1
|
Sanchez-Rodriguez A, Idrovo IID, Rielo JA, Roldan ERS. Sperm Capacitation and Kinematics in Phodopus Hamsters. Int J Mol Sci 2023; 24:16093. [PMID: 38003282 PMCID: PMC10671044 DOI: 10.3390/ijms242216093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
This study was designed to analyze changes in the spermatozoa of three species of Phodopus hamsters incubated under different conditions. Cauda epididymal sperm were incubated for 4 h in modified Tyrode's medium containing albumin, lactate, pyruvate, and Hepes (mTALP-H), in the same medium with the addition of bicarbonate (mTALP-BH), or with bicarbonate and 20 ng/mL of progesterone (mTALP-BH+P4). Media with bicarbonate are believed to promote capacitation in rodent species. Sperm motility, viability, capacitation patterns, and kinematics were assessed at different times. Capacitation in live cells was quantified after staining with Hoechst 33258 and chlortetracycline. Patterns believed to correspond to non-capacitated cells (F pattern), capacitated, acrosome-intact cells (B pattern), and acrosome-reacted cells (AR pattern) were recognized. Kinematics were examined via computer-assisted sperm analysis (CASA). The results showed a decrease in total motility in all three species in different media, with a sharp decrease in progressive motility in bicarbonate-containing media (without or with progesterone), suggesting hyperactivated motion. However, none of the other signs of hyperactivation described in rodents (i.e., decrease in STR or LIN, together with an increase in ALH) were observed. F pattern cells diminished with time in all media and were generally lower in P. roborovskii and higher in P. campbelli. B pattern cells increased in mTALP-BH media in all species. Progesterone did not enhance the percentage of B pattern cells. Finally, AR pattern cells increased in all species incubated in different media, showing the highest percentage in P. roborovskii and the lowest in P. campbelli. Comparisons between media revealed that there were higher percentages of F pattern cells and lower percentages of B pattern cells over time in medium without bicarbonate (mTALP-H) in comparison to media containing bicarbonate (mTALP-BH; mTALP-BH+P4). Overall, changes consistent with the acquisition of capacitation and development of hyperactivated motility were found; however, further studies are required to better characterize media necessary to support the pathways involved in these processes in Phodopus species.
Collapse
Affiliation(s)
| | | | | | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Calle Jose Gutierrez Abascal 2, 28006 Madrid, Spain; (A.S.-R.)
| |
Collapse
|
2
|
Agudo-Rios C, Sanchez-Rodriguez A, Idrovo IID, Laborda-Gomariz JÁ, Soler AJ, Teves ME, Roldan ERS. Sperm Chromatin Status and DNA Fragmentation in Mouse Species with Divergent Mating Systems. Int J Mol Sci 2023; 24:15954. [PMID: 37958937 PMCID: PMC10648696 DOI: 10.3390/ijms242115954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Sperm DNA integrity and chromatin status serve as pivotal indicators of sperm quality, given their intricate link to sperm function, embryo development, and overall fertility. Defects in chromatin compaction, which are often associated with compromised protamine content, can lead to damaged DNA strands. In this study, the chromatin status and possible correlation with DNA damage was assessed in males of three mouse species: Mus musculus, M. spretus, and M. spicilegus. We employed various staining methods, including aniline blue, methylene blue (Diff-Quik), toluidine blue, and chromomycin A3, to assess chromatin compaction in cauda epididymal sperm. Samples were also analyzed by the sperm chromatin structure assay (SCSA) to estimate DNA fragmentation (%tDFI, %HDS). Analyses were carried out on freshly collected sperm and cells incubated for 3 h in a HEPES-buffered modified Tyrode's medium simulating conditions of the female reproductive tract. Notably, the analysis of chromatin status yielded minimal abnormal values across all three species employing diverse methodologies. SCSA analyses revealed distinct variations in %tDFI between species. Following sperm incubation, the percentages of sperm stained with methylene blue exhibited differences among the species and were significantly correlated to the DNA fragmentation index. HDS demonstrated correlations with the percentages of sperm stained by aniline blue, methylene blue, and chromomycin A3. Overall, chromatin compaction was high across all species, with limited differences among them. The relationship between chromatin status and DNA integrity appeared to be related to levels of sperm competition among species.
Collapse
Affiliation(s)
- Clara Agudo-Rios
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| | - Ana Sanchez-Rodriguez
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| | - Ingrid I. D. Idrovo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| | | | - Ana J. Soler
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario, 02071 Albacete, Spain
| | - Maria E. Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| |
Collapse
|
3
|
Tourmente M, Sansegundo E, Rial E, Roldan ERS. Bioenergetic changes in response to sperm capacitation and two-way metabolic compensation in a new murine model. Cell Mol Life Sci 2023; 80:11. [PMID: 36534181 PMCID: PMC9763147 DOI: 10.1007/s00018-022-04652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/29/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
The acquisition of fertilizing ability by mammalian spermatozoa, known as "capacitation," includes processes that depend on particular metabolic pathways. This has led to the hypothesis that ATP demands might differ between capacitated and non-capacitated cells. Mouse sperm can produce ATP via OXPHOS and aerobic glycolysis, an advantageous characteristic considering that these cells have to function in the complex and variable environment of the female reproductive tract. Nonetheless, despite evidence showing that both metabolic pathways play a role in events associated with mouse sperm capacitation, there is contradictory evidence regarding changes promoted by capacitation in this species. In addition, the vast majority of studies regarding murine sperm metabolism use Mus musculus laboratory strains as model, thus neglecting the wide diversity of sperm traits of other species of Mus. Focus on closely related species with distinct evolutionary histories, which may be the result of different selective pressures, could shed light on diversity of metabolic processes. Here, we analyzed variations in sperm bioenergetics associated with capacitation in spermatozoa of the steppe mouse, Mus spicilegus, a species with high sperm performance. Furthermore, we compared sperm metabolic traits of this species with similar traits previously characterized in M. musculus. We found that the metabolism of M. spicilegus sperm responded to capacitation in a manner similar to that of M. musculus sperm. However, M. spicilegus sperm showed distinct metabolic features, including the ability to perform cross-pathway metabolic compensation in response to either respiratory or glycolytic inhibition, thus revealing a delicate fine-tuning of its metabolic capacities.
Collapse
Affiliation(s)
- Maximiliano Tourmente
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain.
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN - UNC), Universidad Nacional de Córdoba, Córdoba, Argentina.
