1
|
De Bem THC, Bridi A, Tinning H, Sampaio RV, Malo-Estepa I, Wang D, Vasconcelos EJR, Nociti RP, de Ávila ACFCM, Rodrigues Sangalli J, Motta IG, Arantes Ataíde G, da Silva JCB, Fumie Watanabe Y, Gonella-Diaza A, da Silveira JC, Pugliesi G, Vieira Meirelles F, Forde N. Biosensor capability of the endometrium is mediated in part, by altered miRNA cargo from conceptus-derived extracellular vesicles. FASEB J 2024; 38:e23639. [PMID: 38742798 DOI: 10.1096/fj.202302423rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
We tested the hypothesis that the biosensor capability of the endometrium is mediated in part, by the effect of different cargo contained in the extracellular vesicles secreted by the conceptus during the peri-implantation period of pregnancy. We transferred Bos taurus taurus embryos of different origin, in vivo (high developmental potential (IV)), in vitro (intermediate developmental potential (IVF)), or cloned (low developmental potential (NT)), into Bos taurus indicus recipients. Extracellular vesicles (EVs) recovered from Day 16 conceptus-conditioned medium were characterized and their microRNA (miRNA) cargo sequenced alongside RNA sequencing of their respective endometria. There were substantial differences in the endometrial response to in vivo versus in vitro and in vivo versus cloned conceptuses (1153 and 334DEGs respectively) with limited differences between in vitro Vs cloned conceptuses (36 DEGs). The miRNA cargo contained in conceptus-derived EVs was similar between all three groups (426 miRNA in common). Only 8 miRNAs were different between in vivo and cloned conceptuses, while only 6 miRNAs were different between in vivo and in vitro-derived conceptuses. Treatment of endometrial epithelial cells with mimic or inhibitors for miR-128 and miR-1298 changed the proteomic content of target cells (96 and 85, respectively) of which mRNAs are altered in the endometrium in vivo (PLXDC2, COPG1, HSPA12A, MCM5, TBL1XR1, and TTF). In conclusion, we have determined that the biosensor capability of the endometrium is mediated in part, by its response to different EVs miRNA cargo produced by the conceptus during the peri-implantation period of pregnancy.
Collapse
Affiliation(s)
- Tiago H C De Bem
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Alessandra Bridi
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Haidee Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Rafael Vilar Sampaio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Irene Malo-Estepa
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Dapeng Wang
- LeedsOmics, University of Leeds, Leeds, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Ricardo Perecin Nociti
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Ana C F C M de Ávila
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Juliano Rodrigues Sangalli
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Igor Garcia Motta
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Gilmar Arantes Ataíde
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Júlio C B da Silva
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | | | - Angela Gonella-Diaza
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Juliano C da Silveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Guilherme Pugliesi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Flávio Vieira Meirelles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Niamh Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- LeedsOmics, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Gimeno I, Salvetti P, Carrocera S, Gatien J, Le Bourhis D, Gómez E. The recipient metabolome explains the asymmetric ovarian impact on fetal sex development after embryo transfer in cattle. J Anim Sci 2024; 102:skae081. [PMID: 38567815 PMCID: PMC11005770 DOI: 10.1093/jas/skae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
In cattle, lateral asymmetry affects ovarian function and embryonic sex, but the underlying molecular mechanisms remain unknown. The plasma metabolome of recipients serves to predict pregnancy after embryo transfer (ET). Thus, the aim of this study was to investigate whether the plasma metabolome exhibits distinct lateral patterns according to the sex of the fetus carried by the recipient and the active ovary side (AOS), i.e., the right ovary (RO) or the left ovary (LO). We analyzed the plasma of synchronized recipients by 1H+NMR on day 0 (estrus, n = 366) and day 7 (hours prior to ET; n = 367). Thereafter, a subset of samples from recipients that calved female (n = 50) or male (n = 69) was used to test the effects of embryonic sex and laterality on pregnancy establishment. Within the RO, the sex ratio of pregnancies carried was biased toward males. Significant differences (P < 0.05) in metabolite levels were evaluated based on the day of blood sample collection (days 0, 7 and day 7/day 0 ratio) using mixed generalized models for metabolite concentration. The most striking differences in metabolite concentrations were associated with the RO, both obtained by multivariate (OPLS-DA) and univariate (mixed generalized) analyses, mainly with metabolites measured on day 0. The metabolites consistently identified through the OPLS-DA with a higher variable importance in projection score, which allowed for discrimination between male fetus- and female fetus-carrying recipients, were hippuric acid, l-phenylalanine, and propionic acid. The concentrations of hydroxyisobutyric acid, propionic acid, l-lysine, methylhistidine, and hippuric acid were lowest when male fetuses were carried, in particular when the RO acted as AOS. No pathways were significantly regulated according to the AOS. In contrast, six pathways were found enriched for calf sex in the day 0 dataset, three for day 7, and nine for day 7/day 0 ratio. However, when the AOS was the right, 20 pathways were regulated on day 0, 8 on day 7, and 13 within the day 7/day 0 ratio, most of which were related to amino acid metabolism, with phenylalanine, tyrosine, and tryptophan biosynthesis and phenylalanine metabolism pathways being identified throughout. Our study shows that certain metabolites in the recipient plasma are influenced by the AOS and can predict the likelihood of carrying male or female embryos to term, suggesting that maternal metabolism prior to or at the time of ET could favor the implantation and/or development of either male or female embryos.
