1
|
Kanatsu-Shinohara M, Yamamoto T, Liu T, Nakayama KI, Shinohara T. Cdkn1c orchestrates a molecular network that regulates euploidy of male mouse germline stem cells. Development 2025; 152:dev204286. [PMID: 39850012 DOI: 10.1242/dev.204286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Karyotype instability in the germline leads to infertility. Unlike the female germline, the male germline continuously produces fertile sperm throughout life. Here, we present a molecular network responsible for maintaining karyotype stability in the male mouse germline. Loss of the cyclin-dependent kinase inhibitor Cdkn1c in undifferentiated spermatogonia induced degeneration of spermatogenesis prior to entry into the differentiating spermatogonia stage. In vitro analysis of mouse spermatogonial stem cells revealed that CDKN1C localized to spindle microtubules during metaphase, and that disrupted microtubule dynamics increased its phosphorylation. Cdkn1c deficiency activated the spindle assembly checkpoint and led to centrosome amplification, premature chromosome segregation, and loss of AURKB, and ultimately TRP53-dependent apoptosis. Trp53-deficient spermatogonial stem cells exhibited karyotype defects, but proliferated normally despite reduced CDKN1C and AURKB expression. In contrast, Aurkb depletion upregulated TRP53 and CDKN1C, suggesting a negative feedback loop to maintain euploidy. Thus, Cdkn1c regulates the male germline karyotype.
Collapse
Affiliation(s)
- Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- AMED-CREST, AMED 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Tianjiao Liu
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- The Department of Gynecology, Chengdu Women and Children's Central Hospital, No.1617, Riyue Avenue, Chengdu, Sichuan 610091, China
| | - Keiichi I Nakayama
- Anticancer Strategies Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Kuroha K, Dočkal I, Radović U, Nakajima K, Hoshi I, Matsuda S, Kojitani N, Ohbo K, Tomizawa SI. Abnormal H3K27me3 underlies degenerative spermatogonial stem cells in cryptorchid testis. Development 2025; 152:dev204239. [PMID: 39745222 PMCID: PMC11829757 DOI: 10.1242/dev.204239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/15/2024] [Indexed: 01/18/2025]
Abstract
Cryptorchidism is the most frequent congenital defect in newborn males characterized by the absence of the testis from the scrotum. Approximately 90% of individuals with untreated bilateral cryptorchidism exhibit azoospermia due to defective spermatogenesis in the affected testis. Although abnormal spermatogonial stem cell maintenance or differentiation is suggested to cause germ cell degeneration in the cryptorchid testis, the underlying molecular mechanisms remain unclear. Here, we profiled spermatogonial epigenetic landscapes using surgically induced cryptorchid testis in the mouse. We show that cryptorchidism leads to alterations in local, but not global, H3K27me3 and H3K9me3 in undifferentiated spermatogonia. Of these, the loss of H3K27me3 was correlated with activation of developmental and proapoptotic pathway genes that are repressed by the polycomb machinery in germ cells. Cryptorchid spermatogonia exhibit an increase of the H3K27me3 demethylases KDM6A and KMD6B. Furthermore, we reveal that an increased temperature leads to Kdm6a/b upregulation in germline stem cells cultured in vitro. Thus, our study suggests that temperature-dependent histone demethylation may induce mRNA dysregulation due to the partial loss of H3K27me3 in spermatogonia.
Collapse
Affiliation(s)
- Kazushige Kuroha
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Ivana Dočkal
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Uroš Radović
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kuniko Nakajima
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Ikue Hoshi
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Shion Matsuda
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Noriko Kojitani
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kazuyuki Ohbo
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Shin-ichi Tomizawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
3
|
Tomizawa SI, Kuroha K, Ono M, Nakajima K, Ohbo K. A behind-the-scenes role of BDNF in the survival and differentiation of spermatogonia. Asian J Androl 2025; 27:37-43. [PMID: 39177410 PMCID: PMC11784946 DOI: 10.4103/aja202457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/17/2024] [Indexed: 08/24/2024] Open
Abstract
ABSTRACT Mouse spermatogenesis entails the maintenance and self-renewal of spermatogonial stem cells (SSCs), which require a complex web-like signaling network transduced by various cytokines. Although brain-derived neurotrophic factor (BDNF) is expressed in Sertoli cells in the testis, and its receptor tropomyosin receptor kinase B (TrkB) is expressed in the spermatogonial population containing SSCs, potential functions of BDNF for spermatogenesis have not been uncovered. Here, we generate BDNF conditional knockout mice and find that BDNF is dispensable for in vivo spermatogenesis and fertility. However, in vitro , we reveal that BDNF -deficient germline stem cells (GSCs) exhibit growth potential not only in the absence of glial cell line-derived neurotrophic factor (GDNF), a master regulator for GSC proliferation, but also in the absence of other factors, including epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and insulin. GSCs grown without these factors are prone to differentiation, yet they maintain expression of promyelocytic leukemia zinc finger ( Plzf ), an undifferentiated spermatogonial marker. Inhibition of phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), and Src pathways all interfere with the growth of BDNF-deficient GSCs. Thus, our findings suggest a role for BDNF in maintaining the undifferentiated state of spermatogonia, particularly in situations where there is a shortage of growth factors.
Collapse
Affiliation(s)
- Shin-ichi Tomizawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kazushige Kuroha
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Michio Ono
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kuniko Nakajima
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kazuyuki Ohbo
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
4
|
Yang R, Zhang B, Wang Y, Zhang Y, Zhao Y, Jiang D, Chen L, Tang B, Zhang X. H3K9me3 Levels Affect the Proliferation of Bovine Spermatogonial Stem Cells. Int J Mol Sci 2024; 25:9215. [PMID: 39273164 PMCID: PMC11394725 DOI: 10.3390/ijms25179215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Spermatogonial stem cells (SSCs) possess the characteristics of self-renewal and differentiation, as well as the ability to generate functional sperm. Their unique stemness has broad applications in male infertility treatment and species preservation. In rodents, research on SSCs has been widely reported, but progress is slow in large livestock such as cattle and pigs due to long growth cycles, difficult proliferation in vitro, and significant species differences. Previously, we showed that histone 3 (H3) lysine 9 (K9) trimethylation (H3K9me3) is associated with the proliferation of bovine SSCs. Here, we isolated and purified SSCs from calf testicular tissues and investigated the impact of different H3K9me3 levels on the in vitro proliferation of bovine SSCs. The enriched SSCs eventually formed classical stem cell clones in vitro in our feeder-free culture system. These clones expressed glial cell-derived neurotrophic factor family receptor alpha-1 (GFRα1, specific marker for SSCs), NANOG (pluripotency protein), C-KIT (germ cell marker), and strong alkaline phosphatase (AKP) positivity. qRT-PCR analysis further showed that these clones expressed the pluripotency genes NANOG and SOX2, and the SSC-specific marker gene GFRα1. To investigate the dynamic relationship between H3K9me3 levels and SSC proliferation, H3K9me3 levels in bovine SSCs were first downregulated using the methyltransferase inhibitor, chaetocin, or transfection with the siRNA of H3K9 methyltransferase suppressor of variegation 3-9 homologue 1 (SUV39H1). The EDU (5-Ethynyl-2'-deoxyuridine) assay revealed that SSC proliferation was inhibited. Conversely, when H3K9me3 levels in bovine SSCs were upregulated by transfecting lysine demethylase 4D (KDM4D) siRNA, the EDU assay showed a promotion of cell proliferation. In summary, this study established a feeder-free culture system to obtain bovine SSCs and explored its effects on the proliferation of bovine SSCs by regulating H3K9me3 levels, laying the foundation for elucidating the regulatory mechanism underlying histone methylation modification in the proliferation of bovine SSCs.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Boyang Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yueqi Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yansen Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Daozhen Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lanxin Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bo Tang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xueming Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
5
|
Zhang X, Wang N. Induction of Meiotic Initiation in Long-Term Mouse Spermatogonial Stem Cells Under Retinoid Acid and Nutrient Restriction Conditions. Methods Mol Biol 2024; 2770:113-121. [PMID: 38351450 PMCID: PMC11225876 DOI: 10.1007/978-1-0716-3698-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Spermatogonial stem cells (SSCs) produce haploid sperm via mitosis and meiosis in vivo. Although the technique to culture mouse SSCs has been well established, induction of meiosis in vitro has remained a challenge. Retinoic acid (RA) is required for meiosis in vivo; however, RA alone is not sufficient to induce meiosis in vitro. Here, we describe a method in which nutrient restriction and RA synergistically induce meiotic initiation into meiotic prophase I in cultured mouse SSCs.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
- Center for Reproductive Sciences, Institute for Reproductive and Developmental Sciences (IRDS), University of Kansas Medical Center, Kansas City, KS, USA
| | - Ning Wang
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
- Center for Reproductive Sciences, Institute for Reproductive and Developmental Sciences (IRDS), University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
6
|
Blücher RO, Lim RS, Jarred EG, Ritchie ME, Western PS. FGF-independent MEK1/2 signalling in the developing foetal testis is essential for male germline differentiation in mice. BMC Biol 2023; 21:281. [PMID: 38053127 PMCID: PMC10696798 DOI: 10.1186/s12915-023-01777-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Disrupted germline differentiation or compromised testis development can lead to subfertility or infertility and are strongly associated with testis cancer in humans. In mice, SRY and SOX9 induce expression of Fgf9, which promotes Sertoli cell differentiation and testis development. FGF9 is also thought to promote male germline differentiation but the mechanism is unknown. FGFs typically signal through mitogen-activated protein kinases (MAPKs) to phosphorylate ERK1/2 (pERK1/2). We explored whether FGF9 regulates male germline development through MAPK by inhibiting either FGF or MEK1/2 signalling in the foetal testis immediately after gonadal sex determination and testis cord formation, but prior to male germline commitment. RESULTS pERK1/2 was detected in Sertoli cells and inhibition of MEK1/2 reduced Sertoli cell proliferation and organisation and resulted in some germ cells localised outside of the testis cords. While pERK1/2 was not detected in germ cells, inhibition of MEK1/2 after somatic sex determination profoundly disrupted germ cell mitotic arrest, dysregulated a broad range of male germline development genes and prevented the upregulation of key male germline markers, DPPA4 and DNMT3L. In contrast, while FGF inhibition reduced Sertoli cell proliferation, expression of male germline markers was unaffected and germ cells entered mitotic arrest normally. While male germline differentiation was not disrupted by FGF inhibition, a range of stem cell and cancer-associated genes were commonly altered after 24 h of FGF or MEK1/2 inhibition, including genes involved in the maintenance of germline stem cells, Nodal signalling, proliferation, and germline cancer. CONCLUSIONS Together, these data demonstrate a novel role for MEK1/2 signalling during testis development that is essential for male germline differentiation, but indicate a more limited role for FGF signalling. Our data indicate that additional ligands are likely to act through MEK1/2 to promote male germline differentiation and highlight a need for further mechanistic understanding of male germline development.