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IIByT - CONICET, UNC), Córdoba, Argentina.
| | - Ester Sansegundo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Eduardo Rial
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain.
| |
Collapse
|
4
|
Sanchez-Rodriguez A, Sansegundo E, Tourmente M, Roldan ERS. Effect of High Viscosity on Energy Metabolism and Kinematics of Spermatozoa from Three Mouse Species Incubated under Capacitating Conditions. Int J Mol Sci 2022; 23:ijms232315247. [PMID: 36499575 PMCID: PMC9737050 DOI: 10.3390/ijms232315247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022] Open
Abstract
In order to sustain motility and prepare for fertilization, sperm require energy. The characterization of sperm ATP production and usage in mouse species revealed substantial differences in metabolic pathways that can be differentially affected by capacitation. Moreover, spermatozoa encounter different environments with varying viscoelastic properties in the female reproductive tract. Here, we examine whether viscosity affects sperm ATP levels and kinematics during capacitation in vitro. Sperm from three mouse species (Mus musculus, M. spretus, M. spicilegus) were incubated under capacitating conditions in a modified Tyrode's medium containing bicarbonate, glucose, pyruvate, lactate, and bovine serum albumin (mT-BH) or in a bicarbonate-free medium as a non-capacitating control. Viscosity was increased with the inclusion of polyvinylpyrrolidone. ATP was measured with a bioluminescence kit, and kinematics were examined with a computer-aided sperm analysis system. In M. musculus sperm, ATP declined during capacitation, but no differences were found between non-capacitating and capacitating sperm. In contrast, in M. spretus and M. spicilegus, ATP levels decreased in capacitating sperm. Increasing viscosity in the medium did not modify the timing or proportion of cells undergoing capacitation but did result in additional time- and concentration-dependent decreases in ATP in M. spretus and M. spicilegus under capacitating conditions. Additionally, increased viscosity altered both velocity and trajectory descriptors. The limited impact of capacitation and higher viscosity on M. musculus sperm ATP and kinematics could be related to the low intensity of postcopulatory sexual selection in this species. Responses seen in the other two species could be linked to the ability of their sperm to perform better under enhanced selective pressures.
Collapse
Affiliation(s)
- Ana Sanchez-Rodriguez
- Departmento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| | - Ester Sansegundo
- Departmento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| | - Maximiliano Tourmente
- Departmento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (FCEFyN—UNC), Córdoba X5016GCA, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IIByT—CONICET, UNC), Córdoba X5016GCA, Argentina
| | - Eduardo R. S. Roldan
- Departmento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
- Correspondence:
| |
Collapse
|
5
|
Amaral A. Energy metabolism in mammalian sperm motility. WIREs Mech Dis 2022; 14:e1569. [DOI: 10.1002/wsbm.1569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Alexandra Amaral
- Department of Developmental Genetics Max Planck Institute for Molecular Genetics Berlin Germany
| |
Collapse
|
6
|
Tourmente M, Sansegundo E, Rial E, Roldan ERS. Capacitation promotes a shift in energy metabolism in murine sperm. Front Cell Dev Biol 2022; 10:950979. [PMID: 36081906 PMCID: PMC9445201 DOI: 10.3389/fcell.2022.950979] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
In mammals, sperm acquire fertilization ability after a series of physiological and biochemical changes, collectively known as capacitation, that occur inside the female reproductive tract. In addition to other requirements, sperm bioenergetic metabolism has been identified as a fundamental component in the acquisition of capacitation. Mammalian sperm produce ATP through two main metabolic processes, oxidative phosphorylation (OXPHOS) and aerobic glycolysis that are localized to two different flagellar compartments, the midpiece, and the principal piece, respectively. In mouse sperm, the occurrence of many events associated with capacitation relies on the activity of these two energy-producing pathways, leading to the hypothesis that some of these events may impose changes in sperm energetic demands. In the present study, we used extracellular flux analysis to evaluate changes in glycolytic and respiratory parameters of murine sperm that occur as a consequence of capacitation. Furthermore, we examined whether these variations affect sperm ATP sustainability. Our results show that capacitation promotes a shift in the usage ratio of the two main metabolic pathways, from oxidative to glycolytic. However, this metabolic rewiring does not seem to affect the rate at which the sperm consume ATP. We conclude that the probable function of the metabolic switch is to increase the ATP supply in the distal flagellar regions, thus sustaining the energetic demands that arise from capacitation.
Collapse
Affiliation(s)
- Maximiliano Tourmente
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN—UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IIByT—CONICET, UNC), Córdoba, Argentina
- *Correspondence: Maximiliano Tourmente, ; Eduardo R. S. Roldan,
| | - Ester Sansegundo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Eduardo Rial
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
- *Correspondence: Maximiliano Tourmente, ; Eduardo R. S. Roldan,
| |
Collapse
|
7
|
Tourmente M, Sanchez-Rodriguez A, Roldan ERS. Effect of Motility Factors D-Penicillamine, Hypotaurine and Epinephrine on the Performance of Spermatozoa from Five Hamster Species. BIOLOGY 2022; 11:526. [PMID: 35453725 PMCID: PMC9032960 DOI: 10.3390/biology11040526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022]
Abstract
Assessments of sperm performance are valuable tools for the analysis of sperm fertilizing potential and to understand determinants of male fertility. Hamster species constitute important animal models because they produce sperm cells in high quantities and of high quality. Sexual selection over evolutionary time in these species seems to have resulted in the largest mammalian spermatozoa, and high swimming and bioenergetic performances. Earlier studies showed that golden hamster sperm requires motility factors such as D-penicillamine, hypotaurine and epinephrine (PHE) to sustain survival over time, but it is unknown how they affect swimming kinetics or ATP levels and if other hamster species also require them. The objective of the present study was to examine the effect of PHE on spermatozoa of five hamster species (Mesocricetus auratus, Cricetulus griseus, Phodopus campbelli, P. sungorus, P. roborovskii). In sperm incubated for up to 4 h without or with PHE, we assessed motility, viability, acrosome integrity, sperm velocity and trajectory, and ATP content. The results showed differences in the effect of PHE among species. They had a significant positive effect on the maintenance of sperm quality in M. auratus and C. griseus, whereas there was no consistent effect on spermatozoa of the Phodopus species. Differences between species may be the result of varying underlying regulatory mechanisms of sperm performance and may be important to understand how they relate to successful fertilization.