Collapse
Affiliation(s)
- Isabel Gimeno
- Animal Genetics and Reproduction, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - Pascal Salvetti
- ELIANCE, Experimental facilities, Le Perroi, 37380 Nouzilly, France
| | - Susana Carrocera
- Animal Genetics and Reproduction, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - Julie Gatien
- ELIANCE, Experimental facilities, Le Perroi, 37380 Nouzilly, France
| | | | - Enrique Gómez
- Animal Genetics and Reproduction, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain
| |
Collapse
|
3
|
Peixoto PM, Bromfield JJ, Ribeiro ES, Santos JEP, Thatcher WW, Bisinotto RS. Transcriptome changes associated with elongation of bovine conceptuses I: Differentially expressed transcripts in the conceptus on day 17 after insemination. J Dairy Sci 2023; 106:9745-9762. [PMID: 37641295 DOI: 10.3168/jds.2023-23398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/15/2023] [Indexed: 08/31/2023]
Abstract
The objective was to characterize transcriptome changes associated with elongation in bovine conceptuses during preimplantation stages. Nonlactating Holstein cows were euthanized 17 d after artificial insemination (AI) and the uterine horn ipsilateral to the CL was flushed with saline solution. Recovered conceptuses were classified as small (1.2 to 6.9 cm; n = 9), medium (10.5 to 16.0 cm; n = 9), or large (18.0 to 26.4 cm; n = 10). Total mRNA was extracted and subjected to transcriptome analyses using the Affymetrix Gene Chip Bovine array. Data were normalized using the GCRMA method and analyzed by robust regression using the Linear Models for Microarray library within Bioconductor in R. Transcripts with P ≤ 0.05 after adjustment for false discovery rate and fold change ≥1.5 were considered differentially expressed. Functional analyses were conducted using the Ingenuity Pathway Analysis platform. Comparisons between large versus small (LvsS), large versus medium (LvsM), and medium versus small (MvsS) conceptuses yielded a total of 634, 240, and 63 differentially expressed transcripts, respectively. Top canonical pathways of known involvement with embryo growth that were upregulated in large conceptuses included actin cytoskeleton (LvsS), integrin signaling (LvsS and LvsM), ephrin receptor (LvsS), mesenchymal transition by growth factor (LvsM), and regulation of calpain protease (LvsS). Transcripts involved with lipid metabolism pathways (LXR/RXR, FXR/RXR, hepatic fibrosis) were associated with the LvsS and LvsM, and some transcripts such as APOC2, APOH, APOM, RARA, RBP4, and PPARGC1A, were involved in these pathways. An overall network summary associated biological downstream effects of invasion of cells, proliferation of embryonic cells, and inhibition of organismal death in the LvsS. In conclusion, differently expressed transcripts in the LvsS comparison were associated with the cell growth, adhesion, and organismal development, although part of these findings could be attributed to differences in circulatory concentrations of progesterone of the cows that bore large and small conceptuses. The large and medium conceptuses developed under similar concentrations of progesterone and presented 240 differently expressed transcripts, associated with cell differentiation, metabolite regulation, and other biological processes.
Collapse
Affiliation(s)
- P M Peixoto
- Department of Large Animal Clinical Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32610
| | - J J Bromfield
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32608
| | - E S Ribeiro
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - J E P Santos
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32608
| | - W W Thatcher
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32608
| | - R S Bisinotto
- Department of Large Animal Clinical Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32610.
| |
Collapse
|
4
|
Stenhouse C, Bazer FW, Ashworth CJ. Sexual dimorphism in placental development and function: Comparative physiology with an emphasis on the pig. Mol Reprod Dev 2023; 90:684-696. [PMID: 35466463 DOI: 10.1002/mrd.23573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022]
Abstract
Across mammalian species, it has been demonstrated that sex influences birth weight, with males being heavier than females; a characteristic that can be observed from early gestation. Male piglets are more likely to be stillborn and have greater preweaning mortality than their female littermates, despite the additional maternal investment into male fetal growth. Given the conserved nature of the genome between the sexes, it is hypothesized that these developmental differences between males and females are most likely orchestrated by differential placental adaptation. This review summarizes the current understanding of fetal sex-specific differences in placental and endometrial structure and function, with an emphasis on pathways found to be differentially regulated in the pig including angiogenesis, apoptosis, and proliferation. Given the importance of piglet sex in agricultural enterprises, and the potential for skewed litter sex ratios, it is imperative to improve understanding of the relationship between fetal sex and molecular signaling in both the placenta and endometria across gestation.
Collapse
Affiliation(s)
- Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Cheryl J Ashworth
- Functional Genetics and Development Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
5
|
Tinning H, Edge JC, DeBem THC, Deligianni F, Giovanardi G, Pensabene V, Meirelles FV, Forde N. Review: Endometrial function in pregnancy establishment in cattle. Animal 2023; 17 Suppl 1:100751. [PMID: 37567655 DOI: 10.1016/j.animal.2023.100751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 08/13/2023] Open
Abstract
The endometrium is fundamentally required for successful pregnancy in ruminants and species where the posthatching conceptus undergoes a protracted elongation and peri-implantation phase of pregnancy. Moreover, there are substantial waves of pregnancy loss during this pre- and peri-implantation period of pregnancy the precise source of which has not been clearly defined i.e., the maternal uterine contribution to this loss. Understanding the molecular interactions required for successful pregnancy in cattle will allow us to intervene to support pregnancy success during this vulnerable window. The endometrium contributes to most key developmental milestones of pregnancy establishment, including (1) contributing to the regulation of the oestrus cycle, (2) nourishing the preimplantation conceptus, (3) responding to the conceptus to create a more receptive microenvironment, (4) providing essential biophysical support, and (5) signalling and producing factors which affect the mother systemically. This review will summarise what we currently know about conceptus-maternal interactions as well as identify the gaps in our knowledge that could be filled with newer in vitro model approaches. These include the use of microfluidics, organ-on-a-chip devices, and bioinformatic approaches. This will help maximise food production efficiency (both meat and dairy) and decrease the environmental burden, while enhancing our understanding of the fundamental processes required for successful implantation in cattle.