Collapse
Affiliation(s)
- Rheannon O Blücher
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Rachel S Lim
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Ellen G Jarred
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Matthew E Ritchie
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Patrick S Western
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
7
|
Wei R, Zhang X, Li X, Wen J, Liu H, Fu J, Li L, Zhang W, Liu Z, Yang Y, Zou K. A rapid and stable spontaneous reprogramming system of Spermatogonial stem cells to Pluripotent State. Cell Biosci 2023; 13:222. [PMID: 38041111 PMCID: PMC10693117 DOI: 10.1186/s13578-023-01150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/20/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND The scarcity of pluripotent stem cells poses a major challenge to the clinical application, given ethical and biosafety considerations. While germline stem cells commit to gamete differentiation throughout life, studies demonstrated the spontaneous acquisition of pluripotency by spermatogonial stem cells (SSCs) from neonatal testes at a low frequency (1 in 1.5 × 107). Notably, this process occurs without exogenous oncogenes or chemical supplementation. However, while knockout of the p53 gene accelerates the transformation of SSCs, it also increases risk and hampers their clinical use. RESULTS We report a transformation system that efficiently and stably convert SSCs into pluripotent stem cells around 10 passages with the morphology similar to that of epiblast stem cells, which convert to embryonic stem (ES) cell-like colonies after change with ES medium. Epidermal growth factor (EGF), leukemia inhibitory factor (LIF) and fresh mouse embryonic fibroblast feeder (MEF) are essential for transformation, and addition of 2i (CHIR99021 and PD0325901) further enhanced the pluripotency. Transcriptome analysis revealed that EGF activated the RAS signaling pathway and inhibited p38 to initiate transformation, and synergically cooperated with LIF to promote the transformation. CONCLUSION This system established an efficient and safe resource of pluripotent cells from autologous germline, and provide new avenues for regenerative medicine and animal cloning.
Collapse
Affiliation(s)
- Rui Wei
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyu Zhang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoxiao Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wen
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongyang Liu
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiqiang Fu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Li Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Wenyi Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Yang Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Shinohara T, Yamamoto T, Morimoto H, Shiromoto Y, Kanatsu-Shinohara M. Allogeneic offspring produced by induction of PD-L1 in spermatogonial stem cells via self-renewal stimulation. Stem Cell Reports 2023; 18:985-998. [PMID: 36963391 PMCID: PMC10147552 DOI: 10.1016/j.stemcr.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/26/2023] Open
Abstract
The testis is an immune-privileged organ. It is considered that the testis somatic microenvironment is responsible for immune suppression. However, immunological properties of spermatogonial stem cells (SSCs) have remained unknown. Here, we report the birth of allogeneic offspring by enhanced expression of immunosuppressive PD-L1 in SSCs. In vitro supplementation of GDNF and FGF2 increased expression of PD-L1 in SSCs. Cultured SSCs maintained allogeneic spermatogenesis that persisted for >1 year. However, depletion or gene editing of Pd-l1 family genes in SSCs prevented allogeneic spermatogenesis, which suggested that germ cells are responsible for suppression of the allogeneic response. PD-L1 was induced by activation of the MAPK14-BCL6B pathway, which drives self-renewal by reactive oxygen species (ROS) generation. By contrast, reduced ROS or Mapk14 deficiency downregulated PD-L1. Allogeneic offspring were born after SSC transplantation into congenitally infertile and chemically castrated mice. Thus, SSCs have unique immunological properties, which make allogeneic recipients into "surrogate fathers."
Collapse
Affiliation(s)
- Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| | - Takuya Yamamoto
- AMED-CREST, AMED 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan; Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan; Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yusuke Shiromoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; AMED-CREST, AMED 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan
| |
Collapse
|
9
|
Das A, Bhuyan D, Lalmalsawma T, Das PP, Koushik S, Chauhan MS, Bhuyan M. Propagation of porcine spermatogonial stem cells in serum-free culture conditions using knockout serum replacement. Reprod Domest Anim 2023; 58:219-229. [PMID: 36222382 DOI: 10.1111/rda.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/30/2022]
Abstract
In vitro culture and expansion of spermatogonial stem cells (SSCs) is an essential prerequisite to enhancing livestock productivity through SSC transplantation. Most of the culture media have been observed to be supplemented with serum. However, the use of serum in culture media may exert detrimental effects on SSC maintenance in vitro. An attempt was made to culture SSCs by replacing serum with 5% 'Knockout Serum Replacement (KSR)' in Doom pig (Sus domesticus), one of the valued indigenous germplasm of North-East India. Testes from 7 to 15 days old piglets were used for isolation, enrichment and in vitro culture of putative SSCs using serum-based and serum-free culture media. The cells were characterized for SSC-specific pluripotent markers expression by immunofluorescence staining and quantitative real-time PCR. The diameter and number of SSC colonies were recorded on days 9, 20 and 30 of culture. Similar morphologies of the SSC colonies were observed in both serum-based and serum-free culture conditions. Colony diameter and colony number were non-significantly higher in serum-free than serum-based media. The cells from both the culture conditions showed high alkaline phosphatase activity. The expression of SSC-specific pluripotent markers was observed in immunofluorescence and quantitative real-time PCR study. The present study revealed that SSCs from porcine species could be maintained in vitro for up to 30 days in serum-free culture using 5% KSR, which is believed to be a promising protein source for improving livestock production, and health care along with their conservation.
Collapse
Affiliation(s)
- Arpana Das
- Department of Animal Genetics & Breeding, College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Dipak Bhuyan
- Department of Animal Reproduction, Gynaecology & Obstetrics, College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Timothy Lalmalsawma
- Department of Animal Genetics & Breeding, College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | - Partha Pratim Das
- Department of Biotechnology, North East Hill University, Shillong, India
| | - Simanta Koushik
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agricultural University, Guwahati, India
| | | | - Mandakranta Bhuyan
- Department of Veterinary Physiology, Mumbai Veterinary College, Mumbai, India
| |
Collapse
|
10
|
Ciccarelli M, Oatley JM. Perspectives: Approaches for Studying Livestock Spermatogonia. Methods Mol Biol 2023; 2656:325-339. [PMID: 37249879 DOI: 10.1007/978-1-0716-3139-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
At present, the knowledge base on characteristics and biology of spermatogonia in livestock is limited in comparison to rodents, yet the importance of studying these cells for comparative species analysis and enhancing reproductive capacity in food animals is high. Previous studies have established that although many core attributes of organ physiology and mechanisms governing essential cellular functions are conserved across eutherians, significant differences exist between mice and higher order mammals. In this chapter, we briefly discuss distinguishing aspects of testicular anatomy and the spermatogenic lineage in livestock and critical considerations for studying spermatogonial stem cell biology in these species.
Collapse
Affiliation(s)
- Michela Ciccarelli
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Jon M Oatley
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
11
|
Liu R, Peng Y, Du W, Wu Y, Zhang W, Hu C, Liu M, Liu X, Wu J, Sun J, Zhao X. BMI1 fine-tunes gene repression and activation to safeguard undifferentiated spermatogonia fate. Front Cell Dev Biol 2023; 11:1146849. [PMID: 37169021 PMCID: PMC10164956 DOI: 10.3389/fcell.2023.1146849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction: Spermatogenesis is sustained by the homeostasis of self-renewal and differentiation of undifferentiated spermatogonia throughout life, which is regulated by transcriptional and posttranscriptional mechanisms. B cell-specific Moloney murine leukemia virus integration site 1 (BMI1), one of spermatogonial stem cell markers, is a member of Polycomb repressive complex 1 (PRC1) and important to spermatogenesis. However, the mechanistic underpinnings of how BMI1 regulates spermatogonia fate remain elusive. Methods: We knocked down BMI1 by siRNA to investigate the role of BMI1 in undifferentiated spermatogonia. Differentially expressed genes were identified by RNA-seq and used for KEGG pathway analysis. We performed ChIP-seq analysis in wild type and BMI1 knockdown cells to explore the underlying molecular mechanisms exerted by BMI1. BMI1-associated alterations in repressive histone modifications were detected via Western blotting and ChIP-seq. Furthermore, we performed mass spectrometry and Co-immunoprecipitation assays to investigate BMI1 co-factors. Finally, we demonstrated the genomic regions occupied by both BMI1 and its co-factor. Results: BMI1 is required for undifferentiated spermatogonia maintenance by both repressing and activating target genes. BMI1 preserves PI3K-Akt signaling pathway for spermatogonia proliferation. Decrease of BMI1 affects the deposition of repressive histone modifications H2AK119ub1 and H3K27me3. BMI also positively regulates H3K27ac deposited genes which are associated with proliferation. Moreover, we demonstrate that BMI1 interacts with Sal-like 4 (SALL4), the transcription factor critical for spermatogonia function, to co-regulate gene expression. Discussion: Overall, our study reveals that BMI1 safeguards undifferentiated spermatogonia fate through multi-functional roles in regulating gene expression programs of undifferentiated spermatogonia.