Collapse
Affiliation(s)
- Maximiliano Tourmente
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Spanish Research Council (CSIC), 28006 Madrid, Spain;
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Cordoba X5016GCA, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Consejo Nacional de Investigaciones Científica y Técnicas (CONICET), Cordoba X5016GCA, Argentina
| | - Ana Sanchez-Rodriguez
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Spanish Research Council (CSIC), 28006 Madrid, Spain;
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Spanish Research Council (CSIC), 28006 Madrid, Spain;
| |
Collapse
|
8
|
Turnell BR, Reinhardt K. Sperm metabolic rate predicts female mating frequency across Drosophila species. Evolution 2022; 76:573-584. [PMID: 35064568 DOI: 10.1111/evo.14435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 01/22/2023]
Abstract
Female mating rates vary widely, even among closely related species, but the reasons for this variation are not fully understood. Across Drosophila species, female mating frequencies are positively associated with sperm length. This association may be due in part to sperm limitation, with longer-spermed species transferring fewer sperm, or to cryptic female choice. However, a previously overlooked factor is sperm metabolic rate, which may correlate with sperm length. If faster-metabolizing sperm accumulate age-related cellular damage more quickly, then females should remate sooner to obtain fresh sperm. Alternatively, frequent female mating may select for increased sperm competitiveness via increased metabolism. Here, we measure sperm metabolism across 13 Drosophila species and compare these measures to published data on female mating rate and on sperm length. Using fluorescent lifetime imaging microscopy, we quantify NAD(P)H metabolism ex vivo, in intact organs. Phylogenetically controlled regression reveals that sperm metabolic rate is positively associated with sperm length and with female mating frequency. Path analysis shows sperm length driving sperm metabolism and sperm metabolism either driving or being driven by female mating rate. While the causal directionality of these relationships remains to be fully resolved, and the effect of sperm metabolism on sperm aging and/or sperm competitiveness remains to be established, our results demonstrate the importance of sperm metabolism in sexual selection.
Collapse
Affiliation(s)
- Biz R Turnell
- Applied Zoology, Faculty Biology, Technische Universität Dresden, Dresden, Germany
| | - Klaus Reinhardt
- Applied Zoology, Faculty Biology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
9
|
Smirnov GY. Sperm Motility in Bank (Clethrionomys glareolus) and Northern Red-backed Voles (Cl. rutilus) Exposed to Industrial Pollution. RUSS J ECOL+ 2022. [DOI: 10.1134/s1067413622010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Sansegundo E, Tourmente M, Roldan ERS. Energy Metabolism and Hyperactivation of Spermatozoa from Three Mouse Species under Capacitating Conditions. Cells 2022; 11:220. [PMID: 35053337 PMCID: PMC8773617 DOI: 10.3390/cells11020220] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Mammalian sperm differ widely in sperm morphology, and several explanations have been presented to account for this diversity. Less is known about variation in sperm physiology and cellular processes that can give sperm cells an advantage when competing to fertilize oocytes. Capacitation of spermatozoa, a process essential for mammalian fertilization, correlates with changes in motility that result in a characteristic swimming pattern known as hyperactivation. Previous studies revealed that sperm motility and velocity depend on the amount of ATP available and, therefore, changes in sperm movement occurring during capacitation and hyperactivation may involve changes in sperm bioenergetics. Here, we examine differences in ATP levels of sperm from three mouse species (genus Mus), differing in sperm competition levels, incubated under non-capacitating and capacitating conditions, to analyse relationships between energetics, capacitation, and swimming patterns. We found that, in general terms, the amount of sperm ATP decreased more rapidly under capacitating conditions. This descent was related to the development of a hyperactivated pattern of movement in two species (M. musculus and M. spicilegus) but not in the other (M. spretus), suggesting that, in the latter, temporal dynamics and energetic demands of capacitation and hyperactivation may be decoupled or that the hyperactivation pattern differs. The decrease in ATP levels during capacitation was steeper in species with higher levels of sperm competition than in those with lower levels. Our results suggest that, during capacitation, sperm consume more ATP than under non-capacitating conditions. This higher ATP consumption may be linked to higher velocity and lateral head displacement, which are associated with hyperactivated motility.
Collapse
Affiliation(s)
- Ester Sansegundo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Spanish Research Council (CSIC), 28006 Madrid, Spain;
| | - Maximiliano Tourmente
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Spanish Research Council (CSIC), 28006 Madrid, Spain;
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Cordoba X5016GCA, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Consejo Nacional de Investigaciones Científica y Técnicas (CONICET), Cordoba X5016GCA, Argentina
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Spanish Research Council (CSIC), 28006 Madrid, Spain;
| |
Collapse
|
11
|
Kivisaari K, Calhim S, Lehmann P, Boratyński Z, Mousseau TA, Møller AP, Mappes T. Chronic Background Radiation Correlates With Sperm Swimming Endurance in Bank Voles From Chernobyl. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.736389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sperm quantity and quality are key features explaining intra- and interspecific variation in male reproductive success. Spermatogenesis is sensitive to ionizing radiation and laboratory studies investigating acute effects of ionizing radiation have indeed found negative effects of radiation on sperm quantity and quality. In nature, levels of natural background radiation vary dramatically, and chronic effects of low-level background radiation exposure on spermatogenesis are poorly understood. The Chernobyl region offers a unique research opportunity for investigating effects of chronic low-level ionizing radiation on reproductive properties of wild organisms. We captured male bank voles (Myodes glareolus) from 24 locations in the Chernobyl exclusion zone in 2011 and 2015 and collected information on sperm morphology and kinetics. The dataset is limited in size and there overall was a relatively weak correlation between background radiation and sperm quality. Still, some correlations are worth discussing. First, mid-piece segments of spermatozoa tended to be smaller in bank vole males from areas with elevated background radiation levels. Second, we demonstrated a significant positive relationship between background radiation dose rates and the proportion of static spermatozoa among males within and among study locations after 10 as well as 60 min of incubation. Our results provide novel evidence of damaging effects of low dose ionizing radiation on sperm performance in wild rodent populations, and highlight that this topic requires further study across the natural gradients of background radiation that exist in nature.
