there is a lack of systemic characterization of phosphorylation regulation of meiosis in mammals. Using the phosphoproteomic approach, we profiled large-scale phosphoproteome of purified primary spermatocytes undergoing meiosis I, and identified 14,660 phosphorylation sites in 4419 phosphoproteins. Kinase-substrate phosphorylation network analysis followed by in vitro meiosis study showed that CDK9 was essential for meiosis progression to metaphase I and had enriched substrate phosphorylation sites in proteins involved in meiotic cell cycle. In addition, histones and epigenetic factors were found to be widely phosphorylated. Among those, HASPIN was found to be essential for male fertility. Haspin knockout led to misalignment of chromosomes, apoptosis of metaphase spermatocytes and a decreased number of sperm by deregulation of H3T3ph, chromosomal passenger complex (CPC) and spindle assembly checkpoint (SAC). The complicated protein phosphorylation and its important regulatory functions in meiosis indicated that in-depth studies of phosphorylation-mediated signaling could help us elucidate the mechanisms of meiosis.
Collapse
Affiliation(s)
- Haojie Li
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Hong Chen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangzheng Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Yaling Qi
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Bing Wang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Jie Ren
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Yichen Zhao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Yu Chen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Tianyu Zhu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Yue Wang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Liping Yao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Hui Zhu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Yan Li
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China.
| | - Chenghao Situ
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China.
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
2
|
Chen X, Li Y, Dai H, Zhang H, Wan D, Zhou X, Situ C, Zhu H. Cyclin-dependent kinase 7 is essential for spermatogenesis by regulating retinoic acid signaling pathways and the STAT3 molecular pathway. IUBMB Life 2021; 73:1446-1459. [PMID: 34717033 DOI: 10.1002/iub.2574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/20/2021] [Indexed: 12/28/2022]
Abstract
Spermatogenesis is a complex process that requires precise regulation. Phosphorylation plays a role in spermatogenesis by regulating protein structure and activity. This study focused on cyclin-dependent kinase 7 (CDK7), and explored its function and molecular mechanisms in spermatogenesis in vitro in a cell line and in vivo in a mouse model. Inhibition of CDK7 activity affected spermatogonia proliferation and differentiation, and we found that CDK7 regulates retinoic acid (RA)-mediated c-KIT expression to play a role in spermatogonia. Then, we demonstrated that inhibition of CDK7 affected meiosis initiation, DNA repair, and synaptonemal complex formation in meiosis progression, and CDK7 played this role by regulating RA-mediated STRA8 and REC8 signaling pathways. Moreover, inhibition of CDK7 impacted spermatid differentiation and resulted in decreased counts, decreased motility, and increased head deformity of sperm. We demonstrated that CDK7 affects germ cell apoptosis and sperm motility by activating STAT3 and that STAT3 further regulates Cortactin expression to influence the nuclear elongation, chromatin condensation, and acrosome formation of sperm. Additionally, EP300 was identified as another potential target phosphorylated by CDK7 that participates in chromatin condensation. Our results demonstrated the important role of CDK7 in all key aspects of spermatogenesis, potentially providing an effective target for clinical diagnosis and pathogenesis.
Collapse
Affiliation(s)
- Xu Chen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yan Li
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Haiqian Dai
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Danyang Wan
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xinli Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Chenghao Situ
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Hui Zhu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Kar FM, Hochwagen A. Phospho-Regulation of Meiotic Prophase. Front Cell Dev Biol 2021; 9:667073. [PMID: 33928091 PMCID: PMC8076904 DOI: 10.3389/fcell.2021.667073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Germ cells undergoing meiosis rely on an intricate network of surveillance mechanisms that govern the production of euploid gametes for successful sexual reproduction. These surveillance mechanisms are particularly crucial during meiotic prophase, when cells execute a highly orchestrated program of chromosome morphogenesis and recombination, which must be integrated with the meiotic cell division machinery to ensure the safe execution of meiosis. Dynamic protein phosphorylation, controlled by kinases and phosphatases, has emerged as one of the main signaling routes for providing readout and regulation of chromosomal and cellular behavior throughout meiotic prophase. In this review, we discuss common principles and provide detailed examples of how these phosphorylation events are employed to ensure faithful passage of chromosomes from one generation to the next.
Collapse
Affiliation(s)
- Funda M Kar
- Department of Biology, New York University, New York, NY, United States
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, NY, United States
| |
Collapse
|
4
|
Wang G, Wu X, Zhou L, Gao S, Yun D, Liang A, Sun F. Tethering of Telomeres to the Nuclear Envelope Is Mediated by SUN1-MAJIN and Possibly Promoted by SPDYA-CDK2 During Meiosis. Front Cell Dev Biol 2020; 8:845. [PMID: 33015044 PMCID: PMC7509418 DOI: 10.3389/fcell.2020.00845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022] Open
Abstract
During meiosis, telomeres attach to the nuclear envelope (NE) to promote homologous chromosome moving, pairing, synapsis, and recombination. The telomere-NE attachment is mediated by SUN1, TERB1-TERB2-MAJIN (TTM complex), and TRF1. The interaction of the TTM complex with shelterin is mediated by TERB1 and TRF1, but how SUN1 interacts with the TTM complex is not yet fully understood. In this study, we found that SUN1 not only interacted with TERB1 but also interacted with MAJIN, and the interaction of SUN1 with MAJIN is stronger than TERB1. We also found that SUN1 interacted with SPDYA, an activator of CDK2. The binding sites of MAJIN and SPDYA at SUN1 were mapped, and both MAJIN and SPDYA bound to the N-terminal domain of SUN1 and the two binding sites were close to each other. Furthermore, SPDYA bound to SUN1 via the Ringo domain and recruited CDK2 to SUN1. Then, we found that the interaction of SUN1 with MAJIN was decreased by the CDK2 inhibitors. Taken together, our results provide the possible mechanism of SUN1, MAJIN, and SPDYA-CDK2 in promoting the telomere-NE attachment during meiosis.