Collapse
Affiliation(s)
- Ruiqi Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yonglin Peng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenfei Du
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yunqiang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Zhang
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, China
| | - Congxia Hu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Min Liu
- Department of Integrative Medicine, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xinhua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ji Wu
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Ji Wu, ; Jielin Sun, ; Xiaodong Zhao,
| | - Jielin Sun
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Ji Wu, ; Jielin Sun, ; Xiaodong Zhao,
| | - Xiaodong Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Ji Wu, ; Jielin Sun, ; Xiaodong Zhao,
| |
Collapse
|
12
|
Yang F, Sun J, Wu X. Primary Cultures of Spermatogonia and Testis Cells. Methods Mol Biol 2023; 2656:127-143. [PMID: 37249869 DOI: 10.1007/978-1-0716-3139-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Spermatogonial stem cells (SSCs) maintain adult spermatogenesis in mammals by undergoing self-renewal and differentiation into spermatozoa. In order to study the biology of SSCs as related to spermatogenesis, an in vitro, long-term expansion system of SSCs constitutes an ideal tool. In this chapter, we describe a robust culture system for mouse and rat SSCs in vitro. In the presence of GDNF, GFRα1, and bFGF, SSCs maintained on STO feeder layers with serum-free medium continuously proliferate for over 6 months. Complete spermatogenesis in infertile recipient mice can be attained following transplantation of the cultured mouse and rat SSCs. Using the in vitro SSC culture systems, elucidation of stem cell biology can be advanced that significantly advances our understanding of spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiachen Sun
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
13
|
Lin H, Cheng K, Kubota H, Lan Y, Riedel SS, Kakiuchi K, Sasaki K, Bernt KM, Bartolomei MS, Luo M, Wang PJ. Histone methyltransferase DOT1L is essential for self-renewal of germline stem cells. Genes Dev 2022; 36:752-763. [PMID: 35738678 PMCID: PMC9296001 DOI: 10.1101/gad.349550.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/06/2022] [Indexed: 12/25/2022]
Abstract
Self-renewal of spermatogonial stem cells is vital to lifelong production of male gametes and thus fertility. However, the underlying mechanisms remain enigmatic. Here, we show that DOT1L, the sole H3K79 methyltransferase, is required for spermatogonial stem cell self-renewal. Mice lacking DOT1L fail to maintain spermatogonial stem cells, characterized by a sequential loss of germ cells from spermatogonia to spermatids and ultimately a Sertoli cell only syndrome. Inhibition of DOT1L reduces the stem cell activity after transplantation. DOT1L promotes expression of the fate-determining HoxC transcription factors in spermatogonial stem cells. Furthermore, H3K79me2 accumulates at HoxC9 and HoxC10 genes. Our findings identify an essential function for DOT1L in adult stem cells and provide an epigenetic paradigm for regulation of spermatogonial stem cells.
Collapse
Affiliation(s)
- Huijuan Lin
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province 430072, China;,Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Keren Cheng
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Hiroshi Kubota
- Laboratory of Cell and Molecular Biology, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Yemin Lan
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Simone S. Riedel
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;,Abramson Cancer Center, Philadelphia, Pennsylvania 19104, USA
| | - Kazue Kakiuchi
- Laboratory of Cell and Molecular Biology, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Kotaro Sasaki
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Kathrin M. Bernt
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;,Abramson Cancer Center, Philadelphia, Pennsylvania 19104, USA
| | - Marisa S. Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mengcheng Luo
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province 430072, China
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
14
|
Culture media and supplements affect proliferation, colony-formation, and potency of porcine male germ cells. Theriogenology 2022; 187:227-237. [DOI: 10.1016/j.theriogenology.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022]
|
15
|
Thiageswaran S, Steele H, Voigt AL, Dobrinski I. A Role for Exchange of Extracellular Vesicles in Porcine Spermatogonial Co-Culture. Int J Mol Sci 2022; 23:ijms23094535. [PMID: 35562927 PMCID: PMC9103065 DOI: 10.3390/ijms23094535] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 12/22/2022] Open
Abstract
Spermatogonial stem cells (SSCs) provide the basis for lifelong male fertility through self-renewal and differentiation. Prepubertal male cancer patients may be rendered infertile by gonadotoxic chemotherapy and, unlike sexually mature men, cannot store sperm. Alternatively, testicular biopsies taken prior to treatment may be used to restore fertility in adulthood. Testicular SSC populations are limited, and in vitro culture systems are required to increase numbers of SSCs for treatment, demanding culture systems for SSC propagation. Using the pig as a non-rodent model, we developed culture systems to expand spermatogonia from immature testis tissue, comparing different feeders (Sertoli cells, peritubular myoid cells (PMCs) and pig fetal fibroblasts (PFFs)). Spermatogonia co-cultured with Sertoli cells, PMCs and PFFs had comparable rates of proliferation and apoptosis. To elucidate the mechanism behind the beneficial nature of feeder layers, we investigated the role of extracellular vesicles in crosstalk between spermatogonia and feeder cells. Sertoli cell-released exosomes are incorporated by spermatogonia, and inhibition of exosomal release reduces spermatogonial proliferation. Together, these results show that PMCs, PFFs and Sertoli cells promote spermatogonial proliferation in co-culture, with exosomal exchange representing one possible mechanism. Further characterization of exosomal cargo may ultimately allow the development of feeder-free culture systems for clinical use.
Collapse
Affiliation(s)
- Shiama Thiageswaran
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Heather Steele
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (H.S.); (A.L.V.)
| | - Anna Laura Voigt
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (H.S.); (A.L.V.)
| | - Ina Dobrinski
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (H.S.); (A.L.V.)
- Correspondence: ; Tel.: +1-403-210-6532
| |
Collapse
|
16
|
Liu S, Wei R, Liu H, Liu R, Li P, Zhang X, Wei W, Zhao X, Li X, Yang Y, Fu X, Zou K. Analysis of chromatin accessibility in p53 deficient spermatogonial stem cells for high frequency transformation into pluripotent state. Cell Prolif 2022; 55:e13195. [PMID: 35119145 PMCID: PMC8891552 DOI: 10.1111/cpr.13195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/03/2022] [Accepted: 01/18/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Spermatogonial stem cells (SSCs), the germline stem cells (GSCs) committed to spermatogenesis in niche, can transform into pluripotent state in long-term culture without introduction of exogenous factors, typically in p53 deficiency condition. As the guardian for genomic stability, p53 is associated with epigenetic alterations during SSCs transformation. However, the mechanism is still unknown, since complicated roles of p53 baffle our understanding of the regulating process. MATERIALS AND METHODS The chromatin accessibility and differentially expressed genes (DEGs) were analysed in p53+/+ and p53-/- SSCs using the Assay for Transposase-Accessible Chromatin with high-throughput Sequencing (ATAC-seq) and RNA-sequencing (RNA-seq), to explore the connection of p53 and cell fate at chromosomal level. RESULTS Several transcription factors (TFs), such as CTCF, SMAD3 and SOX2, were predicted as important factors mediating the transformation. Molecular evidence suggested that SMAD3 efficiently promoted pluripotency-associated gene expression both in fresh and long-term cultured SSCs. However, p53 knockout (KO) is insufficient to induce SMAD3 expression in SSCs. CONCLUSIONS These observations indicate that SMAD3 is a key factor for SSCs transformation, and an unknown event is required to activate SMAD3 as the prerequisite for SSCs reprogramming, which may occur in the long-term culture of SSCs. This study demonstrates the connection of p53 and pluripotency-associated factors, providing new insight for understanding the mechanisms of SSCs reprogramming and germline tumorigenesis.
Collapse
Affiliation(s)
- Sitong Liu
- College of Life SciencesJilin UniversityChangchunChina
| | - Rui Wei
- Germline Stem Cells and Microenvironment LabCollege of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Hongyang Liu
- Germline Stem Cells and Microenvironment LabCollege of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Ruiqi Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems Bio‐medicineShanghai Jiao Tong UniversityShanghaiChina
| | - Pengxiao Li
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems Bio‐medicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoyu Zhang
- Germline Stem Cells and Microenvironment LabCollege of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Wei Wei
- The Key Laboratory of Molecular Epigenetics of MOEInstitute of Genetics and CytologyNortheast Normal UniversityChangchunChina
| | - Xiaodong Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems Bio‐medicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetics of MOEInstitute of Genetics and CytologyNortheast Normal UniversityChangchunChina
| | - Yang Yang
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Xueqi Fu
- College of Life SciencesJilin UniversityChangchunChina
| | - Kang Zou
- Germline Stem Cells and Microenvironment LabCollege of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
17
|
Fayaz MA, Ibtisham F, Cham TC, Honaramooz A. Culture supplementation of bFGF, GDNF, and LIF alters in vitro proliferation, colony formation, and pluripotency of neonatal porcine germ cells. Cell Tissue Res 2022; 388:195-210. [PMID: 35102441 DOI: 10.1007/s00441-022-03583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022]
Abstract
Gonocytes in the neonatal testis have male germline stem cell properties and as such have important potential applications in fertility preservation and regenerative medicine. Such applications require further studies aimed at increasing gonocyte numbers and evaluating their pluripotency in vitro. The objective of the present study was to test the effects of basic fibroblast growth factor (bFGF), glial cell line-derived neurotrophic factor (GDNF), and leukemia inhibitory factor (LIF) on in vitro propagation, colony formation, and expression of pluripotency markers of neonatal porcine gonocytes. Testis cells from 1-week-old piglets were cultured in basic media (DMEM + 15% FBS), supplemented with various concentrations of bFGF, GDNF, and LIF, either individually or in combinations, in a stepwise experimental design. Gonocytes and/or their colonies were evaluated every 7 days and the gonocyte- (DBA) and pluripotency-specific markers (POU5F1, SSEA-1, E-cadherin, and NANOG) assessed on day 28. Greatest gonocyte numbers and largest colonies were found in media supplemented with 10 ng/mL bFGF and 10 ng/mL bFGF + 100 ng/mL GDNF + 1500 U/mL LIF, respectively. The resultant gonocytes and colonies expressed both germ cell- and pluripotency-specific markers. These results shed light on the growth hormone requirements of porcine gonocytes for in vitro proliferation and colony formation.