Collapse
|
12
|
Teves ME, Roldan ERS. Sperm bauplan and function and underlying processes of sperm formation and selection. Physiol Rev 2022; 102:7-60. [PMID: 33880962 PMCID: PMC8812575 DOI: 10.1152/physrev.00009.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
The spermatozoon is a highly differentiated and polarized cell, with two main structures: the head, containing a haploid nucleus and the acrosomal exocytotic granule, and the flagellum, which generates energy and propels the cell; both structures are connected by the neck. The sperm's main aim is to participate in fertilization, thus activating development. Despite this common bauplan and function, there is an enormous diversity in structure and performance of sperm cells. For example, mammalian spermatozoa may exhibit several head patterns and overall sperm lengths ranging from ∼30 to 350 µm. Mechanisms of transport in the female tract, preparation for fertilization, and recognition of and interaction with the oocyte also show considerable variation. There has been much interest in understanding the origin of this diversity, both in evolutionary terms and in relation to mechanisms underlying sperm differentiation in the testis. Here, relationships between sperm bauplan and function are examined at two levels: first, by analyzing the selective forces that drive changes in sperm structure and physiology to understand the adaptive values of this variation and impact on male reproductive success and second, by examining cellular and molecular mechanisms of sperm formation in the testis that may explain how differentiation can give rise to such a wide array of sperm forms and functions.
Collapse
Affiliation(s)
- Maria Eugenia Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| |
Collapse
|
13
|
Roldan ERS, Teves ME. Understanding sperm physiology: Proximate and evolutionary explanations of sperm diversity. Mol Cell Endocrinol 2020; 518:110980. [PMID: 32853744 DOI: 10.1016/j.mce.2020.110980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
Abstract
Much can be gained from the comprehensive study of a biological system. Based on what is known as Mayr's proximate-ultimate causation and the subsequent expansion to Tinbergen's four questions, biological traits can be understood by taking into account different approximations that try to explain mechanisms, development, adaptive significance or phylogeny. These, in principle, separate areas, can be integrated crossing boundaries, but bearing in mind that answers to one question would not explain a different query. Studies of sperm biology have, until now, not benefited much from this framework and potential integration. Proximate causes (particularly mechanisms) have been the subject of interest for reproductive biologists, and evolutionary explanations have been the domain of behavioural ecologists with interest in adaptive significance of traits in the context of post-copulatory sexual selection. This review will summarize opportunities for research in the different areas, focusing on sperm preparation for fertilization and suggesting possible integration within and between proximate and evolutionary studies.
Collapse
Affiliation(s)
- Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain.
| | - Maria Eugenia Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
14
|
The Relationship of Mitochondrial Membrane Potential, Reactive Oxygen Species, Adenosine Triphosphate Content, Sperm Plasma Membrane Integrity, and Kinematic Properties in Warmblood Stallions. J Equine Vet Sci 2020; 94:103267. [PMID: 33077084 DOI: 10.1016/j.jevs.2020.103267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/31/2020] [Accepted: 09/07/2020] [Indexed: 01/06/2023]
Abstract
Equine sperm possesses a unique physiology because its energy supply is mostly dependent on oxidative phosphorylation of mitochondria as an aerobic source of adenosine triphosphate (ATP) generation. The present study was, therefore, conducted to investigate the relationship between sperm kinematic and functional variables in stallions. Semen samples were collected from five warmblood stallions (three ejaculates from each stallion), diluted with INRA96 and transferred to the laboratory. Next, sperm motility, mitochondrial membrane potential (MMP), production of superoxide anion (as a reactive oxygen species; ROS), ATP content, and plasma membrane integrity were assessed. Motion and functional characteristics differed among investigated stallions (P < .05). In addition, it was revealed MMP was positively correlated with the level of ROS and ATP content and progressive motility (P < .05). The level of ROS was positively correlated with ATP content and negatively correlated with plasma membrane integrity and straightness (P < .05). Adenosine triphosphate content was positively correlated with progressive motility, curvilinear velocity, average path velocity, and beat cross frequency and reversely correlated with plasma membrane integrity and straightness (P < .05). Plasma membrane integrity was positively correlated with straight line velocity, linearity, and straightness and negatively correlated with curvilinear velocity (P < .01). In conclusion, the present study substantiated that kinematic and functional characteristics varied among various warmblood stallions. Furthermore, the present study implicated although higher mitochondrial activity increases ATP synthesis, it leads to elevated superoxide anion production, which could culminate in disintegration of the sperm plasma membrane, thereby altering motion characteristics and swimming pattern of sperm.
Collapse
|
15
|
Tourmente M, Varea-Sánchez M, Roldan ERS. Faster and more efficient swimming: energy consumption of murine spermatozoa under sperm competition†. Biol Reprod 2020; 100:420-428. [PMID: 30203065 DOI: 10.1093/biolre/ioy197] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 06/22/2018] [Accepted: 09/08/2018] [Indexed: 11/14/2022] Open
Abstract
ATP supply is essential for sperm performance and increases in ATP content coevolve with enhanced sperm swimming velocity as a response to sperm competition in rodents. ATP content is the balance between production and consumption but, although ATP production has received much attention, little is known about ATP consumption. The rate of ATP consumption is crucial for the propagation of the flagellar wave, becoming a main determinant of the time and distance sperm could move before exhausting their reserves. A high yield in distance per unit of ATP consumed (efficiency) could provide advantages in sperm competition. We characterized sperm ATP consumption rate in a group of mouse species with different sperm competition levels to understand its impact on swimming velocity, duration, and yield of sperm ATP reserves. Interspecific comparisons revealed that sperm of species with higher sperm competition levels had high ATP consumption rates and faster swimming velocity. Moreover, sperm that consumed ATP at a faster rate swam more efficiently, since they were able to cover more distance per unit of ATP consumed. Our results suggest that by coupling the advantages of higher ATP turnover rates to increased efficiency of ATP expenditure, sperm would respond to increasingly competitive environments while maintaining a positive ATP balance.