Collapse
Affiliation(s)
- H Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - J C Edge
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - T H C DeBem
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Sao Paulo, Brazil
| | - F Deligianni
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - G Giovanardi
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom; School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - V Pensabene
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - F V Meirelles
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - N Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
6
|
Jali I, Vanamamalai VK, Garg P, Navarrete P, Gutiérrez-Adán A, Sharma S. Identification and differential expression of long non-coding RNAs and their association with XIST gene during early embryonic developmental stages of Bos taurus. Int J Biol Macromol 2023; 229:896-908. [PMID: 36572076 DOI: 10.1016/j.ijbiomac.2022.12.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/07/2022] [Accepted: 12/20/2022] [Indexed: 12/26/2022]
Abstract
X-chromosomes inactivation (XCI) is a phenomenon that aims to equalize the dosage of X-linked gene products between XY males and XX females in mammals. XIST gene is the master regulator of X chromosome inactivation during early embryonic developmental stages of Bos taurus. Biological molecule such as lncRNA plays significant role in the control of XCI, by RNA-based regulatory mechanisms and are non-coding regions of the genome. In our study, using in-silico transcriptome data analysis approach, we analysed RNA-seq data of E35, E39 and E43 samples from bovine genital ridges of early embryonic stages, and identified lncRNA transcripts. More than 7 lakh lncRNA transcripts were identified. Further, our study identified DE-lncRNAs and genes between male and female and studied their co-expression. More than four thousand differentially expressed lncRNAs identified. The co-expression and RT-PCR study in the result showed that there exists an association between the XIST and DE-lncRNAs in early embryonic gonads of bovine at E35. In this study, the association between DE-lncRNAs and XIST gene indicates, the potentially important role of DE-lncRNAs during embryo development in bovine. In conclusion, this study shows there exist an interplay between genes and lncRNAs at transcriptome level of bovine during early embryonic days.
Collapse
Affiliation(s)
- Itishree Jali
- National Institute of Animal Biotechnology (NIAB), Opp. Journalist Colony, Near Gowlidoddi, Extended Q City Road, Gachibowli, Hyderabad 500 032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Venkata Krishna Vanamamalai
- National Institute of Animal Biotechnology (NIAB), Opp. Journalist Colony, Near Gowlidoddi, Extended Q City Road, Gachibowli, Hyderabad 500 032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Priyanka Garg
- National Institute of Animal Biotechnology (NIAB), Opp. Journalist Colony, Near Gowlidoddi, Extended Q City Road, Gachibowli, Hyderabad 500 032, Telangana, India
| | - Paula Navarrete
- INIA-CSIC Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- INIA-CSIC Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Shailesh Sharma
- National Institute of Animal Biotechnology (NIAB), Opp. Journalist Colony, Near Gowlidoddi, Extended Q City Road, Gachibowli, Hyderabad 500 032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India.
| |
Collapse
|
7
|
Mathew DJ, Peterson KD, Senn LK, Oliver MA, Ealy AD. Ruminant conceptus-maternal interactions: interferon-tau and beyond. J Anim Sci 2022; 100:6620787. [PMID: 35772752 DOI: 10.1093/jas/skac123] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022] Open
Abstract
Embryonic or fetal loss in cattle is associated with problems that occur during oocyte maturation, early embryonic development, conceptus elongation, maternal recognition of pregnancy (MRP), and/or placental attachment and implantation. Many of these problems manifest as inadequate or asynchronous communication between the developing conceptus and endometrium, resulting in pregnancy failure. This review will provide an overview of how various conceptus-endometrial paracrine signaling systems control the fate of early pregnancy in cattle and other ruminants. We begin by summarizing the actions of interferon-tau, the classic MRP signal in ruminates, and then explore how other secretory factors derived from either the conceptus or endometrium influence establishment and maintenance of pregnancy. Insight into how the endometrium responds to male vs. female conceptuses or conceptuses produced by in vitro methods will also be described. Specific focus will be placed on describing how "omic" technologies and other cutting-edge techniques have assisted with identifying novel conceptus and/or endometrial factors and their functions. Recent findings indicate that the endometrial transcriptome and histotroph are altered by conceptus sex, quality, and origin, suggesting that the endometrium is a sensor of conceptus biochemistry. Although the endometrium has a certain level of flexibility in terms of conceptus-maternal interactions, this interplay is not sufficient to retain some pregnancies. However, new information inspires us to learn more and will help develop technologies that mitigate early embryonic loss and reproductive failure in ruminants and other animals.