Collapse
Affiliation(s)
- Mohammad Amin Fayaz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, S7N 5B4, Canada
| | - Fahar Ibtisham
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, S7N 5B4, Canada
| | - Tat-Chuan Cham
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, S7N 5B4, Canada
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, S7N 5B4, Canada.
| |
Collapse
|
18
|
In Vitro Propagation of XXY Undifferentiated Mouse Spermatogonia: Model for Fertility Preservation in Klinefelter Syndrome Patients. Int J Mol Sci 2021; 23:ijms23010173. [PMID: 35008599 PMCID: PMC8745151 DOI: 10.3390/ijms23010173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 01/15/2023] Open
Abstract
Klinefelter syndrome (KS) is characterized by a masculine phenotype, supernumerary sex chromosomes (usually XXY), and spermatogonial stem cell (SSC) loss in their early life. Affecting 1 out of every 650 males born, KS is the most common genetic cause of male infertility, and new fertility preservation strategies are critically important for these patients. In this study, testes from 41, XXY prepubertal (3-day-old) mice were frozen-thawed. Isolated testicular cells were cultured and characterized by qPCR, digital PCR, and flow cytometry analyses. We demonstrated that SSCs survived and were able to be propagated with testicular somatic cells in culture for up to 120 days. DNA fluorescent in situ hybridization (FISH) showed the presence of XXY spermatogonia at the beginning of the culture and a variety of propagated XY, XX, and XXY spermatogonia at the end of the culture. These data provide the first evidence that an extra sex chromosome was lost during innate SSC culture, a crucial finding in treating KS patients for preserving and propagating SSCs for future sperm production, either in vitro or in vivo. This in vitro propagation system can be translated to clinical fertility preservation for KS patients.
Collapse
|
19
|
Zhang Y, de Lima CB, Zhou Z, Shen Q, Zhu Z, Hua J. Peptide-coating 2D and small chemical molecules prolong the passage of porcine spermatogonia stem cells. Reprod Domest Anim 2021; 57:200-209. [PMID: 34748668 DOI: 10.1111/rda.14042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/05/2021] [Indexed: 12/01/2022]
Abstract
Porcine spermatogonia stem cells (pSSCs) are the only type of somatic stem cell that can pass genetic information to the successive generations. Little is known about pSSCs vitality in vitro, and due to their increasing importance in stem cell research, here, we optimized a protocol to culture pSSCs and explored their potential fate in vitro. Utilizing a feeder-free culture system with a 2D peptide-coating and small chemical molecules (including CHIR99021, Repsox, Vatamin C, Folic Acid, and CD Lipid Concentrate), we were able to prolong the culture time of pSSCs by at least three months compared to previous methods. Moreover, we found that pSSCs could proliferate and self-renew in the seminiferous tubules of infertile mice. However, they could not perform meiosis. Our study shows that this feeder-free culture system optimizes cell culture and may facilitate advanced research on SSC biology and genetic manipulation of germ cells.
Collapse
Affiliation(s)
- Ying Zhang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, China, 712100
| | | | - Zhe Zhou
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, China, 712100
| | - Qiaoyan Shen
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, China, 712100
| | - Zhenshuo Zhu
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, China, 712100
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, China, 712100
| |
Collapse
|
20
|
Binsila B, Selvaraju S, Ranjithkumaran R, Archana SS, Krishnappa B, Ghosh SK, Kumar H, Subbarao RB, Arangasamy A, Bhatta R. Current scenario and challenges ahead in application of spermatogonial stem cell technology in livestock. J Assist Reprod Genet 2021; 38:3155-3173. [PMID: 34661801 DOI: 10.1007/s10815-021-02334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Spermatogonial stem cells (SSCs) are the source for the mature male gamete. SSC technology in humans is mainly focusing on preserving fertility in cancer patients. Whereas in livestock, it is used for mining the factors associated with male fertility. The review discusses the present status of SSC biology, methodologies developed for in vitro culture, and challenges ahead in establishing SSC technology for the propagation of superior germplasm with special reference to livestock. METHOD Published literatures from PubMed and Google Scholar on topics of SSCs isolation, purification, characterization, short and long-term culture of SSCs, stemness maintenance, epigenetic modifications of SSCs, growth factors, and SSC cryopreservation and transplantation were used for the study. RESULT The fine-tuning of SSC isolation and culture conditions with special reference to feeder cells, growth factors, and additives need to be refined for livestock. An insight into the molecular mechanisms involved in maintaining stemness and proliferation of SSCs could facilitate the dissemination of superior germplasm through transplantation and transgenesis. The epigenetic influence on the composition and expression of the biomolecules during in vitro differentiation of cultured cells is essential for sustaining fertility. The development of surrogate males through gene-editing will be historic achievement for the foothold of the SSCs technology. CONCLUSION Detailed studies on the species-specific factors regulating the stemness and differentiation of the SSCs are required for the development of a long-term culture system and in vitro spermatogenesis in livestock. Epigenetic changes in the SSCs during in vitro culture have to be elucidated for the successful application of SSCs for improving the productivity of the animals.
Collapse
Affiliation(s)
- Balakrishnan Binsila
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India.
| | - Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Rajan Ranjithkumaran
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Santhanahalli Siddalingappa Archana
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Balaganur Krishnappa
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Subrata Kumar Ghosh
- Animal Reproduction Division, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Harendra Kumar
- Animal Reproduction Division, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Raghavendra B Subbarao
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Arunachalam Arangasamy
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Raghavendra Bhatta
- Indian council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| |
Collapse
|
21
|
Martin-Inaraja M, Ferreira M, Taelman J, Eguizabal C, Chuva De Sousa Lopes SM. Improving In Vitro Culture of Human Male Fetal Germ Cells. Cells 2021; 10:cells10082033. [PMID: 34440801 PMCID: PMC8393746 DOI: 10.3390/cells10082033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Male human fetal germ cells (hFGCs) give rise to spermatogonial stem cells (SSCs), which are the adult precursors of the male gametes. Human SSCs are a promising (autologous) source of cells for male fertility preservation; however, in contrast to mouse SSCs, we are still unable to culture them in the long term. Here, we investigated the effect of two different culture media and four substrates (laminin, gelatin, vitronectin and matrigel) in the culture of dissociated second trimester testes, enriched for hFGCs. After 6 days in culture, we quantified the presence of POU5F1 and DDX4 expressing hFGCs. We observed a pronounced difference in hFGC number in different substrates. The combination of gelatin-coated substrate and medium containing GDNF, LIF, FGF2 and EGF resulted in the highest percentage of hFGCs (10% of the total gonadal cells) after 6 days of culture. However, the vitronectin-coated substrate resulted in a comparable percentage of hFGCs regardless of the media used (3.3% of total cells in Zhou-medium and 4.8% of total cells in Shinohara-medium). We provide evidence that not only the choices of culture medium but also choices of the adequate substrate are crucial for optimizing culture protocols for male hFGCs. Optimizing culture conditions in order to improve the expansion of hFGCs will benefit the development of gametogenesis assays in vitro.
Collapse
Affiliation(s)
- Myriam Martin-Inaraja
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, 48960 Galdakao, Spain; (M.M.-I.); (C.E.)
- Biocruces Bizkaia Health Research Institute, Cell Therapy, Stem Cells and Tissues Group, 48903 Barakaldo, Spain
| | - Monica Ferreira
- Department of Anatomy and Embryology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands; (M.F.); (J.T.)
| | - Jasin Taelman
- Department of Anatomy and Embryology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands; (M.F.); (J.T.)
| | - Cristina Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, 48960 Galdakao, Spain; (M.M.-I.); (C.E.)
- Biocruces Bizkaia Health Research Institute, Cell Therapy, Stem Cells and Tissues Group, 48903 Barakaldo, Spain
| | - Susana M. Chuva De Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands; (M.F.); (J.T.)
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
- Correspondence: ; Tel.: +31-71-526-9350
| |
Collapse
|
22
|
Tan K, Song HW, Wilkinson MF. RHOX10 drives mouse spermatogonial stem cell establishment through a transcription factor signaling cascade. Cell Rep 2021; 36:109423. [PMID: 34289349 PMCID: PMC8357189 DOI: 10.1016/j.celrep.2021.109423] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are essential for male fertility. Here, we report that mouse SSC generation is driven by a transcription factor (TF) cascade controlled by the homeobox protein, RHOX10, which acts by driving the differentiation of SSC precursors called pro-spermatogonia (ProSG). We identify genes regulated by RHOX10 in ProSG in vivo and define direct RHOX10-target genes using several approaches, including a rapid temporal induction assay: iSLAMseq. Together, these approaches identify temporal waves of RHOX10 direct targets, as well as RHOX10 secondary-target genes. Many of the RHOX10-regulated genes encode proteins with known roles in SSCs. Using an in vitro ProSG differentiation assay, we find that RHOX10 promotes mouse ProSG differentiation through a conserved transcriptional cascade involving the key germ-cell TFs DMRT1 and ZBTB16. Our study gives important insights into germ cell development and provides a blueprint for how to define TF cascades.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hye-Won Song
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
23
|
Doungkamchan C, Orwig KE. Recent advances: fertility preservation and fertility restoration options for males and females. Fac Rev 2021; 10:55. [PMID: 34195694 PMCID: PMC8204761 DOI: 10.12703/r/10-55] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fertility preservation is the process of saving gametes, embryos, gonadal tissues and/or gonadal cells for individuals who are at risk of infertility due to disease, medical treatments, age, genetics, or other circumstances. Adult patients have the options to preserve eggs, sperm, or embryos that can be used in the future to produce biologically related offspring with assisted reproductive technologies. These options are not available to all adults or to children who are not yet producing mature eggs or sperm. Gonadal cells/tissues have been frozen for several thousands of those patients worldwide with anticipation that new reproductive technologies will be available in the future. Therefore, the fertility preservation medical and research communities are obligated to responsibly develop next-generation reproductive technologies and translate them into clinical practice. We briefly describe standard options to preserve and restore fertility, but the emphasis of this review is on experimental options, including an assessment of readiness for translation to the human fertility clinic.
Collapse
Affiliation(s)
- Chatchanan Doungkamchan
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kyle E Orwig
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
24
|
Survivable potential of germ cells after trehalose cryopreservation of bovine testicular tissues. Cryobiology 2021; 101:105-114. [PMID: 33989617 DOI: 10.1016/j.cryobiol.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/23/2021] [Accepted: 05/01/2021] [Indexed: 12/26/2022]
Abstract
Germplasm preservation of livestock or endangered animals and expansion of germline stem cells are important. The purpose of this study is to investigate whether supplementation of trehalose to the freezing medium (FM) reduces tissular damage and improves the quality of testicular cells in the cryopreserved bovine testicular tissues. We herein established an optimized protocol for the cryopreservation of bovine testicular tissues, and the isolation as well as culture of bovine germ cells containing spermatogonial stem cells (SSCs) from these tissues. The results showed that FM containing 10% dimethyl sulfoxide (Me2SO/DMSO), 10% knockout serum replacement (KSR) and 20% trehalose (FM5) combined with the uncontrolled slow freezing (USF) procedures has the optimized cryoprotective effect on bovine testicular tissues. The FM5 + USF protocol reduced the cell apoptosis, maintained high cell viability, supported the structural integrity and seminiferous epithelial cohesion similar to that in the fresh tissues. Viable germ cells containing SSCs were effectively isolated from these tissues and they maintained germline marker expressions in the co-testicular cells and co-mouse embryonic fibroblasts (MEF) feeder culture systems respectively, during the short-term culture. Additionally, upregulated transcriptions of spermatogenic differentiation marker C-KIT and meiotic marker SYCP3 were detected in these cells after retinoic acid-induced differentiation. Together, FM5 + USF is suitable for the cryopreservation of bovine testicular tissues, with benefits of reducing the apoptosis, maintaining the cell viability, supporting the testicular structure integrity, and sustaining the survival and differentiation potential of bovine germ cells containing SSCs.