Collapse
Affiliation(s)
- Maximiliano Tourmente
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Madrid, Spain
- College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - María Varea-Sánchez
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Madrid, Spain
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Madrid, Spain
| |
Collapse
|
16
|
Roldan ERS. Assessments of sperm quality integrating morphology, swimming patterns, bioenergetics and cell signalling. Theriogenology 2020; 150:388-395. [PMID: 32093962 DOI: 10.1016/j.theriogenology.2020.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 02/08/2020] [Indexed: 12/15/2022]
Abstract
Spermatozoa are diverse in form and function and these differences impact on their fertilizing capacity. Because of considerable inter-male and inter-species differences in sperm traits, assessments of sperm quality demand that we consider variations at different levels. We should thus pay attention not only to average values but also intra- and inter-sperm population variations and subpopulation structure. Sperm shape and size evolve in reponse to postcopulatory sexual selection. Assessments of morphological variation, with conventional microscopy or with computer-assisted systems, should bear this in mind. In rodents sperm head shape is asymmetric so it requires more complex tools, such as geometric morphometrics. Sperm function also evolves under postcopulatory sexual selection and this could be used as a basis to assess sperm performance. Sperm cells swim actively to overcome barriers in the female tract and develop a peculiar motility pattern in the final stages prior to and during fertilization. Both types of movement can be analyzed by computer-assisted microscopy systems. Sperm have high energetic demands for cell homeostasis, motility, and signalling. Bioenergetics can be analyzed by various means, including extracellular flux analyses to characterize glycolysis and mitochondrial respiration. Finally, cell signalling during capacitation has received much attention and can be assessed by microscopy (conventional or computer-assisted) or flow cytometry. Recent advances in image-flow cytometry affords analyses of high cell numbers with spatial localization of subcellular changes, which will have a big impact in the development of functional tests for the andrology clinic and in sperm preservation and use in artificial insemination.
Collapse
Affiliation(s)
- Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), c/José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| |
Collapse
|
17
|
Tourmente M, Archer CR, Hosken DJ. Complex interactions between sperm viability and female fertility. Sci Rep 2019; 9:15366. [PMID: 31653962 PMCID: PMC6814814 DOI: 10.1038/s41598-019-51672-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 10/03/2019] [Indexed: 12/03/2022] Open
Abstract
Sperm viability is a major male fitness component, with higher sperm viability associated with enhanced sperm competitiveness. While many studies have focussed on sperm viability from the male fitness standpoint, its impact on female fitness is less clear. Here we used a panel of 32 isogenic Drosophila simulans lines to test for genetic variation in sperm viability (percentage of viable cells). We then tested whether sperm viability affected female fitness by mating females to males from low or high sperm viability genotypes. We found significant variation in sperm viability among genotypes, and consistent with this, sperm viability was highly repeatable within genotypes. Additionally, females mated to high sperm viability males laid more eggs in the first seven hours after mating, and produced more offspring in total. However, the early increase in oviposition did not result in more offspring in the 8 hours following mating, suggesting that mating with high sperm-viability genotypes leads to egg wastage for females shortly after copulation. Although mating with high sperm-viability males resulted in higher female fitness in the long term, high quality ejaculates would result in a short-term female fitness penalty, or at least lower realised fitness, potentially generating sexual conflict over optimal sperm viability.
Collapse
Affiliation(s)
- Maximiliano Tourmente
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom.
| | - C Ruth Archer
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom.,Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - David J Hosken
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
18
|
Roldan ERS. Sperm competition and the evolution of sperm form and function in mammals. Reprod Domest Anim 2019; 54 Suppl 4:14-21. [DOI: 10.1111/rda.13552] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology; Museo Nacional de Ciencias Naturales (CSIC); Madrid Spain
| |
Collapse
|
19
|
Valverde A, Arnau S, García-Molina A, Bompart D, Campos M, Roldán ERS, Soler C. Dog sperm swimming parameters analysed by computer-assisted semen analysis of motility reveal major breed differences. Reprod Domest Anim 2019; 54:795-803. [PMID: 30801867 DOI: 10.1111/rda.13420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/18/2019] [Indexed: 11/26/2022]
Abstract
Dogs have undergone an intensive artificial selection process ever since the beginning of their relationship with humans. As a consequence, a wide variety of well-defined breeds exist today. Due to the enormous variation in dog phenotypes and the unlikely chance of gene exchange between them, the question arises as to whether they should still be regarded as a single species or, perhaps, they be considered as different taxa that possess different reproductive traits. The aim of this study was therefore to characterize some male reproductive traits, focusing on kinematic characteristics of dog spermatozoa from several breeds. Thirty-seven dogs from the following breeds were used: Staffordshire Bull Terrier, Labrador Retriever, Spanish Mastiff, Valencian Rat Hunting Dog, British Bulldog and Chihuahua. Semen samples were obtained via manual stimulation and diluted to a final sperm concentration of 50 million/ml, and they were subsequently analysed by the computer assisted semen analysis (CASA-Mot) ISAS® v1 system. Eight kinematic parameters were evaluated automatically. All parameters showed significant different values among breeds and among individuals within each breed. The fastest sperm cells were those of Staffordshire Bull Terriers and the slowest were recorded in Chihuahuas. The intra-male coefficient of variation (CV) was higher than the inter-male CV for all breeds with the Staffordshire Bull Terrier showing the lowest values. When taking into consideration the cells by animal and breed, discriminant analyses showed a high capability to predict the breed. Cluster analyses showed a hierarchical classification very close to that obtained after phylogenetic studies with genome markers. In conclusion, future workers on dog spermatozoa should bear in mind major differences between breeds and realize that results cannot be extrapolated from one to another. Because sperm characteristics are associated with breed diversity, dogs may represent a good model to examine changes in reproductive parameters associated with selection processes.
Collapse
Affiliation(s)
- Anthony Valverde
- School of Agronomy, Costa Rica Institute of Technology, Alajuela, Costa Rica.,Department of Cellular Biology, Functional Biology and Physical Anthropology, University of Valencia, Burjassot, Spain
| | - Sandra Arnau
- Department of Cellular Biology, Functional Biology and Physical Anthropology, University of Valencia, Burjassot, Spain
| | | | - Daznia Bompart
- R+D Department, Proiser R+D, S.L., University of Valencia, Paterna, Spain
| | - Marcos Campos
- Department of Medicine and Animal Surgery, University Cardenal-Herrera-CEU, Valencia, Spain.,Global Veterinaria (Reprovalcan), València, Spain.,Clínica Veterinaria Sangüeso, València, Spain
| | - Eduardo Raúl S Roldán
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Carles Soler
- Department of Cellular Biology, Functional Biology and Physical Anthropology, University of Valencia, Burjassot, Spain.,R+D Department, Proiser R+D, S.L., University of Valencia, Paterna, Spain
| |
Collapse
|
20
|
Alm-Kristiansen AH, Standerholen FB, Bai G, Waterhouse KE, Kommisrud E. Relationship between post-thaw adenosine triphosphate content, motility and viability in cryopreserved bovine semen applying two different preservation methods. Reprod Domest Anim 2018; 53:1448-1455. [PMID: 30044013 DOI: 10.1111/rda.13285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/29/2018] [Indexed: 11/28/2022]
Abstract
Motility and energy level in sperm cells are tightly linked, but not totally understood. The aim of this study was to examine whether adenosine triphosphate (ATP) content as a sperm quality parameter for bull semen could give additional information together with viability and motility. The objective was therefore to examine the relationships between alterations in sperm ATP content, motility and viability in bovine semen samples immediately after thawing and following post-thaw incubation at physiological temperature. Two different cryopreservation methods were compared. Ejaculates from ten young bulls were split into two and cryopreserved using conventional procedure with Biladyl® (B) extender and with SpermVital® (SV) immobilization technology. From each sample, simultaneous analysis of ATP content, motility and viability was performed post-thaw (T0) and after incubation at physiological temperature for three hours (T3). Multivariate correlation analysis showed high correlation at T0 between ATP content and viability (p < 0.05), ATP and total motility (p < 0.05), as well as progressive motility and viability (p < 0.05). However, there was no significant correlation between progressive motility and ATP content at T3, neither for B nor SV semen. We conclude that both preservation method and post-thaw incubation at physiological temperature affect ATP level in bull sperm cells partly independent of motility and viability. The ATP level of bovine spermatozoa post-thaw is therefore implicated to give supplementary information of sperm quality.