Collapse
Affiliation(s)
- Daniel J Mathew
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Katie D Peterson
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - L Kirsten Senn
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Mary A Oliver
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
8
|
Dhombres F, Bonnard J, Bailly K, Maurice P, Papageorghiou A, Jouannic JM. Contributions of artificial intelligence reported in Obstetrics and Gynecology journals: a systematic review. J Med Internet Res 2022; 24:e35465. [PMID: 35297766 PMCID: PMC9069308 DOI: 10.2196/35465] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/11/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background The applications of artificial intelligence (AI) processes have grown significantly in all medical disciplines during the last decades. Two main types of AI have been applied in medicine: symbolic AI (eg, knowledge base and ontologies) and nonsymbolic AI (eg, machine learning and artificial neural networks). Consequently, AI has also been applied across most obstetrics and gynecology (OB/GYN) domains, including general obstetrics, gynecology surgery, fetal ultrasound, and assisted reproductive medicine, among others. Objective The aim of this study was to provide a systematic review to establish the actual contributions of AI reported in OB/GYN discipline journals. Methods The PubMed database was searched for citations indexed with “artificial intelligence” and at least one of the following medical subject heading (MeSH) terms between January 1, 2000, and April 30, 2020: “obstetrics”; “gynecology”; “reproductive techniques, assisted”; or “pregnancy.” All publications in OB/GYN core disciplines journals were considered. The selection of journals was based on disciplines defined in Web of Science. The publications were excluded if no AI process was used in the study. Review, editorial, and commentary articles were also excluded. The study analysis comprised (1) classification of publications into OB/GYN domains, (2) description of AI methods, (3) description of AI algorithms, (4) description of data sets, (5) description of AI contributions, and (6) description of the validation of the AI process. Results The PubMed search retrieved 579 citations and 66 publications met the selection criteria. All OB/GYN subdomains were covered: obstetrics (41%, 27/66), gynecology (3%, 2/66), assisted reproductive medicine (33%, 22/66), early pregnancy (2%, 1/66), and fetal medicine (21%, 14/66). Both machine learning methods (39/66) and knowledge base methods (25/66) were represented. Machine learning used imaging, numerical, and clinical data sets. Knowledge base methods used mostly omics data sets. The actual contributions of AI were method/algorithm development (53%, 35/66), hypothesis generation (42%, 28/66), or software development (3%, 2/66). Validation was performed on one data set (86%, 57/66) and no external validation was reported. We observed a general rising trend in publications related to AI in OB/GYN over the last two decades. Most of these publications (82%, 54/66) remain out of the scope of the usual OB/GYN journals. Conclusions In OB/GYN discipline journals, mostly preliminary work (eg, proof-of-concept algorithm or method) in AI applied to this discipline is reported and clinical validation remains an unmet prerequisite. Improvement driven by new AI research guidelines is expected. However, these guidelines are covering only a part of AI approaches (nonsymbolic) reported in this review; hence, updates need to be considered.
Collapse
Affiliation(s)
- Ferdinand Dhombres
- Sorbonne University, Armand Trousseau University hospital, Fetal Medicine department, APHP, Armand Trousseau University hospital, Fetal Medicine department, APHP26 AV du Dr Arnold Netter, Paris, FR.,INSERM, Laboratory in Medical Informatics and Knowledge Engineering in e-Health (LIMICS), Paris, FR
| | - Jules Bonnard
- Sorbonne University, Institute for Intelligent Systems and Robotics (ISIR), Paris, FR
| | - Kévin Bailly
- Sorbonne University, Institute for Intelligent Systems and Robotics (ISIR), Paris, FR
| | - Paul Maurice
- Sorbonne University, Armand Trousseau University hospital, Fetal Medicine department, APHP, Paris, FR
| | - Aris Papageorghiou
- Oxford Maternal & Perinatal Health Institute, Green Templeton College, Oxford, GB
| | - Jean-Marie Jouannic
- Sorbonne University, Armand Trousseau University hospital, Fetal Medicine department, APHP, Paris, FR.,INSERM, Laboratory in Medical Informatics and Knowledge Engineering in e-Health (LIMICS), Paris, FR
| |
Collapse
|
9
|
Mathew DJ, Sánchez JM, Passaro C, Charpigny G, Behura SK, Spencer TE, Lonergan P. Interferon tau-dependent and independent effects of the bovine conceptus on the endometrial transcriptome†. Biol Reprod 2020; 100:365-380. [PMID: 30203055 DOI: 10.1093/biolre/ioy199] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/14/2018] [Accepted: 09/07/2018] [Indexed: 12/21/2022] Open
Abstract
This study investigated bovine conceptus-induced modifications to the endometrial transcriptome related to effects of interferon tau (IFNT), conceptus origin (in vivo vs. in vitro), and conceptus sex. In vitro (IVF) or in vivo (superovulation and artificial insemination, AI) produced blastocysts were transferred into recipient heifers on day 7 of the estrous cycle. On day 15, IVF- or AI-derived conceptuses were obtained by uterine flushing and individually placed on endometrial explants in media for 6 h. Explants were also cultured with media alone as a control or media containing 100 ng/mL IFNT. Total explant RNA was analyzed by RNA-Seq. Incubation of endometrium with IFNT or IVF- or AI-derived conceptuses changed (P ≤ 0.001) expression of 491, 498, and 576 transcripts, respectively, compared to the control. Further, 369 differentially expressed genes (DEGs) were common between explants exposed to IFNT or a conceptus. A total of 240 DEGs were uniquely altered by conceptuses (IVF- and AI-derived) but not IFNT. Of these transcripts, 46 were shared between the IVF and AI groups, while 61 and 133 were specific to IVF and AI conceptuses, respectively. Five genes [melanophilin (MLPH), prominin-2 (PROM2), myeloid associated differentiation marker (MYADM), vomeronasal 1 receptor 4 like (VN1R4L) and 5-hydroxytryptamine receptor 1A (HTR1A)] were more abundant in endometrium exposed to female compared to male conceptuses (P < 0.001). A single gene [ADP-ribosylation factor like GTPase 4C (ARL4C)] was more abundant in response to male conceptuses (P < 0.001) than female conceptuses. These data support the hypothesis that conceptus regulation of gene expression in the endometrium is complex and involves factors other than IFNT that may have a biological role in pregnancy establishment.