Collapse
|
25
|
Voigt AL, Thiageswaran S, de Lima e Martins Lara N, Dobrinski I. Metabolic Requirements for Spermatogonial Stem Cell Establishment and Maintenance In Vivo and In Vitro. Int J Mol Sci 2021; 22:1998. [PMID: 33670439 PMCID: PMC7922219 DOI: 10.3390/ijms22041998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
The spermatogonial stem cell (SSC) is a unique adult stem cell that requires tight physiological regulation during development and adulthood. As the foundation of spermatogenesis, SSCs are a potential tool for the treatment of infertility. Understanding the factors that are necessary for lifelong maintenance of a SSC pool in vivo is essential for successful in vitro expansion and safe downstream clinical usage. This review focused on the current knowledge of prepubertal testicular development and germ cell metabolism in different species, and implications for translational medicine. The significance of metabolism for cell biology, stem cell integrity, and fate decisions is discussed in general and in the context of SSC in vivo maintenance, differentiation, and in vitro expansion.
Collapse
Affiliation(s)
| | | | | | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (A.L.V.); (S.T.); (N.d.L.e.M.L.)
| |
Collapse
|
26
|
An interplay of NOX1-derived ROS and oxygen determines the spermatogonial stem cell self-renewal efficiency under hypoxia. Genes Dev 2021; 35:250-260. [PMID: 33446567 PMCID: PMC7849365 DOI: 10.1101/gad.339903.120] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) produced by NADPH1 oxidase 1 (NOX1) are thought to drive spermatogonial stem cell (SSC) self-renewal through feed-forward production of ROS by the ROS-BCL6B-NOX1 pathway. Here we report the critical role of oxygen on ROS-induced self-renewal. Cultured SSCs proliferated poorly and lacked BCL6B expression under hypoxia despite increase in mitochondria-derived ROS. Due to lack of ROS amplification under hypoxia, NOX1-derived ROS were significantly reduced, and Nox1-deficient SSCs proliferated poorly under hypoxia but normally under normoxia. NOX1-derived ROS also influenced hypoxic response in vivo because Nox1-deficient undifferentiated spermatogonia showed significantly reduced expression of HIF1A, a master transcription factor for hypoxic response. Hypoxia-induced poor proliferation occurred despite activation of MYC and suppression of CDKN1A by HIF1A, whose deficiency exacerbated self-renewal efficiency. Impaired proliferation of Nox1- or Hif1a-deficient SSCs under hypoxia was rescued by Cdkn1a depletion. Consistent with these observations, Cdkn1a-deficient SSCs proliferated actively only under hypoxia but not under normoxia. On the other hand, chemical suppression of mitochondria-derived ROS or Top1mt mitochondria-specific topoisomerase deficiency did not influence SSC fate, suggesting that NOX1-derived ROS play a more important role in SSCs than mitochondria-derived ROS. These results underscore the importance of ROS origin and oxygen tension on SSC self-renewal.
Collapse
|
27
|
Mori Y, Ogonuki N, Hasegawa A, Kanatsu-Shinohara M, Ogura A, Wang Y, McCarrey JR, Shinohara T. OGG1 protects mouse spermatogonial stem cells from reactive oxygen species in culture†. Biol Reprod 2020; 104:706-716. [PMID: 33252132 DOI: 10.1093/biolre/ioaa216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/23/2020] [Accepted: 11/23/2020] [Indexed: 01/10/2023] Open
Abstract
Although reactive oxygen species (ROS) are required for spermatogonial stem cell (SSC) self-renewal, they induce DNA damage and are harmful to SSCs. However, little is known about how SSCs protect their genome during self-renewal. Here, we report that Ogg1 is essential for SSC protection against ROS. While cultured SSCs exhibited homologous recombination-based DNA double-strand break repair at levels comparable with those in pluripotent stem cells, they were significantly more resistant to hydrogen peroxide than pluripotent stem cells or mouse embryonic fibroblasts, suggesting that they exhibit high levels of base excision repair (BER) activity. Consistent with this observation, cultured SSCs showed significantly lower levels of point mutations than somatic cells, and showed strong expression of BER-related genes. Functional screening revealed that Ogg1 depletion significantly impairs survival of cultured SSCs upon hydrogen peroxide exposure. Thus, our results suggest increased expression of BER-related genes, including Ogg1, protects SSCs from ROS-induced damage.
Collapse
Affiliation(s)
- Yoshifumi Mori
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Narumi Ogonuki
- RIKEN, BioResource Research Center, Tsukuba 305-0074, Japan
| | - Ayumi Hasegawa
- RIKEN, BioResource Research Center, Tsukuba 305-0074, Japan
| | - Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Atsuo Ogura
- RIKEN, BioResource Research Center, Tsukuba 305-0074, Japan
| | - Yufeng Wang
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
28
|
Li TT, Geng SS, Xu HY, Luo AL, Zhao PW, Yang H, Liang XW, Lu YQ, Yang XG, Lu KH. Effects of different culture systems on the culture of prepuberal buffalo ( Bubalus bubalis) spermatogonial stem cell-like cells in vitro. J Vet Sci 2020; 21:e13. [PMID: 31940692 PMCID: PMC7000897 DOI: 10.4142/jvs.2020.21.e13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022] Open
Abstract
Currently, the systems for culturing buffalo spermatogonial stem cells (SSCs) in vitro are varied, and their effects are still inconclusive. In this study, we compared the effects of culture systems with undefined (foetal bovine serum) and defined (KnockOut Serum Replacement) materials on the in vitro culture of buffalo SSC-like cells. Significantly more DDX4- and UCHL1-positive cells (cultured for 2 days at passage 2) were observed in the defined materials culture system than in the undefined materials system (p < 0.01), and these cells were maintained for a longer period than those in the culture system with undefined materials (10 days vs. 6 days). Furthermore, NANOS2 (p < 0.05), DDX4 (p < 0.01) and UCHL1 (p < 0.05) were expressed at significantly higher levels in the culture system with defined materials than in that with undefined materials. Induction with retinoic acid was used to verify that the cultured cells maintained SSC characteristics, revealing an SCP3+ subset in the cells cultured in the defined materials system. The expression levels of Stra8 (p < 0.05) and Rec8 (p < 0.01) were significantly increased, and the expression levels of ZBTB16 (p < 0.01) and DDX4 (p < 0.05) were significantly decreased. These findings provided a clearer research platform for exploring the mechanism of buffalo SSCs in vitro.
Collapse
Affiliation(s)
- Ting Ting Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Shuang Shuang Geng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Hui Yan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Ao Lin Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Peng Wei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Huan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Xing Wei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Yang Qing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Xiao Gan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China.
| | - Ke Huan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China.
| |
Collapse
|
29
|
Transcriptome profiling reveals signaling conditions dictating human spermatogonia fate in vitro. Proc Natl Acad Sci U S A 2020; 117:17832-17841. [PMID: 32661178 DOI: 10.1073/pnas.2000362117] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are essential for the generation of sperm and have potential therapeutic value for treating male infertility, which afflicts >100 million men world-wide. While much has been learned about rodent SSCs, human SSCs remain poorly understood. Here, we molecularly characterize human SSCs and define conditions favoring their culture. To achieve this, we first identified a cell-surface protein, PLPPR3, that allowed purification of human primitive undifferentiated spermatogonia (uSPG) highly enriched for SSCs. Comparative RNA-sequencing analysis of these enriched SSCs with differentiating SPG (KIT+ cells) revealed the full complement of genes that shift expression during this developmental transition, including genes encoding key components in the TGF-β, GDNF, AKT, and JAK-STAT signaling pathways. We examined the effect of manipulating these signaling pathways on cultured human SPG using both conventional approaches and single-cell RNA-sequencing analysis. This revealed that GDNF and BMP8B broadly support human SPG culture, while activin A selectively supports more advanced human SPG. One condition-AKT pathway inhibition-had the unique ability to selectively support the culture of primitive human uSPG. This raises the possibility that supplementation with an AKT inhibitor could be used to culture human SSCs in vitro for therapeutic applications.
Collapse
|
30
|
Polanco A, Kuang B, Yoon S. Bioprocess Technologies that Preserve the Quality of iPSCs. Trends Biotechnol 2020; 38:1128-1140. [PMID: 32941792 DOI: 10.1016/j.tibtech.2020.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022]
Abstract
Large-scale production of induced pluripotent stem cells (iPSCs) is essential for the treatment of a variety of clinical indications. However, culturing enough iPSCs for clinical applications is problematic due to their sensitive pluripotent state and dependence on a supporting matrix. Developing stem cell bioprocessing strategies that are scalable and meet clinical needs requires incorporating methods that measure and monitor intrinsic markers of cell differentiation state, developmental status, and viability in real time. In addition, proper cell culture modalities that nurture the growth of high-quality stem cells in suspension are critical for industrial scale-up. In this review, we present an overview of cell culture media, suspension modalities, and monitoring techniques that preserve the quality and pluripotency of iPSCs during initiation, expansion, and manufacturing.