Collapse
Affiliation(s)
- Anne Hege Alm-Kristiansen
- Department of Natural Sciences and Technology, Inland Norway University of Applied Sciences, Hamar, Norway.,SpermVital AS, Hamar, Norway
| | - Fride B Standerholen
- Department of Natural Sciences and Technology, Inland Norway University of Applied Sciences, Hamar, Norway.,SpermVital AS, Hamar, Norway
| | | | | | - Elisabeth Kommisrud
- Department of Natural Sciences and Technology, Inland Norway University of Applied Sciences, Hamar, Norway.,SpermVital AS, Hamar, Norway
| |
Collapse
|
21
|
Berg HF, Kommisrud E, Bai G, Gaustad ER, Klinkenberg G, Standerholen FB, Thorkildsen LT, Waterhouse KE, Ropstad E, Heringstad B, Alm-Kristiansen AH. Comparison of sperm adenosine triphosphate content, motility and fertility of immobilized and conventionally cryopreserved Norwegian Red bull semen. Theriogenology 2018; 121:181-187. [PMID: 30165307 DOI: 10.1016/j.theriogenology.2018.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/08/2018] [Accepted: 08/12/2018] [Indexed: 11/16/2022]
Abstract
Estrus detection and timing of AI remains a challenge in cattle breeding. Prolonging spermatozoa lifespan after AI, making sperm cells available over an extended period, could make timing of AI relative to ovulation less crucial and improve fertility. Immobilization of sperm cells by the patented SpermVital technology in an alginate gel will provide a gradual release of spermatozoa after AI. The first aim of this study was to examine fertility, measured as non-return rate after 56 days (NR56), of SpermVital (SV) processed semen with reduced sperm cell number per dose compared to earlier studies, and compare with conventionally processed semen in Biladyl, a proprietary version of the egg yolk Tris semen extender. The second aim was to examine in vitro sperm quality post-thaw and after thermal stress. The third aim was to examine potential correlations between in vitro sperm parameters and NR56. Ejaculates from 16 Norwegian Red young bulls were split in three, processed and cryopreserved as Biladyl semen (B15; 15 million spermatozoa/dose) or by SpermVital technology (SV25; 25 million spermatozoa/dose or SV15; 15 million spermatozoa/dose). 1400 semen doses were produced per bull and distributed throughout Norway for a blinded field trial. Fertility was recorded as NR56 after first AI (N = 7155). Two ejaculates from each bull were randomly selected for in vitro experiments. B15 and SV15 semen samples were analyzed for motility by computer-assisted sperm analysis, viability and acrosome integrity by flow cytometry and ATP content by bioluminescence assay, post-thaw and after thermal stress. The AI trial detected no differences in NR56; least square means being 75.5% (B15), 75.6% (SV25) and 74.8% (SV15) (p > 0.05). There were no differences in total motility and progressive motility post-thaw, however, after three hours incubation at 38 °C, SV sperm motility and progressivity were higher for SV15 than for B15 spermatozoa (p < 0.05). The percentage of acrosome intact live sperm cells was higher for SV15 than B15 spermatozoa at all timepoints analyzed (0 h, 3 h, 24 h, p < 0.05). B15 semen showed a higher ATP level than SV15 at 0 h (p < 0.05), while SV15 sperm cells had higher ATP levels after 3 and 24 h (p < 0.05). No association was detected between in vitro sperm parameters and NR56. In conclusion, SV15, SV25 and B15 semen yielded equal fertility after AI. However, there were differences in sperm quality, as SV15 spermatozoa displayed higher motility, viability and ATP levels after thermal stress than B15 spermatozoa (p < 0.05).
Collapse
Affiliation(s)
- Halldor Felde Berg
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Oslo, Norway; SpermVital AS, Hamar, Norway
| | - Elisabeth Kommisrud
- Inland Norway University of Applied Sciences, Department of Natural Sciences and Technology, Hamar, Norway; SpermVital AS, Hamar, Norway
| | | | | | | | - Fride Berg Standerholen
- Inland Norway University of Applied Sciences, Department of Natural Sciences and Technology, Hamar, Norway; SpermVital AS, Hamar, Norway
| | | | | | - Erik Ropstad
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Oslo, Norway
| | - Bjørg Heringstad
- Norwegian University of Life Sciences, Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norway
| | - Anne Hege Alm-Kristiansen
- Inland Norway University of Applied Sciences, Department of Natural Sciences and Technology, Hamar, Norway; SpermVital AS, Hamar, Norway.