Collapse
Affiliation(s)
- Daniel J Mathew
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.,Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - José M Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Claudia Passaro
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Gilles Charpigny
- INRA, Biologie du Développement et Reproduction, Jouy en Josas, France
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
10
|
Claycombe-Larson KG, Bundy AN, Roemmich JN. Paternal high-fat diet and exercise regulate sperm miRNA and histone methylation to modify placental inflammation, nutrient transporter mRNA expression and fetal weight in a sex-dependent manner. J Nutr Biochem 2020; 81:108373. [PMID: 32422425 DOI: 10.1016/j.jnutbio.2020.108373] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/10/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
We previously have shown that male offspring (F1) of fathers (F0) fed a high-fat (HF) diet and that exercised had greater skeletal muscle insulin signaling and reduced type 2 diabetes mellitus (T2DM) risk compared to fathers fed HF diet and that remained sedentary. The current study extends this work by hypothesizing that F0 HF diet and exercise regulate F1 T2DM risk by alterations in placental tissue growth via changes in sperm miRNA expression. To test these hypotheses, 3-week-old male C57BL/6 mice were fed a normal-fat diet (16% fat) or an HF diet (45% fat) and assigned to either voluntary wheel running exercise or cage activity for 3 months. Results showed that F0 sperm miRNA 193b expression was decreased while miRNA 204 was increased by paternal exercise. Protein expression of dimethylated histone 3 lysine 9 was decreased with F0 HF diet. Placental and fetal tissue weights were decreased by F0 HF diet in F1 males. Placental interleukin-1β and tumor necrosis factor (TNF)-α mRNA expression was reduced by paternal exercise, while nutrient transporter mRNA expression was decreased by paternal HF diet only in the placentae of F1 females. Treatment of primary placental cell with miRNA 193b inhibited TNF-α mRNA expression, and treatment of TNF-α decreased SLC38a2 mRNA expression. Moreover, paternal exercise increased body weight at weaning in a female offspring. These results demonstrate that placental tissue weight, placental nutrient transporter gene expression and fetal weights are altered by paternal exercise, while placental inflammatory gene expression is influenced by paternal exercise in offspring in a sex-specific manner.
Collapse
Affiliation(s)
- Kate G Claycombe-Larson
- U.S. Department of Agriculture Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA.
| | - Amy N Bundy
- U.S. Department of Agriculture Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
| | - James N Roemmich
- U.S. Department of Agriculture Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
| |
Collapse
|
11
|
Kikuchi M, Kizaki K, Shigeno S, Toji N, Ishiguro-Oonuma T, Koshi K, Takahashi T, Hashizume K. Newly identified interferon tau-responsive Hes family BHLH transcription factor 4 and cytidine/uridine monophosphate kinase 2 genes in peripheral blood granulocytes during early pregnancy in cows. Domest Anim Endocrinol 2019; 68:64-72. [PMID: 30870785 DOI: 10.1016/j.domaniend.2019.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/14/2019] [Accepted: 01/22/2019] [Indexed: 11/16/2022]
Abstract
In cattle, interferon-stimulated genes (ISGs) such as ISG15, MX1, MX2, and OAS1 are known as classic ISGs that are highly involved in the implantation process. Various molecules play a crucial role in the mechanisms underlying ISG effects. Although microarray analyses have highlighted the expression of various molecules during the implantation period, these molecules remain incompletely characterized. In the present study, various specifically expressed genes were selected and their characteristics were examined. The microarray data from peripheral blood leukocytes derived from artificially inseminated cows and granulocytes obtained from embryo-transferred cows, respectively, were used to identify new ISG candidates. Seven common genes, including ISG15 and OAS1, were confirmed, but only 4 of the 5 genes were amplified by reverse transcription quantitative polymerase chain reaction. In addition, 3 expressed sequence tags (ESTs) exhibited significantly greater expression in granulocytes from pregnant cows than that observed in bred nonpregnant cows, and the expression in granulocytes increased after interferon-tau stimulation. Sequence alignment revealed similar sequences within 2 ESTs on the Hairy and enhancer of split (Hes) family basic helix-loop-helix transcription factor 4 (HES4) gene. An additional EST was identified as cytidine/uridine monophosphate kinase 2 (CMPK2). In silico analysis facilitated the identification of transcription factor-binding sequences, including an interferon-stimulated response element and interferon regulatory factor-binding sites, within the promoter region of HES4 and CMPK2. These genes may function as new ISGs in the context of implantation and may participate in the coordination of the feto-maternal interface in cows.
Collapse
Affiliation(s)
- M Kikuchi
- Cooperative Department of Veterinary Medicine, Laboratory of Veterinary Physiology, Iwate University, Morioka, Iwate 020-8550, Japan
| | - K Kizaki
- Cooperative Department of Veterinary Medicine, Laboratory of Veterinary Physiology, Iwate University, Morioka, Iwate 020-8550, Japan.