Collapse
Affiliation(s)
- Ashli Polanco
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, USA
| | - Bingyu Kuang
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, USA.
| |
Collapse
|
31
|
Xiong C, Wang M, Ling W, Xie D, Chu X, Li Y, Huang Y, Li T, Otieno E, Qiu X, Xiao X. Advances in Isolation and Culture of Chicken Embryonic Stem Cells In Vitro. Cell Reprogram 2020; 22:43-54. [PMID: 32150690 DOI: 10.1089/cell.2019.0080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chicken embryonic stem cells (cESCs) isolated from the egg at the stage X hold great promise for cell therapy, tissue engineering, pharmaceutical, and biotechnological applications. They are considered to be pluripotent cells with the capacity to self-renewal and differentiate into specialized cells. However, long-term maintenance of cESCs cannot be realized now, which impedes the establishment of cESC line and limits their applications. Therefore, the separation locations, isolation methods, and culture conditions especially the supplements and action mechanisms of cytokines, including leukemia inhibitory factor, fibroblast growth factor, transforming growth factor beta, bone morphogenic protein, and activin for cESCs in vitro, have been reviewed here. These defined strategies will contribute to identify the key mechanism on the self-renewal of cESCs, facilitate to optimize system that supports the derivation and longtime maintenance of cESCs, establish the cESC line, and develop the biobank of genetic resources in chicken.
Collapse
Affiliation(s)
- Chunxia Xiong
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Mingyu Wang
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Wenhui Ling
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Dengfeng Xie
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xinyue Chu
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yunxin Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yun Huang
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Tong Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Edward Otieno
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiaoyan Qiu
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiong Xiao
- Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
32
|
Xia Q, Zhang D, Wang J, Zhang X, Song W, Chen R, Li H, Xie W, Zou K. Androgen Indirectly Regulates Gap Junction Component Connexin 43 Through Wilms Tumor-1 in Sertoli Cells. Stem Cells Dev 2020; 29:169-176. [DOI: 10.1089/scd.2019.0166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Qin Xia
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Danchen Zhang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jingjing Wang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyu Zhang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weixiang Song
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Rong Chen
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hua Li
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhai Xie
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
33
|
Murdock MH, David S, Swinehart IT, Reing JE, Tran K, Gassei K, Orwig KE, Badylak SF. Human Testis Extracellular Matrix Enhances Human Spermatogonial Stem Cell Survival In Vitro. Tissue Eng Part A 2019; 25:663-676. [PMID: 30311859 DOI: 10.1089/ten.tea.2018.0147] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPACT STATEMENT This study developed and characterized human testis extracellular matrix (htECM) and porcine testis ECM (ptECM) for testing in human spermatogonial stem cell (hSSC) culture. Results confirmed the hypothesis that ECM from the homologous species (human) and homologous tissue (testis) is optimal for maintaining hSSCs. We describe a simplified feeder-free, serum-free condition for future iterative testing to achieve the long-term goal of stable hSSC cultures. To facilitate analysis and understand the fate of hSSCs in culture, we describe a multiparameter, high-throughput, quantitative flow cytometry approach to rapidly count undifferentiated spermatogonia, differentiated spermatogonia, apoptotic spermatogonia, and proliferative spermatogonia in hSSC cultures.
Collapse
Affiliation(s)
- Mark H Murdock
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sherin David
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ilea T Swinehart
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Janet E Reing
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kien Tran
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kathrin Gassei
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kyle E Orwig
- 2 Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Stephen F Badylak
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- 3 Department of Surgery, and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- 4 Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Herrid M, Nagy P, Juhasz J, Morrell JM, Billah M, Khazanehdari K, Skidmore JA. Donor sperm production in heterologous recipients by testis germ cell transplantation in the dromedary camel. Reprod Fertil Dev 2019; 31:538-546. [PMID: 30309435 DOI: 10.1071/rd18191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/12/2018] [Indexed: 01/10/2023] Open
Abstract
The object of this study was to investigate if testis germ cell transplantation (TGCT) into a heterologous recipient would result in donor-origin spermatogenesis in the dromedary camel. First, we investigated a workable protocol for TGCT in camels, including donor cell isolation, enrichment by density gradient centrifugation (Percoll and Bovicoll), rete testis injection and microsatellite detection of donor and recipient genotypes. Second, the effects of three doses of Dolichos biflorus agglutinin (DBA), a glycoprotein that specifically binds to gonocytes or Type A spermatogonia, on testis germ cell depletion were investigated by direct injection into the rete testis of a male camel. Seven recipients were prepared with DBA treatment, two males were castrated at 4 weeks for depletion assessment and the remaining five received donor cells 4-6 weeks after treatment. On average, ~17 million cells were isolated per gram of testis tissue, with 19.5±1.9% DBA-positive (DBA+) cells. Percoll centrifugation yielded a 1.5-fold increase in DBA+ cells while Bovicoll centrifugation produced a 2.5-fold increase from the input cells of 18.6±2.1% DBA+ cells. Semen was collected from the recipients 13-20 weeks after transfer and the presence of donor DNA in the samples was determined using microsatellite markers. In two of the five recipients, all semen samples were shown to be positive for donor-derived cells. These results demonstrate for the first time that: (1) heterologous testicular germ cell transplantation in camels is feasible and the recipients are able to produce spermatozoa of donor origin and (2) DBA can be used effectively to deplete endogenous stem cells.
Collapse
Affiliation(s)
- Muren Herrid
- Camel Reproduction Centre, PO Box 79914, Dubai, United Arab Emirates
| | - Peter Nagy
- Emirates Industry for Camel Milk and Products, Dubai, United Arab Emirates
| | - Jutka Juhasz
- Emirates Industry for Camel Milk and Products, Dubai, United Arab Emirates
| | - Jane M Morrell
- Division of Reproduction, Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - M Billah
- Camel Reproduction Centre, PO Box 79914, Dubai, United Arab Emirates
| | - Kamal Khazanehdari
- Molecular Biology and Genetics Laboratory, PO Box 597, Dubai, United Arab Emirates
| | - Julian A Skidmore
- Camel Reproduction Centre, PO Box 79914, Dubai, United Arab Emirates
| |
Collapse
|
35
|
Gauthier-Fisher A, Kauffman A, Librach CL. Potential use of stem cells for fertility preservation. Andrology 2019; 8:862-878. [PMID: 31560823 DOI: 10.1111/andr.12713] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Infertility and gonadal dysfunction can result from gonadotoxic therapies, environmental exposures, aging, or genetic conditions. In men, non-obstructive azoospermia (NOA) results from defects in the spermatogenic process that can be attributed to spermatogonial stem cells (SSC) or their niche, or both. While assisted reproductive technologies and sperm banking can enable fertility preservation (FP) in men of reproductive age who are at risk for infertility, FP for pre-pubertal patients remains experimental. Therapeutic options for NOA are limited. The rapid advance of stem cell research and of gene editing technologies could enable new FP options for these patients. Induced pluripotent stem cells (iPSC), SSC, and testicular niche cells, as well as mesenchymal stromal cells (aka medicinal signaling cells, MSCs), have been investigated for their potential use in male FP strategies. OBJECTIVE Here, we review the benefits and challenges for three types of stem cell-based approaches under investigation for male FP, focusing on the role that promising sources of MSC derived from human umbilical cord, specifically human umbilical cord perivascular cells (HUCPVC), could fulfill. These approaches are as follows: 1. isolation and ex vivo expansion of autologous SSC for in vivo transplantation or in vitro spermatogenesis; 2. in vitro differentiation toward germ cell and testicular somatic cell lineages using autologous SSC, or stem cells such iPSC or MSC; and 3. protection or regeneration of the spermatogenic niche after gonadotoxic insults in vivo. CONCLUSION Our studies suggest that HUCPVC are promising sources of cells that could be utilized in multiple aspects of male FP strategies.
Collapse
Affiliation(s)
| | - A Kauffman
- CReATe Fertility Centre, Toronto, ON, Canada
| | - C L Librach
- CReATe Fertility Centre, Toronto, ON, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Gynecology, Women's College Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
36
|
Song W, Shi X, Xia Q, Yuan M, Liu J, Hao K, Qian Y, Zhao X, Zou K. PLZF suppresses differentiation of mouse spermatogonial progenitor cells via binding of differentiation associated genes. J Cell Physiol 2019; 235:3033-3042. [PMID: 31541472 DOI: 10.1002/jcp.29208] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/03/2019] [Indexed: 11/06/2022]
Abstract
Promyelocytic leukaemia zinc finger (PLZF) is a key factor in inhibiting differentiation of spermatogonial progenitor cells (SPCs), but the underlying mechanisms are still largely unknown. In this study, the regulation of PLZF on Kit, Stra8, Sohlh2, and Dmrt1 (SPCs differentiation related genes) was investigated. We found some PLZF potential binding sites existed in the promoters of Kit, Stra8, Sohlh2, and Dmrt1. Additionally, the expressions of KIT, STRA8, SOHLH2, and DMRT1 were upregulated when PLZF was knockdown in SPCs. Furthermore, chromatin immunoprecipitation quantitative polymerase chain reaction revealed PLZF directly bound to the promoters of Kit, Stra8, Sohlh2, and Dmrt1. Besides, dual luciferase assay verified PLZF repressed those gene expressions. Collectively, our finding indicate that PLZF binds to the promoter regions of Kit, Stra8, Sohlh2, and Dmrt1 to regulate SPCs differentiation, which facilitate us to further understand the regulatory mechanism of PLZF in SPCs fates.
Collapse
Affiliation(s)
- Weixiang Song
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xinglong Shi
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Xia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Min Yuan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiaxi Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kunying Hao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yinjuan Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kang Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
37
|
Wang JH, Li Y, Deng SL, Liu YX, Lian ZX, Yu K. Recent Research Advances in Mitosis during Mammalian Gametogenesis. Cells 2019; 8:cells8060567. [PMID: 31185583 PMCID: PMC6628140 DOI: 10.3390/cells8060567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/02/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
Mitosis is a highly sophisticated and well-regulated process during the development and differentiation of mammalian gametogenesis. The regulation of mitosis plays an essential role in keeping the formulation in oogenesis and gametogenesis. In the past few years, substantial research progress has been made by showing that cyclins/cyclin-dependent kinase (CDK) have roles in the regulation of meiosis. In addition, more functional signaling molecules have been discovered in mitosis. Growing evidence has also indicated that miRNAs influence cell cycling. In this review, we focus on specific genes, cyclins/Cdk, signaling pathways/molecules, and miRNAs to discuss the latest achievements in understanding their roles in mitosis during gametogenesis. Further elucidation of mitosis during gametogenesis may facilitate delineating all processes of mammalian reproduction and the development of disease treatments.