| |
Collapse
|
22
|
Vicens A, Borziak K, Karr TL, Roldan ERS, Dorus S. Comparative Sperm Proteomics in Mouse Species with Divergent Mating Systems. Mol Biol Evol 2017; 34:1403-1416. [PMID: 28333336 PMCID: PMC5435083 DOI: 10.1093/molbev/msx084] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sexual selection is the pervasive force underlying the dramatic divergence of sperm form and function. Although it has been demonstrated that testis gene expression evolves rapidly, exploration of the proteomic basis of sperm diversity is in its infancy. We have employed a whole-cell proteomics approach to characterize sperm divergence among closely related Mus species that experience different sperm competition regimes and exhibit pronounced variation in sperm energetics, motility and fertilization capacity. Interspecific comparisons revealed significant abundance differences amongst proteins involved in fertilization capacity, including those that govern sperm-zona pellucida interactions, axoneme components and metabolic proteins. Ancestral reconstruction of relative testis size suggests that the reduction of zona pellucida binding proteins and heavy-chain dyneins was associated with a relaxation in sperm competition in the M. musculus lineage. Additionally, the decreased reliance on ATP derived from glycolysis in high sperm competition species was reflected in abundance decreases in glycolytic proteins of the principle piece in M. spretus and M. spicilegus. Comparison of protein abundance and stage-specific testis expression revealed a significant correlation during spermatid development when dynamic morphological changes occur. Proteins underlying sperm diversification were also more likely to be subject to translational repression, suggesting that sperm composition is influenced by the evolution of translation control mechanisms. The identification of functionally coherent classes of proteins relating to sperm competition highlights the utility of evolutionary proteomic analyses and reveals that both intensified and relaxed sperm competition can have a pronounced impact on the molecular composition of the male gamete.
Collapse
Affiliation(s)
- Alberto Vicens
- Reproductive Biology and Evolution Group, Department of Biodiversity and Biological Evolution, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Kirill Borziak
- Department of Biology, Syracuse University, Syracuse, NY
| | - Timothy L Karr
- Department of Genomics and Genetic Resources, Kyoto Institute of Technology, Kyoto, Japan
| | - Eduardo R S Roldan
- Reproductive Biology and Evolution Group, Department of Biodiversity and Biological Evolution, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Steve Dorus
- Department of Biology, Syracuse University, Syracuse, NY
| |
Collapse
|
23
|
Tourmente M, Hirose M, Ibrahim S, Dowling DK, Tompkins DM, Roldan ERS, Gemmell NJ. mtDNA polymorphism and metabolic inhibition affect sperm performance in conplastic mice. Reproduction 2017; 154:341-354. [PMID: 28676531 DOI: 10.1530/rep-17-0206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 12/12/2022]
Abstract
Whereas a broad link exists between nucleotide substitutions in the mitochondrial genome (mtDNA) and a range of metabolic pathologies, exploration of the effect of specific mtDNA genotypes is on-going. Mitochondrial DNA mutations are of particular relevance for reproductive traits, since they are expected to have profound effects on male specific processes as a result of the strict maternal inheritance of mtDNA. Sperm motility is crucially dependent on ATP in most systems studied. However, the importance of mitochondrial function in the production of the ATP necessary for sperm function remains uncertain. In this study, we test the effect of mtDNA polymorphisms upon mouse sperm performance and bioenergetics by using five conplastic inbred strains that share the same nuclear background while differing in their mitochondrial genomes. We found that, while genetic polymorphisms across distinct mtDNA haplotypes are associated with modification in sperm progressive velocity, this effect is not related to ATP production. Furthermore, there is no association between the number of mtDNA polymorphisms and either (a) the magnitude of sperm performance decrease, or (b) performance response to specific inhibition of the main sperm metabolic pathways. The observed variability between strains may be explained in terms of additive effects of single nucleotide substitutions on mtDNA coding sequences, which have been stabilized through genetic drift in the different laboratory strains. Alternatively, the decreased sperm performance might have arisen from the disruption of the nuclear DNA/mtDNA interactions that have coevolved during the radiation of Mus musculus subspecies.
Collapse
Affiliation(s)
- Maximiliano Tourmente
- Department of Biodiversity and Evolutionary BiologyMuseo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Misa Hirose
- Institute of Experimental DermatologyUniversity of Luebeck, Luebeck, Germany
| | - Saleh Ibrahim
- Institute of Experimental DermatologyUniversity of Luebeck, Luebeck, Germany
| | - Damian K Dowling
- School of Biological SciencesMonash University, Clayton, Australia
| | | | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary BiologyMuseo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Neil J Gemmell
- Department of AnatomyUniversity of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Hoang HD, Miller MA. Chemosensory and hyperoxia circuits in C. elegans males influence sperm navigational capacity. PLoS Biol 2017; 15:e2002047. [PMID: 28662030 PMCID: PMC5490939 DOI: 10.1371/journal.pbio.2002047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/25/2017] [Indexed: 11/23/2022] Open
Abstract
The sperm’s crucial function is to locate and fuse with a mature oocyte. Under laboratory conditions, Caenorhabditis elegans sperm are very efficient at navigating the hermaphrodite reproductive tract and locating oocytes. Here, we identify chemosensory and oxygen-sensing circuits that affect the sperm’s navigational capacity. Multiple Serpentine Receptor B (SRB) chemosensory receptors regulate Gα pathways in gustatory sensory neurons that extend cilia through the male nose. SRB signaling is necessary and sufficient in these sensory neurons to influence sperm motility parameters. The neuropeptide Y pathway acts together with SRB-13 to antagonize negative effects of the GCY-35 hyperoxia sensor on spermatogenesis. SRB chemoreceptors are not essential for sperm navigation under low oxygen conditions that C. elegans prefers. In ambient oxygen environments, SRB-13 signaling impacts gene expression during spermatogenesis and the sperm’s mitochondria, thereby increasing migration velocity and inhibiting reversals within the hermaphrodite uterus. The SRB-13 transcriptome is highly enriched in genes implicated in pathogen defense, many of which are expressed in diverse tissues. We show that the critical time period for SRB-13 signaling is prior to spermatocyte differentiation. Our results support the model that young C. elegans males sense external environment and oxygen tension, triggering long-lasting downstream signaling events with effects on the sperm’s mitochondria and navigational capacity. Environmental exposures early in male life may alter sperm function and fertility. Habitat loss, disease, climate change, and pollution are thought to negatively affect animal fertility. Sperm are a potential target, but the molecular mechanisms are not understood. The nematode C. elegans is a powerful genetic model to investigate the relationship between environment and male fertility. The hermaphrodite’s transparent epidermis permits the direct visualization of migrating male sperm and fertilization. In this study, we identified multiple serpentine receptor B (SRB) chemosensory receptors that are expressed in amphid sensory neurons, which extend cilia through the male nose. These SRB chemoreceptors are necessary to produce sperm that are efficient at navigating the hermaphrodite reproductive tract to the fertilization site. We show that SRB-13 signaling counteracts the negative effect of GCY-35 O2 sensor activity, thereby maintaining sperm mitochondrial function and navigational capacity in hyperoxic conditions. Of particular interest, SRB-13 acts in early larval stage males prior to testis maturation. We propose that young males respond to specific stressful environments by altering SRB neural circuits, which in turn impact sperm mitochondrial function and motility. This chemosensory mechanism may be part of a systemic response in C. elegans males to external environment and oxygen levels.