| | - S Shigeno
- Cooperative Department of Veterinary Medicine, Laboratory of Veterinary Physiology, Iwate University, Morioka, Iwate 020-8550, Japan
| | - N Toji
- Cooperative Department of Veterinary Medicine, Laboratory of Veterinary Physiology, Iwate University, Morioka, Iwate 020-8550, Japan
| | - T Ishiguro-Oonuma
- Cooperative Department of Veterinary Medicine, Laboratory of Veterinary Physiology, Iwate University, Morioka, Iwate 020-8550, Japan
| | - K Koshi
- Cooperative Department of Veterinary Medicine, Laboratory of Veterinary Physiology, Iwate University, Morioka, Iwate 020-8550, Japan
| | - T Takahashi
- Cooperative Department of Veterinary Medicine, Laboratory of Veterinary Theriogenology, Iwate University, Morioka, Iwate 020-8550, Japan
| | - K Hashizume
- Cooperative Department of Veterinary Medicine, Laboratory of Veterinary Physiology, Iwate University, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
12
|
Simintiras CA, Sánchez JM, McDonald M, Lonergan P. The influence of progesterone on bovine uterine fluid energy, nucleotide, vitamin, cofactor, peptide, and xenobiotic composition during the conceptus elongation-initiation window. Sci Rep 2019; 9:7716. [PMID: 31118434 PMCID: PMC6531537 DOI: 10.1038/s41598-019-44040-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/07/2019] [Indexed: 11/09/2022] Open
Abstract
Conceptus elongation coincides with one of the periods of greatest pregnancy loss in cattle and is characterized by rapid trophectoderm expansion, commencing ~ Day 13 of pregnancy, i.e. before maternal pregnancy recognition. The process has yet to be recapitulated in vitro and does not occur in the absence of uterine gland secretions in vivo. Moreover, conceptus elongation rates are positively correlated to systemic progesterone in maternal circulation. It is, therefore, a maternally-driven and progesterone-correlated developmental phenomenon. This study aimed to comprehensively characterize the biochemical composition of the uterine luminal fluid on Days 12-14 - the elongation-initiation window - in heifers with normal vs. high progesterone, to identify molecules potentially involved in conceptus elongation initiation. Specifically, nucleotide, vitamin, cofactor, xenobiotic, peptide, and energy metabolite profiles of uterine luminal fluid were examined. A total of 59 metabolites were identified, of which 6 and 3 displayed a respective progesterone and day effect, whereas 16 exhibited a day by progesterone interaction, of which 8 were nucleotide metabolites. Corresponding pathway enrichment analysis revealed that pyridoxal, ascorbate, tricarboxylic acid, purine, and pyrimidine metabolism are of likely importance to to conceptus elongation initiation. Moreover, progesterone reduced total metabolite abundance on Day 12 and may alter the uterine microbiome.
Collapse
Affiliation(s)
| | - José M Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
13
|
Stenhouse C, Hogg CO, Ashworth CJ. Associations between fetal size, sex and placental angiogenesis in the pig. Biol Reprod 2019; 100:239-252. [PMID: 30137229 PMCID: PMC6335214 DOI: 10.1093/biolre/ioy184] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/13/2018] [Accepted: 08/16/2018] [Indexed: 01/08/2023] Open
Abstract
Inadequate fetal growth cannot be remedied postnatally, leading to severe consequences for neonatal and adult development. It is hypothesized that growth restriction occurs due to inadequate placental vascularization. This study investigated the relationship between porcine fetal size, sex, and placental angiogenesis at multiple gestational days (GD). Placental samples supplying the lightest and closest to mean litter weight (CTMLW), male and female Large White X Landrace fetuses were obtained at GD30, 45, 60, and 90. Immunohistochemistry revealed increased chorioallantoic membrane CD31 staining in placentas supplying the lightest compared to those supplying the CTMLW fetuses at GD60. At GD90, placentas supplying the lightest fetuses had decreased CD31 staining in the chorioallantoic membrane compared to those supplying the CTMLW fetuses. The mRNA expression of six candidate genes with central roles at the feto-maternal interface increased with advancing gestation. At GD60, ACP5 expression was increased in placentas supplying the lightest compared to the CTMLW fetuses. At GD45, CD31 expression was decreased in placentas supplying the lightest compared to the CTMLW fetuses. In contrast, CD31 expression was increased in placentas supplying the lightest compared the CTMLW fetuses at GD60. In vitro endothelial cell branching assays demonstrated that placentas supplying the lightest and male fetuses impaired endothelial cell branching compared to placentas from the CTMLW (GD45 and 60) and female fetuses (GD60), respectively. This study has highlighted that placentas supplying the lightest and male fetuses have impaired angiogenesis. Importantly, the relationship between fetal size, sex, and placental vascularity is dynamic and dependent upon the GD investigated.
Collapse
Affiliation(s)
- Claire Stenhouse
- Developmental Biology Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Charis O Hogg
- Developmental Biology Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Cheryl J Ashworth
- Developmental Biology Division, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
14
|
McCoski SR, Vailes MT, Owens CE, Cockrum RR, Ealy AD. Exposure to maternal obesity alters gene expression in the preimplantation ovine conceptus. BMC Genomics 2018; 19:737. [PMID: 30305020 PMCID: PMC6180665 DOI: 10.1186/s12864-018-5120-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
Abstract
Background Embryonic and fetal exposure to maternal obesity causes several maladaptive morphological and epigenetic changes in exposed offspring. The timing of these events is unclear, but changes can be observed even after a short exposure to maternal obesity around the time of conception. The hypothesis of this work is that maternal obesity influences the ovine preimplantation conceptus early in pregnancy, and this exposure will affect gene expression in embryonic and extraembryonic tissues. Results Obese and lean ewe groups were established by overfeeding or normal feeding, respectively. Ewes were then bred to genetically similar rams. Conceptuses were collected at day 14 of gestation. Morphological assessments were made, conceptuses were sexed by genomic PCR analysis, and samples underwent RNA-sequencing analysis. While no obvious morphological differences existed between conceptuses, differentially expressed genes (≥ 2-fold; ≥ 0.2 RPKM; ≤ 0.05 FDR) were detected based on maternal obesity exposure (n = 21). Also, differential effects of maternal obesity were noted on each conceptus sex (n = 347). A large portion of differentially expressed genes were associated with embryogenesis and placental development. Conclusions Findings reveal that the preimplantation ovine conceptus genome responds to maternal obesity in a sex-dependent manner. The sexual dimorphism in response to the maternal environment coupled with changes in placental gene expression may explain aberrations in phenotype observed in offspring derived from obese females. Electronic supplementary material The online version of this article (10.1186/s12864-018-5120-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah R McCoski
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 3430 Litton-Reaves Hall (0306), Virginia, Blacksburg, VA, 24061, USA
| | - McCauley T Vailes
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 3430 Litton-Reaves Hall (0306), Virginia, Blacksburg, VA, 24061, USA
| | - Connor E Owens
- Department of Dairy Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Rebecca R Cockrum
- Department of Dairy Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 3430 Litton-Reaves Hall (0306), Virginia, Blacksburg, VA, 24061, USA.