Collapse
Affiliation(s)
- Jia-Hao Wang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yan Li
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Shou-Long Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
38
|
Morimoto H, Kanastu-Shinohara M, Ogonuki N, Kamimura S, Ogura A, Yabe-Nishimura C, Mori Y, Morimoto T, Watanabe S, Otsu K, Yamamoto T, Shinohara T. ROS amplification drives mouse spermatogonial stem cell self-renewal. Life Sci Alliance 2019; 2:2/2/e201900374. [PMID: 30940732 PMCID: PMC6448598 DOI: 10.26508/lsa.201900374] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 01/10/2023] Open
Abstract
Although reactive oxygen species (ROS) are required for spermatogonial stem cell (SSC) self-renewal, the mechanism has remained unknown. We show that SSC self-renewal signals activate MAPK14/MAPK7 pathway to induce nuclear translocation of BCL6B and activation of NOX1. Reactive oxygen species (ROS) play critical roles in self-renewal division for various stem cell types. However, it remains unclear how ROS signals are integrated with self-renewal machinery. Here, we report that the MAPK14/MAPK7/BCL6B pathway creates a positive feedback loop to drive spermatogonial stem cell (SSC) self-renewal via ROS amplification. The activation of MAPK14 induced MAPK7 phosphorylation in cultured SSCs, and targeted deletion of Mapk14 or Mapk7 resulted in significant SSC deficiency after spermatogonial transplantation. The activation of this signaling pathway not only induced Nox1 but also increased ROS levels. Chemical screening of MAPK7 targets revealed many ROS-dependent spermatogonial transcription factors, of which BCL6B was found to initiate ROS production by increasing Nox1 expression via ETV5-induced nuclear translocation. Because hydrogen peroxide or Nox1 transfection also induced BCL6B nuclear translocation, our results suggest that BCL6B initiates and amplifies ROS signals to activate ROS-dependent spermatogonial transcription factors by forming a positive feedback loop.
Collapse
Affiliation(s)
- Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mito Kanastu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science, Tokyo, Japan
| | - Narumi Ogonuki
- Institute for Physical and Chemical Research (RIKEN), Bioresource Center, Tsukuba, Japan
| | - Satoshi Kamimura
- Institute for Physical and Chemical Research (RIKEN), Bioresource Center, Tsukuba, Japan
| | - Atsuo Ogura
- Institute for Physical and Chemical Research (RIKEN), Bioresource Center, Tsukuba, Japan
| | | | - Yoshifumi Mori
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Morimoto
- Department of Clinical Epidemiology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Satoshi Watanabe
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kinya Otsu
- Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Takuya Yamamoto
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science, Tokyo, Japan.,Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
39
|
Watanabe S, Kanatsu-Shinohara M, Shinohara T. Sendai virus-mediated transduction of mammalian spermatogonial stem cells†. Biol Reprod 2019; 100:523-534. [PMID: 30165393 DOI: 10.1093/biolre/ioy192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 12/25/2022] Open
Abstract
Spermatogonial stem cells (SSCs) provide the foundation of spermatogenesis. However, because of their small number and slow self-renewal, transfection of SSCs has met with limited success. Although several viral vectors can infect SSCs, genome integration and an inability to maintain long-term gene expression have hampered studies on SSCs. Here we report successful SSC infection by Sendai virus (SV), an RNA virus in the Paramyxoviridae. The SV efficiently transduced germline stem (GS) cells, cultured spermatogonia with enriched SSC activity, and maintained gene expression for at least 5 months. It also infected freshly isolated SSCs from adult testes. The transfected GS cells reinitiated spermatogenesis following spermatogonial transplantation into seminiferous tubules of infertile mice, suggesting that SV transfection does not interfere with spermatogenesis progression. On the other hand, microinjection of SV into the seminiferous tubules of immature mice transduced SSCs and Sertoli cells, but did not transduce Leydig or peritubular cells by interstitial virus injection. SV-infected hamster GS cells, and freshly isolated rabbit or monkey SSC-like cells were identified following xenogeneic spermatogonial transplantation, suggesting that SV transduces SSCs from several mammalian species. Thus, SV is a useful vector that can transduce both SSCs and Sertoli cells and overcome problems associated with other viral vectors.
Collapse
Affiliation(s)
- Satoshi Watanabe
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
40
|
Kitadate Y, Jörg DJ, Tokue M, Maruyama A, Ichikawa R, Tsuchiya S, Segi-Nishida E, Nakagawa T, Uchida A, Kimura-Yoshida C, Mizuno S, Sugiyama F, Azami T, Ema M, Noda C, Kobayashi S, Matsuo I, Kanai Y, Nagasawa T, Sugimoto Y, Takahashi S, Simons BD, Yoshida S. Competition for Mitogens Regulates Spermatogenic Stem Cell Homeostasis in an Open Niche. Cell Stem Cell 2018; 24:79-92.e6. [PMID: 30581080 PMCID: PMC6327111 DOI: 10.1016/j.stem.2018.11.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/30/2018] [Accepted: 11/09/2018] [Indexed: 01/08/2023]
Abstract
In many tissues, homeostasis is maintained by physical contact between stem cells and an anatomically defined niche. However, how stem cell homeostasis is achieved in environments where cells are motile and dispersed among their progeny remains unknown. Using murine spermatogenesis as a model, we find that spermatogenic stem cell density is tightly regulated by the supply of fibroblast growth factors (FGFs) from lymphatic endothelial cells. We propose that stem cell homeostasis is achieved through competition for a limited supply of FGFs. We show that the quantitative dependence of stem cell density on FGF dosage, the biased localization of stem cells toward FGF sources, and stem cell dynamics during regeneration following injury can all be predicted and explained within the framework of a minimal theoretical model based on "mitogen competition." We propose that this model provides a generic and robust mechanism to support stem cell homeostasis in open, or facultative, niche environments.
Collapse
Affiliation(s)
- Yu Kitadate
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - David J Jörg
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK
| | - Moe Tokue
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Ayumi Maruyama
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Rie Ichikawa
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Soken Tsuchiya
- Department of Pharmaceutical Biochemistry, Kumamoto University Graduate School of Pharmaceutical Sciences, Oe-Honmachi, Kumamoto 862-0973, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Eri Segi-Nishida
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Toshinori Nakagawa
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Aya Uchida
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chiharu Kimura-Yoshida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Takuya Azami
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Chiyo Noda
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Satoru Kobayashi
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Isao Matsuo
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine, Immunology Frontier Research Center, World Premier International Research Center (WPI), Osaka University, Osaka 565-0871, Japan
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Kumamoto University Graduate School of Pharmaceutical Sciences, Oe-Honmachi, Kumamoto 862-0973, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Benjamin D Simons
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK.
| | - Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| |
Collapse
|
41
|
Tomizawa SI, Kobayashi Y, Shirakawa T, Watanabe K, Mizoguchi K, Hoshi I, Nakajima K, Nakabayashi J, Singh S, Dahl A, Alexopoulou D, Seki M, Suzuki Y, Royo H, Peters AHFM, Anastassiadis K, Stewart AF, Ohbo K. Kmt2b conveys monovalent and bivalent H3K4me3 in mouse spermatogonial stem cells at germline and embryonic promoters. Development 2018; 145:145/23/dev169102. [PMID: 30504434 DOI: 10.1242/dev.169102] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
Abstract
The mammalian male germline is sustained by a pool of spermatogonial stem cells (SSCs) that can transmit both genetic and epigenetic information to offspring. However, the mechanisms underlying epigenetic transmission remain unclear. The histone methyltransferase Kmt2b is highly expressed in SSCs and is required for the SSC-to-progenitor transition. At the stem-cell stage, Kmt2b catalyzes H3K4me3 at bivalent H3K27me3-marked promoters as well as at promoters of a new class of genes lacking H3K27me3, which we call monovalent. Monovalent genes are mainly activated in late spermatogenesis, whereas most bivalent genes are mainly not expressed until embryonic development. These data suggest that SSCs are epigenetically primed by Kmt2b in two distinguishable ways for the upregulation of gene expression both during the spermatogenic program and through the male germline into the embryo. Because Kmt2b is also the major H3K4 methyltransferase for bivalent promoters in embryonic stem cells, we also propose that Kmt2b has the capacity to prime stem cells epigenetically.
Collapse
Affiliation(s)
- Shin-Ichi Tomizawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Yuki Kobayashi
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Takayuki Shirakawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kumiko Watanabe
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Keita Mizoguchi
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Ikue Hoshi
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kuniko Nakajima
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Jun Nakabayashi
- Bioinformatics Laboratory, Advanced Medical Research Center, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Sukhdeep Singh
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Andreas Dahl
- Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Dimitra Alexopoulou
- Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Hélène Royo
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4056 Basel, Switzerland
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.,Faculty of Sciences, University of Basel, 4058 Basel, Switzerland
| | - Konstantinos Anastassiadis
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - A Francis Stewart
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Kazuyuki Ohbo
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
42
|
Zhao H, Nie J, Zhu X, Lu Y, Liang X, Xu H, Yang X, Zhang Y, Lu K, Lu S. In vitro differentiation of spermatogonial stem cells using testicular cells from Guangxi Bama mini-pig. J Vet Sci 2018; 19:592-599. [PMID: 29929354 PMCID: PMC6167331 DOI: 10.4142/jvs.2018.19.5.592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 04/28/2018] [Accepted: 05/09/2018] [Indexed: 11/20/2022] Open
Abstract
In this study, we attempted to establish a culture system for in vitro spermatogenesis from spermatogonial stem cells (SSCs) of Bama mini-pig. Dissociated testicular cells from 1-month-old pigs were co-cultured to mimic in vivo spermatogenesis. The testicular cells were seeded in minimum essential medium alpha (α-MEM) supplemented with Knockout serum replacement (KSR). Three-dimensional colonies formed after 10 days of culture. The colonies showed positive staining for SSC-associated markers such as UCHL1, PLZF, THY1, OCT4, Dolichos biflorus agglutinin, and alkaline phosphatase. Induction of SSCs was performed in α-MEM + KSR supplemented with retinoic acid, bone morphogenetic protein 4, activin A, follicle-stimulating hormone, or testosterone. The results showed that STRA8, DMC1, PRM1, and TNP1 were upregulated significantly in the colonies after induction compared to that in testis from 1-month-old pigs, while expression levels of those genes were significantly low compared to those in 2-month-old testis. However, upregulation of ACROSIN was not significant. Replacement of α-MEM and KSR with Iscove's modified Dulbecco's medium and fetal bovine serum did not upregulate expression of these genes significantly. These results indicate that SSCs of Bama mini-pig could undergo differentiation and develop to a post-meiotic stage in α-MEM supplemented with KSR and induction factors.