Collapse
Affiliation(s)
- Guishuan Wang
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Xiaolong Wu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Liwei Zhou
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Sheng Gao
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Damin Yun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Ajuan Liang
- Reproductive Medical Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Sun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, China
| |
Collapse
|
5
|
Mesenchymal stem cell-derived exosomes suppress proliferation of T cells by inducing cell cycle arrest through p27kip1/Cdk2 signaling. Immunol Lett 2020; 225:16-22. [PMID: 32554049 DOI: 10.1016/j.imlet.2020.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 01/08/2023]
Abstract
Mouse mesenchymal stem cells (MSCs) have been shown to suppress T cells. Especially, MSC-cultured media have shown suppressive functions against various immune cells including the T cells. However, the underlying immunosuppressive mechanisms of the MSC-cultured medium are not yet fully understood. In this study, we confirmed the T cell-suppression capacity of MSC culture supernatant (MSC-CS) through both apoptosis and cell cycle arrest, and hypothesized that the exosomes were the major immunosuppressive agents in the MSC-CS. MSC-derived exosomes (MSC-exo) exhibited potent suppressive effects on T cell proliferation while the rest of the supernatant fraction did not. Interestingly, the exosomes derived from MSC only induced the cell cycle arrest, and it was through the upregulation of p27kip1 protein and downregulation of Cdk2 protein. In conclusion, the exosomes secreted from MSCs could suppress the activated T cell proliferation through the induction of cell cycle arrest.
Collapse
|
6
|
Liu Q, Gao J, Zhao C, Guo Y, Wang S, Shen F, Xing X, Luo Y. To control or to be controlled? Dual roles of CDK2 in DNA damage and DNA damage response. DNA Repair (Amst) 2019; 85:102702. [PMID: 31731257 DOI: 10.1016/j.dnarep.2019.102702] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/09/2019] [Accepted: 09/13/2019] [Indexed: 02/04/2023]
Abstract
CDK2 (cyclin-dependent kinase 2), a member of the CDK family, has been shown to play a role in many cellular activities including cell cycle progression, apoptosis and senescence. Recently, accumulating evidence indicates that CDK2 is involved in DNA damage and DNA repair response (DDR). When DNA is damaged by internal or external genotoxic stresses, CDK2 activity is required for proper DNA repair in vivo and in vitro, whereas inactivation of CDK2 by siRNA techniques or by inhibitors could result in DNA damage and stimulate DDR. Hence, CDK2 seems to play dual roles in DNA damage and DDR. On one aspect, it is activated and stimulates DDR to repair DNA damage when DNA damage occurs; on the other hand, its inactivation directly leads to DNA damage and evokes DDR. Here, we describe the roles of CDK2 in DNA damage and DDR, and discuss the potential application of CDK2 inhibitors as anti-cancer agents.
Collapse
Affiliation(s)
- Qi Liu
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Jinlan Gao
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Chenyang Zhao
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Yingying Guo
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Shiquan Wang
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Fei Shen
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Xuesha Xing
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Yang Luo
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
7
|
Wang L, Xu F, Wang G, Wang X, Liang A, Huang H, Sun F. C30F12.4 influences oogenesis, fat metabolism, and lifespan in C. elegans. Protein Cell 2016; 7:714-721. [PMID: 27638466 PMCID: PMC5055490 DOI: 10.1007/s13238-016-0308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/19/2016] [Indexed: 11/25/2022] Open
Abstract
Reproduction, fat metabolism, and longevity are intertwined regulatory axes; recent studies in C. elegans have provided evidence that these processes are directly coupled. However, the mechanisms by which they are coupled and the reproductive signals modulating fat metabolism and lifespan are poorly understood. Here, we find that an oogenesis-enriched gene, c30f12.4, is specifically expressed and located in germ cells and early embryos; when the gene is knocked out, oogenesis is disrupted and brood size is decreased. In addition to the reproductive phenotype, we find that the loss of c30f12.4 alters fat metabolism, resulting in decreased fat storage and smaller lipid droplets. Meanwhile, c30f12.4 mutant worms display a shortened lifespan. Our results highlight an important role for c30f12.4 in regulating reproduction, fat homeostasis, and aging in C. elegans, which helps us to better understand the relationship between these processes.
Collapse
Affiliation(s)
- Lu Wang
- International Peace Maternity & Child Health Hospital, Shanghai Key laboratory for Reproductive Medicine, School of Medicine, Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Fei Xu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Guishuan Wang
- International Peace Maternity & Child Health Hospital, Shanghai Key laboratory for Reproductive Medicine, School of Medicine, Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Xiaorong Wang
- International Peace Maternity & Child Health Hospital, Shanghai Key laboratory for Reproductive Medicine, School of Medicine, Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Ajuan Liang
- International Peace Maternity & Child Health Hospital, Shanghai Key laboratory for Reproductive Medicine, School of Medicine, Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Hefeng Huang
- International Peace Maternity & Child Health Hospital, Shanghai Key laboratory for Reproductive Medicine, School of Medicine, Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiaotong University, Shanghai, 200030, China.
| | - Fei Sun
- International Peace Maternity & Child Health Hospital, Shanghai Key laboratory for Reproductive Medicine, School of Medicine, Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiaotong University, Shanghai, 200030, China.
| |
Collapse
|