Collapse
Affiliation(s)
- Hieu D. Hoang
- Department of Cell, Developmental and Integrative Biology, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
| | - Michael A. Miller
- Department of Cell, Developmental and Integrative Biology, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
25
|
delBarco-Trillo J, García-Álvarez O, Soler AJ, Tourmente M, Garde JJ, Roldan ERS. A cost for high levels of sperm competition in rodents: increased sperm DNA fragmentation. Proc Biol Sci 2016; 283:20152708. [PMID: 26936246 DOI: 10.1098/rspb.2015.2708] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sperm competition, a prevalent evolutionary process in which the spermatozoa of two or more males compete for the fertilization of the same ovum, leads to morphological and physiological adaptations, including increases in energetic metabolism that may serve to propel sperm faster but that may have negative effects on DNA integrity. Sperm DNA damage is associated with reduced rates of fertilization, embryo and fetal loss, offspring mortality, and mutations leading to genetic disease. We tested whether high levels of sperm competition affect sperm DNA integrity. We evaluated sperm DNA integrity in 18 species of rodents that differ in their levels of sperm competition using the sperm chromatin structure assay. DNA integrity was assessed upon sperm collection, in response to incubation under capacitating or non-capacitating conditions, and after exposure to physical and chemical stressors. Sperm DNA was very resistant to physical and chemical stressors, whereas incubation in non-capacitating and capacitating conditions resulted in only a small increase in sperm DNA damage. Importantly, levels of sperm competition were positively associated with sperm DNA fragmentation across rodent species. This is the first evidence showing that high levels of sperm competition lead to an important cost in the form of increased sperm DNA damage.
Collapse
Affiliation(s)
- Javier delBarco-Trillo
- Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales (CSIC), Madrid 28006, Spain School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, UK
| | | | | | - Maximiliano Tourmente
- Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales (CSIC), Madrid 28006, Spain
| | | | - Eduardo R S Roldan
- Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales (CSIC), Madrid 28006, Spain
| |
Collapse
|
26
|
Blengini CS, Naretto S, Cardozo G, Giojalas LC, Chiaraviglio M. Relationship between pre- and post-copulatory traits inSalvator rufescens(Squamata: Teiidae). Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cecilia S. Blengini
- Laboratorio de Biología del Comportamiento; Facultad de Ciencias Exactas Físicas y Naturales; Instituto de Diversidad y Ecología Animal IDEA (CONICET-UNC); Universidad Nacional de Córdoba; Av. Vélez Sársfield 299 CP: X5000JJC Córdoba Argentina
| | - Sergio Naretto
- Laboratorio de Biología del Comportamiento; Facultad de Ciencias Exactas Físicas y Naturales; Instituto de Diversidad y Ecología Animal IDEA (CONICET-UNC); Universidad Nacional de Córdoba; Av. Vélez Sársfield 299 CP: X5000JJC Córdoba Argentina
| | - Gabriela Cardozo
- Laboratorio de Biología del Comportamiento; Facultad de Ciencias Exactas Físicas y Naturales; Instituto de Diversidad y Ecología Animal IDEA (CONICET-UNC); Universidad Nacional de Córdoba; Av. Vélez Sársfield 299 CP: X5000JJC Córdoba Argentina
| | - Laura C. Giojalas
- Facultad de Ciencias Exactas, Físicas y Naturales; Instituto de Investigaciones Biológicas y Tecnológicas (UNC-CONICET) and Centro de Biología Celular y Molecular (UNC); Universidad Nacional de Córdoba. Argentina. Av. Velez Sarsfield 1611; CP: X5016GCA Córdoba Argentina
| | - Margarita Chiaraviglio
- Laboratorio de Biología del Comportamiento; Facultad de Ciencias Exactas Físicas y Naturales; Instituto de Diversidad y Ecología Animal IDEA (CONICET-UNC); Universidad Nacional de Córdoba; Av. Vélez Sársfield 299 CP: X5000JJC Córdoba Argentina
| |
Collapse
|
27
|
|
28
|
Tourmente M, Villar-Moya P, Rial E, Roldan ERS. Differences in ATP Generation Via Glycolysis and Oxidative Phosphorylation and Relationships with Sperm Motility in Mouse Species. J Biol Chem 2015; 290:20613-26. [PMID: 26048989 DOI: 10.1074/jbc.m115.664813] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 12/20/2022] Open
Abstract
Mouse sperm produce enough ATP to sustain motility by anaerobic glycolysis and respiration. However, previous studies indicated that an active glycolytic pathway is required to achieve normal sperm function and identified glycolysis as the main source of ATP to fuel the motility of mouse sperm. All the available evidence has been gathered from the studies performed using the laboratory mouse. However, comparative studies of closely related mouse species have revealed a wide range of variation in sperm motility and ATP production and that the laboratory mouse has comparatively low values in these traits. In this study, we compared the relative reliance on the usage of glycolysis or oxidative phosphorylation as ATP sources for sperm motility between mouse species that exhibit significantly different sperm performance parameters. We found that the sperm of species with higher oxygen consumption/lactate excretion rate ratios were able to produce higher amounts of ATP, achieving higher swimming velocities. Additionally, we show that the species with higher respiration/glycolysis ratios have a higher degree of dependence upon active oxidative phosphorylation. Moreover, we characterize for the first time two mouse species in which sperm depend on functional oxidative phosphorylation to achieve normal performance. Finally, we discuss that sexual selection could promote adaptations in sperm energetic metabolism tending to increase the usage of a more efficient pathway for the generation of ATP (and faster sperm).
Collapse
Affiliation(s)
- Maximiliano Tourmente
- From the Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales (Consejo Superior de Investigaciones Científicas), 28006 Madrid and
| | - Pilar Villar-Moya
- From the Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales (Consejo Superior de Investigaciones Científicas), 28006 Madrid and
| | - Eduardo Rial
- the Mitochondrial Bioenergetics Research Group, Centro de Investigaciones Biológicas (Consejo Superior de Investigaciones Científicas), 28040 Madrid, Spain
| | - Eduardo R S Roldan
- From the Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales (Consejo Superior de Investigaciones Científicas), 28006 Madrid and
| |
Collapse
|