Collapse
Affiliation(s)
- Huimin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China.,College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Junyu Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Xiangxing Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Huiyan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Xiaogan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Yunkai Zhang
- College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Kehuan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Shengsheng Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| |
Collapse
|
43
|
Takashima S. Biology and manipulation technologies of male germline stem cells in mammals. Reprod Med Biol 2018; 17:398-406. [PMID: 30377393 PMCID: PMC6194257 DOI: 10.1002/rmb2.12220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 06/24/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Spermatogonial stem cells (SSCs) are the origin of sperm and defined by their functions of "colonization in the testis" and "spermatogenesis". In vitro manipulation techniques of SSCs contribute to a wide variety of fields including reproductive medicine and molecular breeding. This review presents the recent progress of the biology and manipulation technologies of SSCs. METHODS Research articles regarding SSC biology and technologies were collected and summarized. MAIN FINDINGS Dr. Ralph Brinster developed the spermatogonial transplantation technique that enables SSC detection by functional markers. Using this technique, cultured SSCs, termed germline stem (GS) cells, were established from the mouse. GS cells provide the opportunity to produce genome-edited animals without using zygotes. In vitro spermatogenesis allows production of haploid germ cells from GS cells without spermatogonial transplantation. The recent advancement of pluripotent stem cell culture techniques has also achieved production of functional GS-like cells in addition to male/female germ cells. CONCLUSION Although in vitro manipulation techniques of GS cells have been developed for the mouse, it appears to be difficult to apply these techniques to other species. Understanding and control of interspecies barriers are required to extend this technology to nonrodent mammals.
Collapse
Affiliation(s)
- Seiji Takashima
- Faculty of Textile Science and TechnologyShinshu UniversityUedaJapan
- Graduate school of Science and TechnologyShinshu UniversityUedaJapan
| |
Collapse
|
44
|
Kanatsu-Shinohara M, Morimoto H, Watanabe S, Shinohara T. Reversible inhibition of the blood-testis barrier protein improves stem cell homing in mouse testes. J Reprod Dev 2018; 64:511-522. [PMID: 30175719 PMCID: PMC6305854 DOI: 10.1262/jrd.2018-093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Stem cell homing is a complex phenomenon that involves multiple steps; thus far, attempts to increase homing efficiency have met with limited success. Spermatogonial stem cells (SSCs)
migrate to the niche after microinjection into seminiferous tubules, but the homing efficiency is very low. Here we report that reversible disruption of the blood-testis barrier (BTB)
between Sertoli cells enhances the homing efficiency of SSCs. We found that SSCs on a C57BL/6 background are triggered to proliferate in vitro when MHY1485, which stimulates
MTORC, were added to culture medium. However, the cultured cells did not produce offspring by direct injection into the seminiferous tubules. When acyline, a gonadotropin-releasing hormone
(GnRH) analogue, was administered into infertile recipients, SSC colonization increased by ~5-fold and the recipients sired offspring. In contrast, both untreated individuals and recipients
that received leuprolide, another GnRH analogue, remained infertile. Acyline not only decreased CLDN5 expression but also impaired the BTB, suggesting that increased colonization was caused
by efficient SSC migration through the BTB. Enhancement of stem cell homing by tight junction protein manipulation constitutes a new approach to improve homing efficiency, and similar
strategy may be applicable to other self-renewing tissues.
Collapse
Affiliation(s)
- Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Satoshi Watanabe
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
45
|
Takashima S, Shinohara T. Culture and transplantation of spermatogonial stem cells. Stem Cell Res 2018; 29:46-55. [DOI: 10.1016/j.scr.2018.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/24/2018] [Accepted: 03/09/2018] [Indexed: 12/22/2022] Open
|
46
|
Sakashita A, Yeh YHV, Namekawa SH, Lin SP. Epigenomic and single-cell profiling of human spermatogonial stem cells. Stem Cell Investig 2018; 5:11. [PMID: 29782571 PMCID: PMC5945786 DOI: 10.21037/sci.2018.04.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/09/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Akihiko Sakashita
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Yu-Han V. Yeh
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Satoshi H. Namekawa
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Shau-Ping Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University/Academia Sinica, Taipei, Taiwan
- Agricultural Biotechnology Research Centre, Academia Sinica, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
47
|
Dumont L, Chalmel F, Oblette A, Berby B, Rives A, Duchesne V, Rondanino C, Rives N. Evaluation of apoptotic- and autophagic-related protein expressions before and after IVM of fresh, slow-frozen and vitrified pre-pubertal mouse testicular tissue. Mol Hum Reprod 2017; 23:738-754. [DOI: 10.1093/molehr/gax054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- L Dumont
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), France
| | - F Chalmel
- Inserm U1085-IRSET, Université de Rennes 1, Rennes, France
| | - A Oblette
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), France
| | - B Berby
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), France
| | - A Rives
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), France
| | - V Duchesne
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), France
| | - C Rondanino
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), France
| | - N Rives
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), France
| |
Collapse
|
48
|
Shinohara T, Kazuki K, Ogonuki N, Morimoto H, Matoba S, Hiramatsu K, Honma K, Suzuki T, Hara T, Ogura A, Oshimura M, Kanatsu-Shinohara M, Kazuki Y. Transfer of a Mouse Artificial Chromosome into Spermatogonial Stem Cells Generates Transchromosomic Mice. Stem Cell Reports 2017; 9:1180-1191. [PMID: 28943251 PMCID: PMC5639258 DOI: 10.1016/j.stemcr.2017.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022] Open
Abstract
The introduction of megabase-sized large DNA fragments into the germline has been a difficult task. Although microcell-mediated chromosome transfer into mouse embryonic stem cells (ESCs) allows the production of transchromosomic mice, ESCs have unstable karyotypes and germline transmission is unreliable by chimera formation. As spermatogonial stem cells (SSCs) are the only stem cells in the germline, they represent an attractive target for germline modification. Here, we report successful transfer of a mouse artificial chromosome (MAC) into mouse germline stem cells (GSCs), cultured spermatogonia enriched for SSCs. MAC-transferred GSCs maintained the host karyotype and MAC more stably than ESCs, which have significant variation in chromosome number. Moreover, MAC-transferred GSCs produced transchromosomic mice following microinjection into the seminiferous tubules of infertile recipients. Successful transfer of MACs to GSCs overcomes the problems associated with ESC-mediated germline transmission and provides new possibilities in germline modification. Retro-MMCT method allows transfer of a mouse artificial chromosome into GSCs GSCs maintained exogenous chromosomes more stably than ESCs Transchromosomic mice were born from GSCs following germ cell transplantation Unlike ESCs, transchromosomic mice were born directly in F1 generation
Collapse
Affiliation(s)
- Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kanako Kazuki
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishicho, Yonago 683-8503, Japan
| | | | - Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shogo Matoba
- RIKEN BioResource Center, Tsukuba 305-0074, Japan
| | - Kei Hiramatsu
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago 683-8503, Japan
| | - Kazuhisa Honma
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago 683-8503, Japan
| | - Teruhiko Suzuki
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Takahiko Hara
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Atsuo Ogura
- RIKEN BioResource Center, Tsukuba 305-0074, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishicho, Yonago 683-8503, Japan
| | - Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan; Japan Science and Technology Agency, PRESTO, Kyoto 606-8501, Japan.
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishicho, Yonago 683-8503, Japan; Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago 683-8503, Japan.
| |
Collapse
|
49
|
Zheng Y, Jongejan A, Mulder CL, Mastenbroek S, Repping S, Wang Y, Li J, Hamer G. Trivial role for NSMCE2 during in vitro proliferation and differentiation of male germline stem cells. Reproduction 2017; 154:181-195. [DOI: 10.1530/rep-17-0173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/26/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
Abstract
Spermatogenesis, starting with spermatogonial differentiation, is characterized by ongoing and dramatic alterations in composition and function of chromatin. Failure to maintain proper chromatin dynamics during spermatogenesis may lead to mutations, chromosomal aberrations or aneuploidies. When transmitted to the offspring, these can cause infertility or congenital malformations. The structural maintenance of chromosomes (SMC) 5/6 protein complex has recently been described to function in chromatin modeling and genomic integrity maintenance during spermatogonial differentiation and meiosis. Among the subunits of the SMC5/6 complex, non-SMC element 2 (NSMCE2) is an important small ubiquitin-related modifier (SUMO) ligase. NSMCE2 has been reported to be essential for mouse development, prevention of cancer and aging in adult mice and topological stress relief in human somatic cells. By using in vitro cultured primary mouse spermatogonial stem cells (SSCs), referred to as male germline stem (GS) cells, we investigated the function of NSMCE2 during spermatogonial proliferation and differentiation. We first optimized a protocol to generate genetically modified GS cell lines using CRISPR-Cas9 and generated an Nsmce2−/− GS cell line. Using this Nsmce2−/− GS cell line, we found that NSMCE2 was dispensable for proliferation, differentiation and topological stress relief in mouse GS cells. Moreover, RNA sequencing analysis demonstrated that the transcriptome was only minimally affected by the absence of NSMCE2. Only differential expression of Sgsm1 appeared highly significant, but with SGSM1 protein levels being unaffected without NSMCE2. Hence, despite the essential roles of NSMCE2 in somatic cells, chromatin integrity maintenance seems differentially regulated in the germline.
Collapse
|
50
|
Abstract
Spermatogonial stem cells (SSCs) are crucial for maintaining spermatogenesis throughout life, and understanding how these cells function has important implications for understanding male infertility. Recently, various populations of cells harbouring stem cell-like properties have been identified in rodent seminiferous tubules, but deciphering how these cells might fuel spermatogenesis has been difficult, and various models to explain SSC dynamics have been put forward. This Review provides an overview of the organization and timing of spermatogenesis and then discusses these models in light of recent studies of SSC markers, heterogeneity and cell division dynamics, highlighting the evidence for and against each model.
Collapse
Affiliation(s)
- Dirk G. de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|