| |
Collapse
|
15
|
Engel N. Sex Differences in Early Embryogenesis: Inter-Chromosomal Regulation Sets the Stage for Sex-Biased Gene Networks: The dialogue between the sex chromosomes and autosomes imposes sexual identity soon after fertilization. Bioessays 2018; 40:e1800073. [PMID: 29943439 DOI: 10.1002/bies.201800073] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/02/2018] [Indexed: 12/23/2022]
Abstract
Sex-specific transcriptional and epigenomic profiles are detectable in the embryo very soon after fertilization. I propose that in male (XY) and female (XX) pre-implantation embryos sex chromosomes establish sexually dimorphic interactions with the autosomes, before overt differences become apparent and long before gonadogenesis. Lineage determination restricts expression biases between the sexes, but the epigenetic differences are less constrained and can be perpetuated, accounting for dimorphisms that arise later in life. In this way, sexual identity is registered in the epigenome very early in development. As development progresses, sex-specific regulatory modules are harbored within shared transcriptional networks that delineate common traits. In reviewing this field, I propose that analyzing the mechanisms for sexual dimorphisms at the molecular and biochemical level and incorporating developmental and environmental factors will lead to a greater understanding of sex differences in health and disease. Also see the video abstract here: https://youtu.be/9BPlbrHtkHQ.
Collapse
Affiliation(s)
- Nora Engel
- Lewis Katz School of Medicine at Temple University - Fels Institute for Cancer Research, 3400 North Broad St., AHB Room 201, Philadelphia, Pennsylvania, 19140, USA
| |
Collapse
|
16
|
Gómez E, Sánchez-Calabuig MJ, Martin D, Carrocera S, Murillo A, Correia-Alvarez E, Herrero P, Canela N, Gutiérrez-Adán A, Ulbrich S, Muñoz M. In vitro cultured bovine endometrial cells recognize embryonic sex. Theriogenology 2017; 108:176-184. [PMID: 29223655 DOI: 10.1016/j.theriogenology.2017.11.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 11/29/2022]
Abstract
Endometrial cell co-culture (ECC) with single embryo may reflect endometrium responses in vivo. Bovine Day-6 in vitro-produced morulae were cultured until Day-8 in modified synthetic oviductal fluid (mSOF), or on the epithelial side of ECC. Expression of epithelial- and stromal-cell transcripts was analyzed by RT-PCR in ECC with one male (ME) or female embryo (FE). Concentrations of ARTEMIN (ARTN) and total protein were determined in epithelial cell-conditioned medium. ECCs yielded embryos with more cells in the inner cell mass than embryos cultured in mSOF. Embryos altered transcript expression only in epithelial cells, not in stromal ones. Thus, ME induced larger reductions than FE and controls (i.e., no embryos cultured) in hexose transporter solute carrier family 2 member 1 (SLC2A1) and member 5 (SLC2A5), connective tissue growth factor (CTGF), artemin (ARTN), and interferon alpha and beta receptors subunit IFNAR1 and IFNAR2. FE reduced SLC2A1 and SLC2A5, and increased ARTN expression with respect to controls. ME tended to reduce total protein concentration (P < 0.082) in ECC-conditioned medium, while ARTN protein and gene expressions strongly correlated (R > 0.90; P < 0.05) in the group of ME or FE, but not in controls (without embryo). Isolated male and female embryos may differentially release signaling factors that induce sexually dimorphic responses in endometrial cells.
Collapse
Affiliation(s)
- E Gómez
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain.
| | - M J Sánchez-Calabuig
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - D Martin
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - S Carrocera
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - A Murillo
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - E Correia-Alvarez
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - P Herrero
- Centre for OMIC Sciences, Universitat Rovira i Virgili, Reus, Tarragona, Spain
| | - N Canela
- Centre for OMIC Sciences, Universitat Rovira i Virgili, Reus, Tarragona, Spain
| | - A Gutiérrez-Adán
- Departamento de Reproducción Animal, INIA, Avda. Puerta de Hierro, n°12, local 10, 28040 Madrid, Spain
| | - S Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Switzerland
| | - M Muñoz
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| |
Collapse
|
17
|
Pérez-Cerezales S, Ramos-Ibeas P, Rizos D, Lonergan P, Bermejo-Alvarez P, Gutiérrez-Adán A. Early sex-dependent differences in response to environmental stress. Reproduction 2017; 155:R39-R51. [PMID: 29030490 DOI: 10.1530/rep-17-0466] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022]
Abstract
Developmental plasticity enables the appearance of long-term effects in offspring caused by exposure to environmental stressors during embryonic and foetal life. These long-term effects can be traced to pre- and post-implantation development, and in both cases, the effects are usually sex specific. During preimplantation development, male and female embryos exhibit an extensive transcriptional dimorphism mainly driven by incomplete X chromosome inactivation. These early developmental stages are crucial for the establishment of epigenetic marks that will be conserved throughout development, making it a particularly susceptible period for the appearance of long-term epigenetic-based phenotypes. Later in development, gonadal formation generates hormonal differences between the sexes, and male and female placentae exhibit different responses to environmental stressors. The maternal environment, including hormones and environmental insults during pregnancy, contributes to sex-specific placental development that controls genetic and epigenetic programming during foetal development, regulating sex-specific differences, including sex-specific epigenetic responses to environmental hazards, leading to long-term effects. This review summarizes several human and animal studies examining sex-specific responses to environmental stressors during both the periconception period (caused by differences in sex chromosome dosage) and placental development (caused by both sex chromosomes and hormones). The identification of relevant sex-dependent trajectories caused by sex chromosomes and/or sex hormones is essential to define diagnostic markers and prevention/intervention protocols.
Collapse
Affiliation(s)
| | | | | | - Pat Lonergan
- School of Agriculture and Food ScienceUniversity College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
18
|
Clark EL, Bush SJ, McCulloch MEB, Farquhar IL, Young R, Lefevre L, Pridans C, Tsang HG, Wu C, Afrasiabi C, Watson M, Whitelaw CB, Freeman TC, Summers KM, Archibald AL, Hume DA. A high resolution atlas of gene expression in the domestic sheep (Ovis aries). PLoS Genet 2017; 13:e1006997. [PMID: 28915238 PMCID: PMC5626511 DOI: 10.1371/journal.pgen.1006997] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/03/2017] [Accepted: 08/24/2017] [Indexed: 02/08/2023] Open
Abstract
Sheep are a key source of meat, milk and fibre for the global livestock sector, and an important biomedical model. Global analysis of gene expression across multiple tissues has aided genome annotation and supported functional annotation of mammalian genes. We present a large-scale RNA-Seq dataset representing all the major organ systems from adult sheep and from several juvenile, neonatal and prenatal developmental time points. The Ovis aries reference genome (Oar v3.1) includes 27,504 genes (20,921 protein coding), of which 25,350 (19,921 protein coding) had detectable expression in at least one tissue in the sheep gene expression atlas dataset. Network-based cluster analysis of this dataset grouped genes according to their expression pattern. The principle of 'guilt by association' was used to infer the function of uncharacterised genes from their co-expression with genes of known function. We describe the overall transcriptional signatures present in the sheep gene expression atlas and assign those signatures, where possible, to specific cell populations or pathways. The findings are related to innate immunity by focusing on clusters with an immune signature, and to the advantages of cross-breeding by examining the patterns of genes exhibiting the greatest expression differences between purebred and crossbred animals. This high-resolution gene expression atlas for sheep is, to our knowledge, the largest transcriptomic dataset from any livestock species to date. It provides a resource to improve the annotation of the current reference genome for sheep, presenting a model transcriptome for ruminants and insight into gene, cell and tissue function at multiple developmental stages.
Collapse
Affiliation(s)
- Emily L. Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Stephen J. Bush
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Mary E. B. McCulloch
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Iseabail L. Farquhar
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Rachel Young
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Lucas Lefevre
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Clare Pridans
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Hiu G. Tsang
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Chunlei Wu
- Department of Integrative and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Cyrus Afrasiabi
- Department of Integrative and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Mick Watson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - C. Bruce Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Tom C. Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Kim M. Summers
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Mater Research Institute and University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Alan L. Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - David A. Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Mater Research Institute and University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| |
Collapse
|
19
|
Gross N, Kropp J, Khatib H. Sexual Dimorphism of miRNAs Secreted by Bovine In vitro-produced Embryos. Front Genet 2017; 8:39. [PMID: 28421107 PMCID: PMC5378762 DOI: 10.3389/fgene.2017.00039] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/20/2017] [Indexed: 01/29/2023] Open
Abstract
Sexual dimorphism of bovine blastocysts has previously been observed through differences in development, cell death, metabolism, telomere length, DNA methylation, and transcriptomics. However, dimorphism in the secretion of miRNAs to culture media has not yet been evaluated. The objectives of this study were to determine if sex-specific blastocyst miRNA secretion occurs and to further investigate the role these miRNAs may have in the interaction between a blastocyst and the maternal environment. In vitro embryo culture was performed and media from male and female blastocysts was collected into sex-specific pools. Profiling of 68 miRNAs revealed a total of eight miRNAs that were differentially expressed between female and male-conditioned media. Validation by qPCR confirmed higher expression of miR-22 (P < 0.05), miR-122 (P < 0.05), and miR-320a (P < 0.05) in female media for three additional biological replicates. To examine the potential roles of secreted miRNAs to the media in communication with the maternal environment, miR-22, miR-122, and miR-320a were each supplemented to four replicates of primary bovine endometrial epithelial cell culture. Uptake of miR-122 (P < 0.05) and miR-320a (P < 0.05) was detected, and a trend of uptake was detected for miR-22 (P > 0.05). Further, expression of the progesterone receptor transcript, a predicted target of all three miRNAs, was found to be upregulated in the cells following supplementation of miR-122 (P < 0.05) and miR-320a (P < 0.05), and a trend upregulation of the transcript was observed following miR-22 (P > 0.05) supplementation. This work demonstrates that male and female conceptuses are able to differentially secrete miRNAs at the blastocyst stage and that these miRNAs have the ability to induce a transcriptomic response when applied to maternal cells. This knowledge builds on the known dimorphic differences in conceptuses at the blastocyst stage and demonstrates a role for blastocyst-secreted miRNAs in cell-cell communication.
Collapse
Affiliation(s)
- Nicole Gross
- Department of Animal Sciences, University of Wisconsin, MadisonWI, USA
| | - Jenna Kropp
- Department of Animal Sciences, University of Wisconsin, MadisonWI, USA
| | - Hasan Khatib
- Department of Animal Sciences, University of Wisconsin, MadisonWI, USA
| |
Collapse
|